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Context-dependent ‘safekeeping’ of
foraging tools in New Caledonian crows

Barbara C. Klump, Jessica E. M. van der Wal, James J. H. St Clair
and Christian Rutz

Centre for Biological Diversity, School of Biology, University of St Andrews, Sir Harold Mitchell Building,
St Andrews KY16 9TH, UK

Several animal species use tools for foraging, such as sticks to extract

embedded arthropods and honey, or stones to crack open nuts and eggs.

While providing access to nutritious foods, these behaviours may incur signifi-

cant costs, such as the time and energy spent searching for, manufacturing and

transporting tools. These costs can be reduced by re-using tools, keeping them

safe when not needed. We experimentally investigated what New Caledonian

crows do with their tools between successive prey extractions, and whether

they express tool ‘safekeeping’ behaviours more often when the costs (foraging

at height), or likelihood (handling of demanding prey), of tool loss are high. Birds

generally took care of their tools (84% of 176 prey extractions, nine subjects),

either trapping them underfoot (74%) or storing them in holes (26%)—

behaviours we also observed in the wild (19 cases, four subjects). Moreover,

tool-handling behaviour was context-dependent, with subjects: keeping their

tools safe significantly more often when foraging at height; and storing tools

significantly more often in holes when extracting more demanding prey

(under these conditions, foot-trapping proved challenging). In arboreal envi-

ronments, safekeeping can prevent costly tool losses, removing a potentially

important constraint on the evolution of habitual and complex tool behaviour.
1. Introduction
Some animal species use tools for foraging [1], such as sticks to extract arthropods

and honey from tree cavities [2–6], or stones to break open hard-shelled nuts [3,7],

eggs [8] and molluscs [9,10]. While these behaviours provide access to nutritious

foods [11,12], they also incur costs in terms of time and energy spent searching for,

manufacturing, modifying and deploying tools. One way animals can minimize

the costs associated with tool procurement is to use good tools repeatedly,

transporting them between foraging sites, and keeping them safe when not

needed. Several species have indeed been shown to transport tools for re-use

(e.g. chimpanzees [3,13]; orang-utans [14]; capuchin monkeys [15]; sea otters

[10]; dolphins [16]; New Caledonian (NC) crows [4,17]; woodpecker finches

[18]), but tool ‘safekeeping’ remains poorly documented [13,18]. This is surprising

given that such behaviour can enhance the profitability of tool-assisted foraging,

with implications for the fitness of individuals (by increasing survival or

reproductive success), and ultimately, for evolutionary dynamics.

We investigated the safekeeping of tools in NC crows Corvus moneduloides—
tropical birds that forage with bill-held tools (for a review, see [19]). Like other

avian tool users, NC crows are forced by their anatomy to put down foraging

tools in order to process and eat extracted prey items, which inevitably increases

the risk of accidental tool loss. Crows indeed occasionally drop tools (for wood-

pecker finches, see [18]) and can appear notably ‘frustrated’ when this happens

(see the electronic supplementary material, movie S2, Scene 1). Importantly, inde-

pendent anecdotal observations confirm that birds sometimes lodge tools beneath

their feet (‘foot-trapping’), or even store them in nearby holes or crevices in-

between bouts of probing ([4,20]; see fig. 1G in [21]). A range of factors may

affect the costs and likelihood of losing tools, and therefore the relative benefits
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of safekeeping behaviour, but two aspects of the species’

foraging ecology seem particularly important (for further dis-

cussion, see §4). First, NC crows use tools in both terrestrial

and arboreal settings [4,17], with the costs of dropping tools

(in terms of tool recovery) increasing with foraging height.

Second, they extract a variety of prey with their tools (for a

review, see [19]), including species which can be readily eaten

(e.g. small beetle larvae) and others which require prolonged

processing (e.g. venomous arthropods, or lizards [21]), with

the likelihood of dropping tools presumably increasing with

prey-handling demands.

