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Abstract: Cell-penetrating peptides (CPPs) have emerged as versatile tools to increase the intracellu-
lar accumulation of different kinds of cargoes. For an efficient cellular uptake and drug delivery, their
organization into a distinct and stable secondary structure at the outer surface of the plasma mem-
brane is a hallmark and supports optimal lipid–peptide interactions. Incorporation of hydrophobic
moieties, such as carboranes (CBs), has the potential to increase the lipophilicity of peptides, and
thus, to facilitate the formation of secondary structures. Herein, we present synthesis and biophysical
as well as biological characterization of carborane-CPP conjugates having incorporated one or more
CB clusters. Our results highlight the possibility to modulate the secondary structure of CPPs by the
addition of CB’s leading to constructs with altered membrane activity and promising use in terms of
nucleic acid delivery.

Keywords: alpha-helix stabilization; secondary structure; cell-penetrating peptides; lipid–peptide
interaction; peptide engineering

1. Introduction

Biologically active peptides often develop distinct and stable conformations when in
proximity to their binding partners. In case of cell-penetrating peptides (CPPs), structural
organization is essential for efficient interaction with components of the plasma mem-
brane [1]. This structuring readily occurs when CPPs are in close proximity to the lipid
bilayer [2,3] and induces the following internalization process [4,5]. Consequently, chem-
ical modifications that evoke and stabilize such secondary structures are of paramount
importance to enhance the intracellular accumulation of CPPs.

During the past years, CPPs have emerged as promising delivery systems for small
drug molecules, nanoparticles, nucleic acids or proteins [6–11], and have been widely
applied for, e.g., anticancer treatments [12]. The formation and stability of their secondary
structure is influenced by numerous factors including sequence length and amino acid
composition [13,14]. For instance, strategies to increase the internalization efficiency of
CPPs include the introduction of modifications or substitution of distinct amino acids
within the peptide sequence [15,16]. Interestingly, it has been found out that the presence of
hydrophobic amino acids, or the attachment of other hydrophobic moieties, e.g., lipidation,
might further induce superior interaction with lipid bilayers [15,17,18]. In this respect,
so-called car(ba)boranes (CBs) have emerged as interesting lipophilic substitutes and were
already integrated as pharmacophores into different small molecule drugs. In addition, the
incorporation of carboranes into therapeutic peptides was already described [19–21]. In
this regard, CB-peptide conjugates turned out to be promising for application in tumor-
selective boron neutron capture therapy (BNCT), and also CPPs were used to create such
boron delivery systems [22,23]. However, to our knowledge, it is not clear and has not been
elucidated yet how carboranes influence the physicochemical and biological characteristics
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of a CPP, and if one can use CBs to modulate the potential and activity of CPPs. Recently, we
reported the straight-forward synthesis of peptide conjugates containing one CB cluster [24].
In this present study, we extended our efforts to engineer and modulate CPPs having one
or more boron clusters incorporated. As a model CPP, we used sC18, which was developed
in our group and turned out as a useful transporter for many different cargoes [25–29].
We studied the physicochemical properties of the new CBx-CPP conjugates, as well as
their biological activity when in contact with different membrane models. In a preliminary
proof-of-principle study, we confirmed the cargo delivery potential of CB4-sC18, which
proved to be highly promising as a transporter for pDNA.

2. Materials and Methods
2.1. Carborane Synthesis

The carborane building block (1,7-dicarba-closo-dodecarbaborane) was purchased
from Katchem Ltd. (Prague, Czech Republic). Additional chemicals used were bought from
Acros (Geel, Belgium), Alfa Aesar (Haverhill, MA, USA), Fluka (Taufkirchen, Germany),
Merck (Darmstadt, Germany), Sigma-Aldrich (Merck group: Darmstadt, Germany), and
Carbolution (St. Ingbert, Germany). Meta-carborane-1-carboxylic acid was synthesized
according to published procedures [24].

