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Abstract: A novel cyclic olefin copolymer (COC)-based polymer optical fiber (POF) with a rectangular
porous core is designed for terahertz (THz) sensing by the finite element method. The numerical
simulations showed an ultrahigh relative sensitivity of 89.73% of the x-polarization mode at a
frequency of 1.2 THz and under optimum design conditions. In addition to this, they showed an
ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefringence of 1.91 × 10−3, a numerical
aperture of 0.33, and an effective mode area of 1.65 × 105 µm2 was obtained for optimum design
conditions. Moreover, the range dispersion variation was within 0.7 ± 0.41 ps/THz/cm, with the
frequency range of 1.0–1.4 THz. Compared with the traditional sensor, the late-model sensor will
have application value in THz sensing and communication.

Keywords: polymer optical fiber; fiber optics sensors; terahertz wave; finite element method

1. Introduction

The characteristics of the wide-spectrum, strong-penetration, high-security terahertz
(THz) wave have all-important applications in THz tomography [1,2], detection tech-
nology [3,4], biomedical sensing [5–9], THz communication [10,11], polarization mainte-
nance [12–14], nondestructive testing [15], and other fields. The THz functional device
is based on the waveguide structure and is the premise to realize various application
functions. It plays a crucial role in the development of a compact and powerful all-fiber
THz system.

In recent years, THz technology has made progress in optical fiber technology by
realizing a variety of optical fiber functional devices, including the THz wave directional
coupler [16,17], filter [18], beam splitter [19,20], optical switch [21], and the polarization
controller [22,23]. Among them, the THz fiber device based on porous-core fiber has special
advantages [24–30]. The appearance of PCFs was an overturning innovation in optical fiber
technology because PCFs not only have all-time performance but also can overcome the
inherent limitations of standard optical fibers [31]. Compared with conventional optical
fibers, PCFs are flexible in design and can adjust transmission characteristics by controlling
multiple geometric parameters. The light conduction mode of porous fiber is a total
internal reflection mechanism. The microporous channel at the core of the PCF provides
convenience for filling various functional materials for optical sensing [31–34].

However, a THz wave is easily absorbed by dielectric materials, so it is critical to select
low-loss materials for THz wave transmission. The measures to reduce the material loss
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mainly include the selection of background materials and the novel structure of photonic
crystal fibers (PCFs), such as porous- or hollow-core photonic crystal fibers [35–37]. There
are many polymer substrate materials used in polymer fiber, including cyclic olefin copoly-
mer (COC), polytetrafluoroethylene (Teflon® or PTFE), polyethylene (PE), polyamide-
6 (PA6), polycarbonate (PC), polymethyl methacrylate (PMMA), cyclo-olefin polymer
(COP), high-density polyethene (HDPE), and so on [38–42]. COC is a new kind of op-
tical polymer material whose commercial name is TOPAS®. It is remarkable that due
to its amorphous structure, TOPAS® has a tiny loss in the THz band, which is 1% of
PMMA [43]. In recent years, the TOPAS® microstructural fiber for THz transmission was
reported frequently [44–46]. Therefore, TOPAS®-based POFs have opened up a new area
of fiber sensing.

The rectangular porous-core POFs have powerful anisotropy which obtain outstanding
optical transmission properties, such as flat dispersion, high birefringence, low loss, large
numerical aperture, and the like. Therefore, based on the above discussion, we designed
a TOPAS®-based terahertz sensor and used it to measure alcohol, combining the ethanol-
filled rectangular microarray core and the modified hexagonal lattice cladding. As an
important industrial raw material widely used in food, the chemical industry, the military
industry, medicine and other fields [47,48], it is of great significance to determine the
content of alcohol quickly, accurately, and sensitively.

For the complex structure of a POF-based THz sensor, the transmission characteristics
of THz-PCFs are usually studied by the full-vector finite element method (FV-FEM) [49–51],
the plane-wave method [52,53], an improved effective index method [54,55], the finite
difference time domain method [56,57], the beam propagation method [58–60], and the
multi-pole method [61–63]. Among these methods, the FV-FEM is best suited for calculating
the transmission characteristics of optical fibers. FV-FEM technology has the advantages of
a short computation time, less computational memory, and accurate calculation results.