To investigate what NC crows do with their tools between

successive prey extractions, we presented wild-caught sub-

jects with extractive foraging opportunities at different

heights (‘ground’ and ‘elevated’ conditions), yielding prey

which required different handling times (‘easy’ and ‘difficult’

conditions). We found that crows usually took care not to lose

their tools and expressed safekeeping behaviour in a context-

dependent manner. With growing interest in the ecology and

evolutionary origins of animal tool use [19,22–24], recent

studies have made good progress with charting the beha-

viour’s energetic benefits (e.g. [10–12,25,26]), but its costs

are only rarely investigated (e.g. [11,13,27]). Any attempt to

assess the ‘adaptive value’ of tool use requires attention to

both, as it relies on comparing the relative profitabilities of

tool-use and alternative foraging modes [19]. To our knowl-

edge, our study is the first to examine the behavioural

strategies employed by animals to reduce some of the costs

associated with tool-assisted foraging. This work raises ques-

tions regarding tool procurement, loss and re-use, which can

be investigated productively in a wide range of species.
2. Material and methods
(a) Study site and subjects
Between 24 August and 28 October 2013, we trapped 23 NC

crows in a farmland area near Bourail, on the central west

coast of New Caledonia, South Pacific. Birds were allocated to

age categories based on gape coloration ([12]; the percentage of

black coloration increases with age—figure 1), and sexed using

morphometric measurements [28]. Three birds were released

immediately, as they were breeders, and a fourth one escaped.

In pre-testing sessions (for details, see [29]), we identified

13 birds that manufactured and used hooked stick tools and

could therefore progress to the main experiment. Of these, one

crow was used for pilot-testing, to develop the experimental

set-up and refine procedures (see §2b), and three others failed

to interact with the final task. Thus, our sample for analyses con-

sisted of five females (two juveniles, two immatures and one

adult) and four males (three immatures and one adult).

(b) Experimental set-up and procedures
Subjects were kept in housing aviaries and tested individually

in connected experimental chambers (for details, see [29]).

Birds always had access to water and were fed twice a day.

Food was removed from housing aviaries either the evening

(for morning sessions) or ca 1.5 h (afternoon sessions) before test-

ing. Every subject participated in two experimental sessions, each

consisting of two consecutive trials: one where a food-baited log

(see below) was presented on the ground (ground condition) and

another where it was presented on two wooden tripods ca 1.30 m

above the ground (elevated condition). The order of conditions

was randomized across birds (and always different for the two
sessions) and did not significantly affect tool-placement behav-

iour (binary ‘safe’/‘unsecure’ score; generalized linear mixed

model (GLMM): x2 ¼ 1.84, p ¼ 0.18, n ¼ 176; for definitions of

behaviours, see table 1, and for details of statistical analyses,

see §2c).

The experimental set-up consisted of two logs. A ‘materials

log’ was used to present a single stem of live plant material

(from which a tool could be made), firmly wedged into a small

hole so that it stood upright. The two stems required for consecu-

tive trials (see above) were visually matched based on diameter

and colour, and trimmed to contain only a single fork suitable

for hooked stick tool manufacture [30]. By limiting raw materials

and forcing crows to ‘pay’ an initial manufacture cost, we

attempted to increase the tools’ value. A second ‘food log’ con-

tained 10 extraction holes (of 1.6 cm diameter and 7.0 cm

depth), each surrounded by eight smaller (4 mm) ‘safekeeping’

holes (which, however, subjects never used for the intended pur-

pose). Each extraction hole was baited with a peanut-sized cube

of beef heart (henceforth ‘prey’), which for five of the 10 holes

had a downy chicken feather threaded through its centre to

increase handling time (difficult condition; e.g. see the electronic

supplementary material, movie S1, Scene 1). Allocation of easy

(no chicken feather) and difficult prey to the 10 holes was ran-

domized across subjects, but the same for both trials within a

session and for both sessions for each bird. In most trials, two

tiny pieces of meat were positioned on the food log to attract

the birds’ attention. One crow (ER4) broke its tool during an elev-

ated trial. This subject had been previously run with slightly

different prey preparation (difficult prey was threaded with a

chicken feather and a blade of grass) and presentation of tool

materials (10 stems rather than a single stem), so we were able

to use data from this session instead (no other subjects had

experienced these conditions).

An observer filmed experiments with a Panasonic HD camcor-

der from a hide next to the experimental chamber, and called an

assistant via radio if the subject: (i) had not engaged with the set-

up for ca 15 min; (ii) had not extracted any prey for ca 10 min; or

(iii) had extracted all prey from the food log. The assistant then

removed the food log, tool and any plant debris, and either re-

baited the food log (out of the bird’s view) and provided a new

stem, or after the second trial, concluded the session by opening

a passage to the subject’s housing aviary. Owing to experimenter

error, five trials were terminated prematurely; while this may

have reduced the number of prey extractions in these trials, it

would not have affected subjects’ tool-placement behaviour, so is

unproblematic for our analyses.