2.2. Peptide Synthesis

All used amino acids were purchased from IRIS Biotech (Marktredwitz, Germany)
and were bought as Nα-Fmoc-protected versions. Additional chemicals and consumables
required for synthesis were derived from Fluka (Taufkirchen, Germany), Merck (Darmstadt,
Germany), Sarstedt (Nümbrecht, Germany), Sigma-Aldrich (Merck group: Darmstadt, Ger-
many), and VWR (Darmstadt, Germany). This includes ethyl cyano(hydroxyimino)acetate
(Oxyma), N,N′-diisopropylcarbodiimide (DIC), 1-[bis(dimethylamino)methylene]-1H-1,2,3-
triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU), N,N-diisopropylethylamine
(DIPEA), acetonitrile (ACN), and trifluoroacetic acid (TFA). For peptide synthesis, a combi-
nation of standard Fmoc/t-Bu solid-phase peptide synthesis (SPPS) on a Syro I peptide
synthesizer (MultiSynTech, Bochum, Germany) and manual coupling protocols were
used [25]. Peptides were generated as C-terminally amidated molecules on a Rink amide
resin. The identity of peptides was confirmed via HPLC-ESI mass spectrometry (LTQ XL,
Thermo Scientific, Waltham, MA, USA).

2.3. Carboranyl-Peptide Synthesis

Synthesis of carborane-peptide conjugates was carried out on solid support (load-
ing 0.5 mmol/gram resin). The carborane cluster was introduced using 2 eq activated
meta-carborane-1-carboxylic acid with 5 eq Oxyma/DIC overnight at room tempera-
ture. Carboranyl-peptides were cleaved from the solid support using trifluoroacetic
acid/triisopropylsilane/water (95/2.5/2.5, v/v/v). Identification was performed via HPLC-
ESI (Chromolith® Performance RP-18e, 100-4.6 mm, Merck, Darmstadt, Germany; 10–60%
ACN in water (incl. 0.1% formic acid) over 15 min; 0.6 mL/min flow rate) mass spec-
trometry. Purification was carried out using preparative HPLC (Nucleodur C18ec; 100-5;
Macherey-Nagel, Düren, Germany), with a flow rate of 1.5 mL/min over 45 min. Different
gradients were used, according to the hydrophobicity of the conjugate; CB1-sC18: 10–60%
ACN in water; CB2-sC18: 20–70% ACN in water; CB3-sC18, CB4-sC18, CB5-sC18: 30–90%
ACN in water. Water was supplemented with 0.1% TFA, ACN with 0.08% TFA. Final
chromatograms were recorded using a linear gradient from 20–80% ACN in water (incl.
0.1% TFA) using a Nucleodur C18ec; 100-5 (Macherey-Nagel, Düren, Germany) column
(1 mL/min flow rate).

2.4. Circular Dichroism Spectroscopy

Conjugates were dissolved in 10 mM phosphate buffer (pH 7.0), either alone or
supplemented with 50% TFE (v/v), to a final concentration of 20 µM. CD spectra of all
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conjugates were recorded from 180–260 nm (0.5 nm intervals) on a J-715 spectropolarimeter
(JASCO, Pfungstadt, Germany) in an N2 atmosphere.

2.5. Cell Viability Assay

In total, 17.000 HeLa cells per well were seeded onto 96-well plates (Sarstedt, Nüm-
brecht, Germany). After confluency of 80–90% was reached, the growth medium was
removed, and cells were incubated with 100 µL of peptide solution of different concentra-
tions (125 nM–100 µM in serum-free medium) for 24 h at 37 ◦C. For a positive control, cells
were treated with 70% EtOH for 10 min. Cells were washed with serum-free medium and
incubated with 10% (v/v) resazurin (Sigma-Aldrich, Merck group: Darmstadt, Germany)
in serum-free medium for 1.5 h at 37 ◦C. Cell viability was determined by measurement
of the resorufin product at 595 nm (λex = 550 nm) on a Tecan infinite M200 plate reader
(Tecan Group AG, Männedorf, Switzerland). Viability was calculated from the fluorescence
values of treated cells in relation to untreated cells.