In this work, a simulation analysis of a new-type TOPAS®-based THz sensor with a
rectangular porous core is presented using the FV-FEM. The guiding properties, including
birefringence, dispersion, confinement loss, and nonlinearity are studied thoroughly. It
can be predicted that the ultrahigh relative sensitivity TOPAS®-based THz sensor has vast
potential in the field of THz transmission and sensing.

2. Design Methodology

Figure 1 shows a design model consisting of the ethanol-filled rectangular microar-
ray core and modified hexagonal lattice cladding. The background material is TOPAS®.
TOPAS® is an amorphous, transparent copolymer with a cyclic olefin structure. Compared
with other optical polymers, it has desirable properties, such as low density, high refractive
index, high transparency, strong heat resistance, small coefficients of thermal expansion,
stable chemical properties, strong acid and alkaline resistance, and high mechanical flexi-
bility. The background material used in the design model has a refractive index of 1.53. The
diameter of the cladding air hole of the TOPAS®-based THz sensor is d, and the period is Λ.
We used ethanol with a refractive index of 1.354 as the analyte and filled it with a rectangu-
lar porous core. The width and length of the rectangular porous core are noted as w and Li
(i = 1, 2, 3). The extrusion, drilling–stretching, injection molding, and capillary stacking
techniques, and the bulk polymerization process can be used to prepare POFs [64–66]. The
advantage of these techniques is that the cross-sections of arbitrary shapes and size can be
obtained in the preform [67]. These properties of TOPAS® have opened up possibilities for
sensing systems.
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Figure 1. Cross-section of TOPAS®-based THz sensor. The figure shows an enlarged view of the 
rectangular porous core of the sensor. The diameter of the cladding air hole of the TOPAS®-based 
THz sensor is d, and the period is Λ. The width and length of the rectangular porous core are noted 
as w and Li (i = 1, 2, 3). 
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fields. Next, we introduced the basic theory of the FV-FEM in analyzing the transmission 
of electromagnetic waves in optical fibers. 
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When the FV-FEM is used to simulate the TOPAS®-based THz sensor, a curvilinear 
hybrid nodal/edge unit is effective for precisely modeling curvilinear boundaries of holes 
and for avoiding spurious solutions. Dividing the cross-section of the TOPAS®-based THz 
sensor into some curvilinear hybrid nodal/edge units by the FEM, from Equation (1) we 
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The relative sensitivity of a TOPAS®-based THz sensor represents the sensitivity re-
sponse for the filling liquid, which can be expressed as [25] = ×  (4)
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the percentage of the total power by holes power. 

Figure 1. Cross-section of TOPAS®-based THz sensor. The figure shows an enlarged view of the
rectangular porous core of the sensor. The diameter of the cladding air hole of the TOPAS®-based
THz sensor is d, and the period is Λ. The width and length of the rectangular porous core are noted
as w and Li (i = 1, 2, 3).

The FEM skillfully combines approximation theory, the partial differential equation,
and variation and functional analysis. The principle of the FEM is to simplify complex
problems into a series of simple problems, according to the variational principle, which are
widely used in aerospace, mechanical engineering, optical engineering and other fields.
Next, we introduced the basic theory of the FV-FEM in analyzing the transmission of
electromagnetic waves in optical fibers.

Based on the anisotropic perfect matching layer (PML) condition, the following vector
wave formula is obtained from Maxwell’s equations [49–51]

∇×
(
[s]−1∇× E

)
− k2

0n2
e f f [s]E = 0 (1)

[s] =

 sy/sx 0 0
0 sx/sy 0
0 0 sxsy

 (2)

where E is the electric field, [s] is the perfect matching layer matrix, [s]−1 is a transposed
matrix of [s], ne f f is the refractive index, and k0 is the wavenumber in free space.

When the FV-FEM is used to simulate the TOPAS®-based THz sensor, a curvilinear
hybrid nodal/edge unit is effective for precisely modeling curvilinear boundaries of holes
and for avoiding spurious solutions. Dividing the cross-section of the TOPAS®-based THz
sensor into some curvilinear hybrid nodal/edge units by the FEM, from Equation (1) we
can obtain the standard eigenvalue equation

[K]{E} = k2
0n2

e f f [M]{E} (3)

where {E} is the discretized electric field vector, and [M] and [K] represent the finite
element matrices.