(c) Video scoring and statistics
From video, we recorded what type of tool the subject manufac-

tured and used for each extraction. Although most birds made

hooked stick tools as intended, some also produced non-hooked

stick tools (used in 56 out of 176 instances; see below), or probed

with the non-hooked end of a hooked stick tool (a further

13 instances); all data were pooled as there was no significant

effect of tool properties on tool-placement behaviour (binary safe/

unsecure score; GLMM: x2 ¼ 0.17, p ¼ 0.68, n ¼ 176). We also

scored whether prey was extracted, and what the subject did with

its tool when not probing with it. After each prey extraction, we

recorded the placement of the tool from the moment it was no

longer in contact with the bird’s bill, until the subject had eaten

the prey and picked the tool up again. In cases where the tool was

repositioned during this period, we recorded its ‘initial placement’

after extraction as well as its ‘final placement’ (i.e. before its first

pick-up following prey consumption). We identified five different

types of tool placement, three of which we classed as ‘safekeeping’

and the remainder as ‘unsecure’ (figure 1b and table 1).

All videos were scored by B.K. using SOLOMON CODER (http://

solomoncoder.com), and five trials (28%) were re-scored by an

http://solomoncoder.com
http://solomoncoder.com
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Figure 1. Safekeeping of foraging tools in NC crows. (a) Crows employ a range of different safekeeping modes, including foot-trapping ((i) wild bird; (ii) captive
bird), and placement in a hole ((iii) captive bird). Tools are marked with red arrows. (b) Final tool-placement behaviour ( percentage of cases) of nine subjects
(identified at the top by their alpha-numerical ring codes) during experiments with two height conditions (‘ground’, bottom; ‘elevated’, top) and two prey-type
conditions (‘easy’, E; ‘difficult’, D). Shades of blue indicate secure placement of tools (safekeeping), while orange and red indicate unsecure placement (for defi-
nitions, see table 1). Subjects are ordered by gape score (% black coloration; see §2a), a proxy for age and values above bar charts indicate the number of prey
extractions, for a given treatment combination, for which tool placement was established (see §2c); the rightmost bars (marked ‘all’) provide summaries across all
birds. Each bird participated in two sessions, each consisting of two consecutive trials ( for details, see §2b).
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independent observer (inter-observer reliability, final safekeeping:

k ¼ 0.92); all analyses are based on the original scores. To ensure

that all cases were strictly comparable, tool-placement data were
excluded from analyses if the subject failed to pick up, or swallow,

the prey before extracting prey from another hole, or failed to pick

up the tool again before the end of the trial (in total, n ¼ 23), as this



Table 1. Definitions used for scoring the temporary placement of foraging tools in NC crows.

mode description

(a) unsecure

ground the tool is lying on the ground, or leaning against the log touching the ground (ground condition only)

log the tool is lying on the log, not inserted in any hole, and the bird is not touching it

(b) safekeeping

foot-trapping the bird holds the tool under one or both feet, but is not touching it with its bill (see figure 1a(i) and (ii);

electronic supplementary material, movie S1, Scenes 5 and 6; movie S2, Scene 2)

corresponding extraction hole the tool is either left in, or is re-inserted into, the extraction hole from which prey has just been extracted

(see electronic supplementary material, movie S1, Scenes 3 and 4)

other extraction hole the tool is inserted into an extraction hole, other than the one from which prey has just been extracted

(see figure 1a(iii); electronic supplementary material, movie S1, Scenes 1 and 2); in one case, the tool was

wedged into a crevice elsewhere in the aviary
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could indicate reduced levels of motivation. Additionally, cases

were excluded when extracted prey had been dropped (n ¼ 48;

prey-type treatment did not affect the likelihood of prey-dropping;

GLMM: x2 ¼ 1.44, p ¼ 0.23, n ¼ 224), as birds in the elevated con-

dition effectively left this experimental condition when they went

to the ground to retrieve prey. Our final dataset included 176 initial

and 176 final tool-placement scores (figure 1b).

We used GLMMs (‘lme4’ package [31] in R [32]) with a bino-

mial error structure and logit-link function to analyse crows’

tool-related behaviours, with ‘subject ID’ fitted as a random effect

to account for data non-independence. Based on checks with the

‘overdisp_fun( )’ function [33–35], our models were not overdis-

persed (ratio between the residual deviance and the residual

degrees of freedom, u ¼ 0.39–0.97; all p . 0.6). Significance of

main effects was assessed with likelihood-ratio tests (at a ¼ 0.05),

and point estimates and 95% CIs are reported on the log-odds

scale (see the electronic supplementary material, table S1).