2.6. CF-Leakage Assay

Large unilamellar vesicles (LUVs) were prepared by dissolving different lipids in
CHCl3, to reach the desired compositions (lipids were purchased from Avanti Polar Lipids,
Inc., Alabaster, AL, USA). To remove the solvent, the mixture was placed into a round-
bottomed flask on ice and the solvent was evaporated under reduced pressure for 20 min
at 40 ◦C and afterwards under vacuum for another 5 min. The dried lipid film was then
hydrated with HKS buffer (25 mM HEPES, 150 mM KCl, pH 7.4, 10% sucrose (w/v)),
supplemented with 100 mM 5(6)-carboxyfluorescein (CF), and homogenized for 5 min at
45 ◦C to form liposomes (final concentration: 8 mM). The resulting multilamellar vesicle
dispersion underwent 10 freeze/thawing cycles and was passed 21 times through a mini
extruder (0.4 µm polycarbonate treck-etch membrane; Avanti Polar Lipids, Inc., Alabaster,
AL, USA). External CF was removed by size exclusion chromatography (PD10 column,
GE Healthcare, Chicago, IL, USA). Peptides were added to the LUVs and the CF release
was monitored by measuring the increased fluorescence intensity on a plate reader (Biotek,
Winooski, VT, USA). After 90 min, Triton-x-100 was added to a final concentration of 0.4%
(v/v) to measure the maximal leakage and normalize data.

2.7. Hemolysis Assay

Human red blood cells were washed five times with PBS (4 ◦C, 3000× g, 5 min) and
diluted to 5% (v/v in PBS). In total, 100 µL of this solution were transferred into a fresh
96-well plate. In total, 50 µL of peptide solution were added and gently resuspended. Red
blood cells were incubated for either 1 or 24 h at 37 ◦C and 5% CO2, respectively. In total,
50 µL of 10% Triton-x-100 were added 10 min prior to the end of the incubation time and
served as a positive control. After incubation, cells were centrifuged (r.t., 2500× g, 3 min).
The supernatant was carefully transferred into a fresh 96-well plate and the absorption at
560 nm was measured on a Tecan infinite M200 plate reader (Tecan Group AG, Männedorf,
Switzerland). The measured absorption referred to the hemoglobin concentration.

2.8. Flow Cytometry

HeLa cells were seeded onto 24-well plates (Sarstedt, Nümbrecht, Germany, 100,000 cells
per well, respectively). After reaching 80–90% confluency, medium was removed, and
cells were incubated with 1 µM CF-labeled peptide solution in serum-free medium for
either 30 min or 2 h at 37 ◦C. The peptide solution was removed, cells were washed twice
with PBS, and trypsinized for 5 min. Detached cells were resuspended in full medium
(phenol red free) and afterwards analyzed using a guava easycyte HT flow cytometer
(Merck, Darmstadt, Germany).
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2.9. Confocal Laser Scanning Microscopy (CLSM)

HeLa cells were seeded into 8-well plates (ibidi, Gräfelfing, Germany, 40,000 cells
per well, respectively) and grown to 80–90% confluency. Cells were treated with 1 µM
CF-labeled peptide in serum-free medium for 30 min or 2 h at 37 ◦C. Ten minutes prior
to the end of the incubation time, nuclei were stained with Hoechst33342. The peptide
solution was removed, and cells were treated with trypan blue (150 mM in 0.1 M acetate
buffer, pH 4.15) for 30 s. Cells were washed twice with PBS and covered with fresh medium
supplemented with FBS. Microscopic analysis was performed using an inverse confocal
TCS SP8 microscope (Leica Microsystems, Wetzlar, Germany), equipped with a 63× oil-
immersion objective. Images were recorded with LAS X software (Leica Microsystems,
Wetzlar, Germany) and adjusted with Fiji.

2.10. Critical Micelle Concentration (CMC) Determination

Peptide conjugates were dissolved in water and different concentrations (1–200 µM)
were prepared. UV-VIS spectra ranging from 200–700 nm were recorded using a 1 cm
path length quartz cuvette in a Spectroquant Pharo 300 photometer (Merck, Darmstadt,
Germany). The absorbance at 255 nm was plotted against the logarithm of the peptide
concentration. The intersection point of two lines was determined as CMC.