The relative sensitivity of a TOPAS®-based THz sensor represents the sensitivity
response for the filling liquid, which can be expressed as [25]

r =
nr

ne f f
× f (4)



Materials 2021, 14, 4921 4 of 16

where nr and ne f f are the refractive indexes of the analyte and the guided mode. The f is
the percentage of the total power by holes power.

f =

∫
sample Re

(
Ex Hy − Ey Hx

)
dxdy∫

total Re
(
Ex Hy − EyHx

)
dxdy

× 100 (5)

where Ex,y and Hx,y represent x- and y- components of the electric field and magnetic
field, respectively.

The THz fiber with high birefringence can preserve the polarization of the lightwave
in the fiber. It plays an extremely crucial role in the terahertz communication and sensing
system, which requires a high-polarization state. The birefringence is expressed as [3]

B = |nx − ny| (6)

where nx and ny are the effective refractive indexes of the x- and y-polarizations, respectively.
Dispersion is an extremely vital index to characterize the transmission characteristics

of the fiber. The dispersion D(λ) of the TOPAS®-based THz sensor can be obtained from
the refractive index values vs. the wavelength by using [68]:

D(λ) = −λ

c

∂2
∣∣∣Re
(

ne f f

)∣∣∣
∂λ2 (7)

The effective mode area represents the area involved in the interaction between materi-
als and light intensity. The effective mode area has applications in laser and communication
devices and optical nonlinear effects [66].

Aeff =

(s
|E|2dA

)2

s
|E|4dA

(8)

The confinement loss of the TOPAS®-based THz sensor is acquired from the following
formula [16].

Con f inement loss =
(

4π f
c

)
Im(ne f f ) [cm−1] (9)

The TOPAS®-based THz sensor with a large numerical aperture (NA) has application
value in optical sensing [25].

NA =
1√

1 + πAeff f 2

c2

(10)

3. Simulation Results and Analyses

First, we analyzed the relation of the relative sensitivity of the TOPAS®-based THz sen-
sor, with the frequency at period Λ = 390 µm, Λ = 400 µm, and Λ = 410 µm, where d/Λ = 0.90,
w = 68 µm, as shown in Figure 2. It was noticed that the relative sensitivity was increased
when the frequency was increased for a fixed Λ. The reason for this phenomenon is that
light confinement reaches an optimum position at 1.2 THz, and that a further increase in
frequency causes the useful light to leak towards the cladding and also to the material [25].
Figure 2a shows the relation of the relative sensitivity of the x-polarization with period
Λ. It is evident that for (frequency is abbreviated as f ) f < 0.81 THz, the value of relative
sensitivity is higher for higher Λ, and for f > 1.03 THz, the value of the relative sensitivity
is higher for lower Λ. Figure 2b shows a result similar to Figure 2a, as when f < 0.86 THz,
the relative sensitivity of the y-polarization increases with the increase in period Λ, while
when f > 0.91 THz, the relative sensitivity of the y-polarization reduces with the increase
in period Λ. When f = 1.2 THz, the interaction between light and materials reaches its
maximum d/Λ = 0.9, w = 68 µm and Λ = 390 µm. As the frequency increases further, the
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interaction between light and materials decreases and the sensitivity of the TOPAS®-based
THz sensor decreases.
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Figure 2. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for period Λ.

Next, by fixing Λ = 390 µm and w = 68 µm while changing the air–filling ratio d/Λ,
the dependence of relative sensitivity of the TOPAS®-based THz sensor on frequency was
further studied. The simulation results are shown in Figure 3. From Figure 3a,b, we noticed
that the sensitivity increases at a certain air–filling ratio and then decreases. This is because,
as the frequency increases, the effective refractive index of the guided mode increases but
the core power fraction does not increase after a particular frequency. Moreover, the relative
sensitivity of the TOPAS®-based THz sensor with the variation of d/Λ was investigated.
It was observed that the sensitivity of the x- and y-polarizations are added to if d/Λ is
increased because that also increases the core power fraction. When the frequency is
1.2 THz, the interaction between light and materials reaches its maximum, at Λ = 390 µm,
w = 68 µm and d/Λ = 0.9. As the frequency increases further, the interaction between light
and materials decreases and the sensitivity of the TOPAS®-based THz sensor decreases.
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Figure 3. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for air–
filling ratio d/Λ.