(d) Observations in the wild
To complement the results from our controlled aviary experiments,

we conducted systematic field observations in our study site

during the same time period. Some 292 person-hours of fieldwork

yielded ca 5 h of video recordings, in which five individually

identifiable crows (four females, one male; three juveniles and

two immatures) performed 25 prey extractions with tools (one to

12 per individual). Five cases could not be scored conclusively

owing to poor visibility, and one case was omitted because the

bird had dropped its prey (in line with analysis protocols for

aviary experiments; see §2c). The remaining 19 cases by four indi-

viduals (of which one was also an experimental subject; ER4) were

scored by J.v.d.W. as described above (see §2c) and reviewed by

B.K., before both observers agreed on consensus classifications.
3. Results
(a) Experiments in captivity
Crows took action to keep their tools safe in the vast majority

of cases (84% of 176 extractions, pooled across treatments;

figure 1b). As predicted, subjects were significantly more

likely to express safekeeping behaviour when foraging at

height, both for initial (GLMM: x2 ¼ 5.80, p ¼ 0.02, n ¼ 176;

Model no. 1 in electronic supplementary material, table S1)

and final tool placement (GLMM: x2 ¼ 5.56, p ¼ 0.02, n ¼
176; Model no. 2; figure 1b). While the overall occurrence of

foot-trapping (the most common safekeeping mode) was

approximately the same at both heights (final tool placement:

64% on the ground versus 62% in the elevated condition),

insertion into holes was significantly more frequent in the

elevated condition (final tool placement: 11% versus 26%)

both for initial (GLMM: x2 ¼ 3.96, p ¼ 0.05, n ¼ 176; Model

no. 3) and final tool placement (GLMM: x2 ¼ 5.54, p ¼ 0.02,

n ¼ 176; Model no. 4; figure 1b). At the trial level, birds

dropped tools less frequently (ground versus elevated;

mean+ s.d., n ¼ 18 cases ¼ 9 subjects � 2 trials; 1.56+2.04

versus 0.78+0.94) and extracted more prey (5.61+3.85

versus 8.17+2.57) when foraging at height.

Prey-handling requirements had a significant effect on

final (GLMM: x2 ¼ 10.02, p ¼ 0.002, n ¼ 176; Model no. 6;

figure 1b), but not on initial (GLMM: x2 ¼ 0.07, p ¼ 0.79,

n ¼ 176; Model no. 5), safekeeping behaviour. Against pre-

dictions, crows were more likely to express safekeeping

when handling easy prey. Closer inspection of the data

revealed, however, that crows stored tools in holes signifi-

cantly more often when handling difficult prey, both with

regards to initial (GLMM: x2 ¼ 8.19, p ¼ 0.004, n ¼ 176;

Model no. 7) and final tool placement (GLMM: x2 ¼ 9.65,

p ¼ 0.002, n ¼ 176; Model no. 8; figure 1b)—just as they had

done in response to the height treatment (see above). When

handling difficult prey, they struggled noticeably with their

preferred method of foot-trapping; among initially foot-

trapped tools (n ¼ 123), 25% were subsequently dropped

when handling difficult prey (n ¼ 56) compared with only

3% for easy prey (n ¼ 67). Only a single initially hole-stored

tool was ever dropped (out of a total of n ¼ 39 across all treat-

ments), and this occurred when the subject was handling

difficult prey.
(b) Observations in the wild
All observed extractions were made with hooked stick tools,

at heights ranging from ca 2–10 m. Birds kept their tools safe

in all instances, foot-trapping them in the majority of cases

(n ¼ 15) and storing them in the corresponding extraction

hole in the remainder (n ¼ 4). Initial and final tool placements

were identical in all but two cases (one switch from
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corresponding extraction hole to foot-trapping; one switch

from behind bark (other extraction hole) to foot-trapping).
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4. Discussion
Our experiments have demonstrated that NC crows’ tool-

placement behaviour is sensitive to both the costs and

likelihood of dropping tools, with certain modes of safekeeping

being expressed significantly more often when foraging at

height or when handling more demanding prey. Our field

observations confirmed that our captive subjects exhibited

natural safekeeping behaviours: in both datasets, foot-trapping

was the preferred mode (wild: 79% of all cases; elevated con-

dition of experiment: 62%), and short-term storage was more

common in extraction holes (wild: 21%; captive: 17%) than in

other holes (wild: 0%; captive: 5%).