2.11. Proliferation Assay

In total, 3000 HeLa cells per well were seeded onto 96-well plates (Sarstedt, Nümbrecht,
Germany). When a confluency of 30–40% was reached, medium was removed and cells
were incubated with peptides and Daunorubicin at different concentrations (1 µM peptide
concentration and 100 nM or 1 µM Daunorubicin in serum-free medium) for 2 h at 37 ◦C.
Afterwards, a washout was performed, and cells were washed once with 100 µL of serum-
free medium. Then, 200 µL of medium with serum were added and cells were grown
for 72 h at 37 ◦C. As a positive control, cells were treated with 70% EtOH for 10 min.
Afterwards, cells were covered with 10% (v/v) resazurin (Sigma-Aldrich, Merck group:
Darmstadt, Germany) in serum-free medium for 1.5 h at 37 ◦C. The cell viability of treated
cells was determined relative to that of untreated cells by measurement of the resorufin
product at 595 nm (λex = 550 nm) on a Tecan infinite M200 plate reader (Tecan Group AG,
Männedorf, Switzerland). Viability was calculated from the fluorescence values of treated
cells in relation to untreated cells.

2.12. Electrophoretic Mobility Shift Assay (EMSA)

Peptides were co-incubated with mCherry plasmid at various ratios for 1 h at 37 ◦C
in nuclease-free water (total volume: 15 µL). The following mass ratios were chosen
(peptide:plasmid): 0.25:1, 0.5:1, 1:1, and 3:1 (mCherry plasmid: 250 ng). After incubation,
3 µL of 6x Loading Dye were added into the reaction mixture and the mixture was loaded
onto a 1% agarose gel. The agarose gel was run for 1.5 h at 100 V and the gel analyzed in a
ChemiDoc XRS (Bio-Rad, Hercules, CA, USA).

2.13. Transfection with mCherry Plasmid

HeLa cells were seeded into 8-well plates (ibidi, Gräfelfing, Germany, 8000 cells per
well, respectively) and grown to 30–40% confluency. Peptides and mCherry plasmid were
co-incubated for 1 h at 37 ◦C at a ratio of 3:1 in serum-free medium (mCherry plasmid:
250 ng). Afterwards, the medium was removed, and the solution was added to the cells.
Additional serum-free medium was added to ensure a final peptide concentration of 1 µM.
Cells were incubated for 2 h with the peptides and peptide/plasmid solution at 37 ◦C,
respectively. As a positive control, Lipofectamine 2000 (Invitrogen, Thermo Scientific,
Waltham, MA, USA) was used and as a negative control, cells were treated with plasmid
only. Afterwards, a washout was performed, and cells were washed once with 150 µL of
serum-free medium. In total, 300 µL of medium with serum were added and cells were
grown for 72 h at 37 ◦C. Ten minutes prior to microscopic analysis, 0.6 µL of Hoechst33342
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were added. Then, cells were washed twice with 150 µL of serum-free medium. In total,
300 µL of serum-supplemented medium were added and cells analyzed using a BZ-X800E
microscope (Keyence, Osaka, Japan).

3. Results
3.1. Synthesis of Carborane-Peptide Conjugates

First, we synthesized a series of CB-CPP conjugates bearing up to five meta-CBs by
using a combination of automated and manual solid-phase peptide synthesis (SPPS). In
order to couple CB stepwise to sC18, additional lysines, e.g., Dde-Lys(Fmoc)-OH, were
introduced (Scheme 1).
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Scheme 1. Synthesis of CB-sC18 conjugates; a: Dde-Lys(Fmoc)-OH, HATU, DIPEA; b: 30%
piperidine/DMF; c: meta-carborane-1-carboxylic acid, Oxyma, DIC; d: 3% hydrazine/DMF; e:
TFA/TIS/water (95/2.5/2.5, v/v/v).

Moreover, a second fluorescent series was synthesized with all conjugates labeled
with 5(6)-carboxyfluorescein (CF) at the ε-amino group of lysine at position 12 of sC18. All
products were obtained in high purities and confirmed via liquid chromatography mass
spectrometry analysis (Table 1, Table S1 and Figures S1–S12).