Additionally, we fixed Λ = 390 µm, and d/Λ = 0.90 and found that when the width
of the rectangular porous-core (w) is varied, the dependence of the relative sensitivity of
the x- and y-polarizations on frequency are also varied, as depicted in Figure 4. From
Figure 4a,b, it is found that the trend dependence on the frequency of the three curves is
similar and close to each other. When the frequency is 1.2 THz, the interaction between
light and materials reaches its maximum at Λ = 390 µm, d/Λ = 0.9, and w = 68 µm. This
phenomenon can be interpreted as the following: the core power fraction may be closely
related to the amount of analyte filled inside the core holes.
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Figure 4. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for the
width of rectangular porous core (w).

The performance of relative sensitivity with the variation of the length of rectangular
porous core (Li) was also investigated, and is shown in Figure 5. It is found that the relative
sensitivity of the x- and y-polarizations increase first and then decrease with Li. When the
frequency is 1.2 THz, the interaction between light and materials reaches its maximum, at
Λ = 390 µm, d/Λ = 0.9, w = 68 µm, L1 = 234 µm, L2 = 312 µm, and L3 = 390 µm. The reason
may be closely related to the amount of analyte filled inside the core holes, which affects
the core power fraction. Under the optimum design conditions, the relative sensitivity of
the TOPAS®-based sensor in the x- and y-polarization modes at the frequency of 1.2 THz is
89.73% and 89.52%, respectively. The relative sensitivity of the proposed TOPAS®-based
THz sensor is much higher than sensors in the references [25,69–76]. The primary causes
for the high sensitivity of the proposed TOPAS®-based terahertz sensor are related to the
selection of background materials (TOPAS®), the design of new fiber structures (modified
hexagonal lattice cladding and ethanol-filled rectangular microarray core), and the filling
of functional materials (ethanol).



Materials 2021, 14, 4921 8 of 16
Materials 2021, 14, 4921 8 of 16 
 

 

 

 
Figure 5. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for the 
length of rectangular porous core (Li). 

In order to detect the amount of ethanol in food and various environments simply 
and efficiently, we changed the effective refractive index of analyte in the porous core. 
Figure 6a,b illustrate the relative sensitivity of the x- and y-polarizations with the fre-
quency at a different effective refractive index. It was found that the maximum relative 
sensitivity is obtained at n = 1.364. Meanwhile, we also observed that the tendency de-
pendence of the three curves on the frequency is similar, and the difference is very obvi-
ous. The above results indicate that the sensor is very sensitive to the analyte measure-
ment. 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
65%

70%

75%

80%

85%

90% (a)

x-polarization

 

Re
la

tiv
e 

Se
ns

iti
vi

ty
 (%

)

Frequence (THz)

 L1=232 μm, L2=310 μm, L3=388 μm
 L1=234 μm, L2=312 μm, L3=390 μm
 L1=236 μm, L2=314 μm, L3=392 μm

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
65%

70%

75%

80%

85%

90%

y-polarization

(b)

 

 

Re
la

tiv
e 

Se
ns

iti
vi

ty
 (%

)

Frequence (THz)

 L1=232 μm, L2=310 μm, L3=388 μm
 L1=234 μm, L2=312 μm, L3=390 μm
 L1=236 μm, L2=314 μm, L3=392 μm

Figure 5. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for the
length of rectangular porous core (Li).

In order to detect the amount of ethanol in food and various environments simply
and efficiently, we changed the effective refractive index of analyte in the porous core.
Figure 6a,b illustrate the relative sensitivity of the x- and y-polarizations with the frequency
at a different effective refractive index. It was found that the maximum relative sensitivity
is obtained at n = 1.364. Meanwhile, we also observed that the tendency dependence of
the three curves on the frequency is similar, and the difference is very obvious. The above
results indicate that the sensor is very sensitive to the analyte measurement.