The costs in terms of time and energy of recovering a

dropped tool, or of having to replace it altogether, are

expected to increase with foraging height. In our exper-

iments, elevating the food log to only about 1.30 m was

sufficient to induce significant changes in subjects’ tool-place-

ment behaviour. We suspect that free-ranging crows handle

their tools even more cautiously when foraging in the forest

canopy tens of metres above ground [4], especially in habitats

where dense understory would prevent effective tool retrie-

val. When foraging on the ground [17], however, placing or

dropping tools onto the substrate incurs only small recovery

costs, or risk of loss, which may explain both the decreased

levels of safekeeping behaviour and the relatively frequent

tool-dropping incidents we observed in our experimental

ground condition. An alternative explanation is that crows

were more nervous on the ground, devoting more attention

to vigilance behaviour, and that this increase in ‘cognitive

load’ (both activities are demanding; [36–38]) interfered

with the normal expression of safekeeping behaviour.

In many habitually tool-using species, tool-related skills are

honed during a prolonged developmental period [39–41]. In

NC crows, for example, competence in tool manufacture and

deployment is attained in the first 1–2 years of life [42,43],

during which young birds remain associated with their

parents. Safekeeping of tools not only requires considerable

motor skills, but is most likely also cognitively demanding,

as it necessitates simultaneous attendance to two different

stimuli (tool and extracted prey). As dexterity usually increases

with age, and proficiency has been shown to decrease atten-

tional demands [44], we would expect experienced adults to

outperform younger birds. Although our initial sample of 23

trapped NC crows constituted a substantial proportion of our

study population, only nine subjects produced data (see §2a),

which unfortunately is insufficient for robust analyses of age

effects. Nevertheless, inspection of figure 1b suggests that

young birds (less than 90% black gape; [12]) indeed performed

less safekeeping in the ground condition (57%) than in the

elevated condition (89%), while the two adults showed a con-

sistently high level of safekeeping across conditions (ground:

100%; elevated: 88%). A number of factors may contribute to

a generally reduced level of safekeeping by young birds.

These include insufficient development of the motor skills

required to proficiently handle both tool [40,41,45] and prey,

and possible cognitive ‘deficiencies’, such as an inability to

inhibit the primary motivation to eat the prey immediately

[46,47]. The fact that the age effect is apparently driven entirely
by reduced performance of young birds in the ground con-

dition—with very similar performance of young and adult

crows in the elevated condition—is somewhat harder to

explain. One possible explanation for this context-dependence

is that young subjects may have been relatively more anxious

in the ground condition, and thus struggled to attend simul-

taneously to anti-predator vigilance, prey processing and

safekeeping behaviour, while this constraint was alleviated in

the elevated condition. Consistent with this, there seems to be

a strong effect of age on risk aversion among NC crows in the

wild, with young birds often more reluctant than their parents

to approach food sources on the ground (such as bait at trap

sites), preferring instead to beg from the safety of the canopy.

Age does not, however, explain the observed context-

dependence of safekeeping modes, in which storage in

holes formed a larger proportion of safekeeping events at

height than it did on the ground. In fact, of the nine subjects,

only three employed this mode on the ground, while all of

them did on the elevated log (figure 1b). This pattern

suggests that safekeeping modes may differ in the relative

level of security they afford: placing a tool in a hole clearly

reduces the risk of dropping, while foot-trapping seems to

be less secure, especially when handling prey that requires

additional processing before it can be eaten (see below).

But, accidental dropping is not the only way that crows can

lose tools in the wild; we have repeatedly observed wild birds

picking up tools that other individuals had just left or placed

in holes [42]. This highlights an interesting dilemma crows

may face: inserting tools into holes is better for preventing

accidental loss, but increases the likelihood of ‘tool klepto-

parasitism’, while the opposite holds true for foot-trapping.

On the ground, but not at height, the cost of dropping tools is

minimal (see above), which may explain our finding of

height-dependent changes in safekeeping modes.

Further fieldwork is required to examine whether the

proximity of conspecifics influences the tool-placement be-

haviour of foraging NC crows, and if so, whether this holds

true only for encounters between unrelated birds or also for

close kin [48]. We expect that the risk of tool kleptoparasitism

is widespread among tool-using species. In primates, for

example, tool-assisted foraging usually takes place in social

groups [13,15], which creates opportunities for close-range

interaction and tool stealing [13,49]. The scarcity of reports

of tool kleptoparasitism may be due to the fact that, so far,

researchers simply have not paid much attention to this

phenomenon, but it could also indicate that animals

employ very effective countermeasures (the same way that

predation events are rarely observed, because prey exhibit

effective anti-predator strategies; see [36]). Apart from the

safekeeping modes examined in our study of NC crows

(foot-trapping and storage in holes and crevices), animals

may use their bodies to shield tools from conspecifics, or

even actively defend tools that are not being used. In general,

we predict tool-safekeeping behaviours to be sensitive to the

costs associated with tool procurement and manufacture

(see §1), and thus tool value. The investigation of tool safe-

keeping as an anti-kleptoparasitism strategy clearly offers

valuable opportunities for comparative analyses.