Table 1. Names, sequences, and analytical data of synthesized peptides. Peptides are C-terminally
amidated. K: lysine with CB attached at the ε-amino group. K: labeling position for CF.

Peptide Sequence MWcalc. [Da] MWexp. [Da]

sC18 1GLRKRLRKFRNKIKEK16 2069.55 2070.34
CB1-sC18 K-GLRKRLRKFRNKIKEK 2367.95 2368.74
CB2-sC18 KK-GLRKRLRKFRNKIKEK 2666.37 2666.97
CB3-sC18 KKK-GLRKRLRKFRNKIKEK 2965.79 2965.99
CB4-sC18 KKKK-GLRKRLRKFRNKIKEK 3264.21 3263.82
CB5-sC18 CB-KKKK-GLRKRLRKFRNKIKEK 3433.44 3434.29

3.2. Physicochemical Properties of CB-CPP Conjugates

Comparing the HPLC retention profiles of all CB-sC18 conjugates revealed a stepwise
shift towards higher retention times dependent on the number of CBs coupled (Figure S13).
Since this effect was obviously dependent on the hydrophobic nature of the conjugates, we
were then interested in whether they would also self-assemble and form nanostructures,
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such as micelles or fibrils. An easy to apply and fast method makes use of changes in
spectroscopic properties associated with micelle formation [30]. For this, one measures
the UV absorbance at a specific wavelength as a function of the concentration. Because
aggregates like micelles and free molecule species contribute to a different extent to the
absorbed UV light, an abrupt change of the slope occurs above a certain point. The
corresponding concentration is defined as the critical micelle concentration (CMC). We
measured the UV-VIS spectra of all CB-sC18 conjugates and observed for all an additional
concentration-dependent maximum at 255 nm (Figure 1A,B and Table 2), whereas this
maximum was not detected for meta-carborane-1-carboxylic acid (Figure S14) or sC18
alone (Figure S15).
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Figure 1. Determination of CMC and CD spectra of CB-CPP conjugates. (A) The determination
of CMC for CB4-sC18 is shown by measuring the UV-VIS spectra at various concentrations (B).
(C) CD spectra of CB-sC18 conjugates in phosphate buffer. (D) CD spectra of CB-pVEC conjugates in
phosphate buffer.

Table 2. Percentage of α-helical content [31], and determined R-values of CB-sC18 and CB-pVEC
conjugates calculated as the ratio between the molar ellipticity values at 222 and 208 nm [32].

Peptide Phosphate Buffer 1 50% TFE 1 Phosphate Buffer 2 50% TFE 2 CMC [µM]

sC18 3.45 71.22 / 0.89 -
CB1-sC18 5.02 50.68 / 0.85 -
CB2-sC18 5.45 60.49 / 0.89 -
CB3-sC18 16.68 56.10 0.56 0.88 44.46 ± 1.14
CB4-sC18 21.68 56.30 0.73 0.98 43.45 ± 1.15
CB5-sC18 21.09 50.15 0.87 0.92 44.37 ± 1.16

pVEC 12.18 48.60 0.37 0.73 -
CB1-pVEC 17.72 44.28 0.57 0.82 -
CB2-pVEC 20.41 51.36 0.84 0.82 -
CB3-pVEC 16.98 65.76 0.99 0.82 -
CB4-pVEC 22.59 59.84 0.92 0.84 -
CB5-pVEC 22.96 45.48 0.79 0.79 -

1 % of alpha helix, 2 R-value.
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Thus, we hypothesized this maximum as evidence for a possible self-assembly, and
by plotting the absorbance at 255 nm against the logarithm of the peptide concentration,
we assigned the intersection point as CMC. Interestingly, determination of a CMC was
only feasible for CB3–5-sC18 variants (Table 2, Figures S16–S19), letting us assume that
self-assembly accompanied by a change in secondary structure would only be observed
when three or more CBs were attached.