High-birefringence fibers have application value in optical communication, fiber
sensors, and high-precision optical instruments. Figure 7 reveals the variation of the
birefringence as a function of frequency under optimum conditions. It was found that
the birefringence is sensitive to the varying frequency. It was seen that the birefringence
is about 1.91 × 10−3 at the frequency of 1.2 THz, which is comparable to previous re-
ports [16,68,73,77]. The high birefringence of the sensor can be obtained by introducing
asymmetric defects such as a porous core. This kind of high-birefringence TOPAS®-based
THz fiber with a porous core provides a new scheme for THz polarization controllers.
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0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
65%

70%

75%

80%

85%

90% (a)

x-polarization

 

Re
la

tiv
e 

Se
ns

iti
vi

ty
 (%

)

Frequency (THz)

n=1.344
n=1.354
n=1.364

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
65%

70%

75%

80%

85%

90%

y-polarization

(b)

 

 

Re
la

tiv
e 

Se
ns

iti
vi

ty
 (%

)

Frequency (THz)

 n=1.344
 n=1.354
 n=1.364

Figure 6. Frequency dependence of the relative sensitivity of (a) x- and (b) y-polarization for refractive
index of analyte.

The technical problems to be considered in designing THz waveguides are mainly
to realize low loss and flat dispersion in THz transmission, so as to replace the control of
THz transmission of traditional optical devices in free space, and to finally promote the
development of a compact THz system. Additionally, Figure 8 shows the properties of dis-
persion in the frequency domain for the optimum conditions Λ = 390 µm, d/Λ = 0.90, and
w = 68 µm. It was observed that the dispersion variation is within 0.7 ± 0.41 ps/THz/cm
in the frequency domain of the 1–1.4 THz range, which is lower than the references [10,78].

A low effective mode area is applicable to optical nonlinear effects, while a large
effective mode area is applicable to laser communication and optoelectronic devices. The
numerical aperture (NA) is a crucial physical quantity of the TOPAS®-based terahertz
sensor, which can be obtained by adding the refractive index difference between the core
and the cladding of the POF. As shown in Figure 9, we simulated the effective mode area
and NA in the frequency domain for the optimum design conditions Λ = 390 µm, d/Λ= 0.90,
and w = 68 µm. It was distinctly discovered that the effective mode area decreases in the
low-frequency domain and then increases in the high-frequency domain. Moreover, from
the results, the effective mode area is 1.65 × 105 µm2, and the numerical aperture is about
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0.33 at 1.2 THz. However, most previously designed sensors ignored the effective mode
area [69,70,76–81] and numerical aperture [10,71–76,78–81] of the PCF.
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The ultralow-loss THz fibers with the flattened dispersion have an important appli-
cation prospect in imaging, sensing, communication, and nondestructive testing. Based
on the function device of the low-loss THz waveguide, the necessary components of the
THz system were constructed. Figure 10 illustrates the confinement loss of the suggested
TOPAS®-based THz sensor for the optimum design parameters. It can be found that the
confinement loss decreases with the increase in frequency. The reason for the phenomenon
is that the guided mode is powerfully constrained in the position of the rectangular porous
core in a high-frequency domain. It can be seen that the THz fiber with a rectangular
porous core integrates subwavelength air holes with a high duty ratio, which can reduce
the material absorption loss well. The simulated confinement loss is 2.18 × 10−12 cm−1,
which is better than the previous references at optimal conditions [10,25,70–72,74,75,78,79].
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Figure 11 shows the mode field distribution of the x- and y-polarizations for the
suggested TOPAS®-based THz sensor, when Λ = 390 µm, d/Λ = 0.90, and w = 68 µm. As
can be seen from Figure 9, the light field is firmly restrained at the core of POF, indicating
that the rectangular porous core produces an index of discrepancy between the x- and
y-polarization modes based on the anisotropy of POF.
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4. Conclusions

In summary, we numerically investigated a new TOPAS®-based THz sensor in the
THz region. At optimal design parameters, the sensor exhibits an ultrahigh relative
sensitivity of 89.73%, an ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefrin-
gence of 1.91 × 10−3, a large numerical aperture of 0.33, and the flattened dispersion of
0.7 ± 0.41 ps/THz/cm. Moreover, it is feasible to fabricate the sensor by using the existing
optical fiber fabrication technology. Therefore, based on the excellent sensing characteristics
and design flexibility of the TOPAS®-based THz sensor, these results will create a new
window for next-generation THz technology and will play a significant role in the food
industry, environmental science, safety monitoring, biomedical industry, and other fields.
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