As hypothesized, tool-placement behaviour varied with

prey-handling requirements in our experiments, but surpris-

ingly, crows performed safekeeping behaviours more often

when handling easy prey (figure 1b). This could be due

to the fact that birds often struggled with the handling of
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difficult prey and consequently failed to secure their tools.

The removal of the feather from the meat cube seemed chal-

lenging (see the electronic supplementary material, movie S1,

Scene 6; although some birds swallowed the prey with the

feather—see the electronic supplementary material, movie

S1, Scene 3), and tools which had initially been securely

trapped under the foot sometimes dropped to the ground

as the subject focused its attention on the food item (for

further discussion of attentional demands, see above).

While storage in holes kept tools safe during the processing

of both easy and difficult prey, birds that initially foot-

trapped tools succeeded in keeping them safe when handling

easy prey, but struggled to do so when handling difficult

prey. Importantly, final storage in holes was significantly

more common when subjects handled difficult prey, an

effect resembling that observed for the height treatment.

While we specifically investigated the short-term storage of

tools (for seconds to minutes), our results encourage work on

tool ‘caching’ over longer time periods (in the order of hours

to days). Some animals have been shown to anticipate future

needs and plan ahead (for reviews, see [50,51]), an ability

long thought to be uniquely human [52]. In a tool-using con-

text, it has recently been shown that untrained orang-utans

and bonobos [53], but not long-tailed macaques [54], transport

tools in anticipation of future food extractions. The storage of

tools in NC crows over comparable timescales (several hours)

remains to be demonstrated, but would be expected, given

that the species is known to cache food [45,55], and food cach-

ing and tool use show striking ontogenetic parallels [56]. The

fact that our subjects anticipated that they would need their

tools again, and took context-appropriate precautions to keep

them safe, demonstrates a form of ‘planning’ that may substan-

tially increase the efficiency of tool use. Our experiment was

designed to elucidate the behavioural ecology of crows’ tool-

handling behaviour, rather than the cognitive mechanisms

involved. This said, we believe that our novel experimental

paradigm will prove useful in future studies that wish to

probe the cognitive processes of short- and long-term planning.

Tool use has been studied intensively in a range of species

[1], but the safekeeping of tools between successive foraging

episodes remains poorly documented. As explored above, the

costs of dropping tools are expected to increase with foraging

height. NC crows aside ([4,20,21]; this study), there are anec-

dotal observations of woodpecker finches storing foraging

tools temporarily in a crevice or under bark [18], and of chim-

panzees placing tools in forked branches, or between their

toes, when ant-dipping in the forest canopy [13]. In fact, sev-

eral primate species use foraging tools in arboreal habitats:
for example, chimpanzees hunt bush babies [57], and dip

for ants [13] and honey [3]; blonde capuchins fish for termites

[6]; and orang-utans extract honey [5], and feed with mouth-

held tools on Neesia spp. fruit, often processing multiple fruit

sequentially [14]. In all of these cases, tool safekeeping has the

potential to increase foraging efficiency, by avoiding the costly

retrieval, or successive sourcing, of good tools. Safekeeping

behaviours are probably easily overlooked, as they can be sur-

prisingly swift and subtle (see the electronic supplementary

material, movies S1 and S2), especially when expressed by

skilled adults, and fieldworkers tend to focus on details of tool

manufacture or prey extraction. There is considerable scope for

comparative work on animals’ tool safekeeping behaviour,

both through observing free-ranging subjects, and through

controlled experimentation in captivity.

It has recently been suggested that habitual and complex

tool use (i.e. plasticity in making and using tools) is less

likely to evolve when tool-use opportunities occur in arboreal

environments, where rates of innovation (range of tool

materials), social learning (visibility) and accumulation

(access to previously manufactured tools) may be lower than

in terrestrial settings ([58]; for similar arguments for aquatic

environments, see [59]). Strategies to keep successful tools

safe can increase foraging profitability, potentially removing

some of the constraints experienced by arboreal tool users.
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