To find out more, we performed CD spectroscopy for all peptides solved either in
phosphate buffer or in phosphate buffer supplemented with trifluoroethanol (TFE), respec-
tively. All conjugates and sC18 adopted an alpha-helix, when present in phosphate buffer
with TFE (Figure S20). On the other hand, when CB-conjugates were solved in phosphate
buffer only (Figure 1C), some of them directly formed distinct secondary structures. For
instance, CB2-sC18 and more clearly CB3-sC18 did not display a clear random coil structure,
but the shapes of their CD curves changed to ones with a more alpha-helical character,
and for CB4- and CB5-sC18, the alpha-helical structure was even more evident (Table 2).
Taking this observation into account, we concluded that the number of CB moieties actually
promoted the formation of alpha-helical structures. This effect might be further explained
by the helical wheel projection of each conjugate showing that the hydrophobic face of the
peptide was clearly enlarged when three or more CB units were attached (see Figure S21).

In order to verify the observed influence of CBs, we chose the CPP pVEC (LLIILR-
RRIRKQAHAHSK) [33] and synthesized the analogous series of CB1–5-pVEC conjugates
by introducing CBs in the same way as described before (Figures S22–S27). Again, we
observed that the elution profile of the different conjugates was shifted towards higher
retention times, similarly as we have seen it before for the CB-sC18 series (Figure S28). More
interestingly, CD spectroscopy measurements indicated a change in the secondary structure
when two or more CBs were attached, while a more distinct alpha-helical structure was
recognized for CB4- and CB5-pVEC (Figure 1D and Figure S29, Table 2). In conclusion,
the attached CBs contribute to the formation of defined secondary structures, which is
important in light of the membrane activity of CPPs.

3.3. Interaction with Artificial and Biological Membranes

Our results thus far inspired us to investigate how the novel CB-conjugates would
perform in a lipid environment. Therefore, we first used large unilamellar vesicles (LUVs)
composed of different phospholipids as suitable model systems for mimicking differ-
ent types of cell membranes. We prepared negatively charged (DOPC/DOPE/DOPG;
40/30/30) LUVs, representing cancer cell membranes, and zwitterionic (DOPC/DOPE;
50/50) ones, representing healthy cell membranes, and incubated them at 25 ◦C for 90 min
with 1 µM peptide solutions (Figure 2). Both lipid systems were additionally loaded with
CF in order to monitor membrane leakage via fluorescence dye outflow.
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As depicted in Figure 2A, sC18 did not cause any leakage to negatively charged LUVs,
while all conjugates bearing carboranes led to an increased outflow of CF, particularly CB3-,
CB4-sC18, and CB5-sC18. The most potent conjugate was CB4-sC18, exhibiting not only
the highest leakage rate but also the most rapid release of CF. Interestingly, this effect also
appeared when CB4-sC18 was incubated with zwitterionic LUVs (Figure 2B), followed
by CB3-sC18 and CB2-sC18. Notably, CB5-sC18 demonstrated the same leakage profile as
CB1-sC18, and was, therefore, not as potent as it was towards negatively charged LUVs.
This finding might be allocated to the formation of micelles and/or a higher tendency
to tightly interact with the lipid phase, also leading to slight precipitation over longer
time incubations. In summary, CB4-sC18 exhibited the highest leakage rate towards both
tested model systems, while interaction with negatively charged membranes seemed to be
stronger and more rapid.

Next, we incubated human red blood cells (RBCs) with different concentrations of
CB-sC18 conjugates at 37 ◦C for 1 or 24 h, respectively. Since their cell membranes are
mainly composed of neutral lipids, RBCs serve as an excellent biological model for the
lytic activity of a peptide. As depicted in Figure 2C, sC18 and CB1-sC18 did not exhibit any
effect on RBCs after 24 h of incubation even at the highest concentration used (25 µM). For
sC18, this agreed with the detected low activity when in contact with zwitterionic LUVs.
Compared to this, CB2-sC18 and all other conjugates were able to lyse RBCs, exhibiting
up to 100% hemolytic activity. Interestingly, the efficacy of the conjugates to lyse RBCs
increased with the number of CB attached (CB2-sC18 < CB3-sC18 < CB4-sC18 < CB5-sC18).
The same activity profile was observed when incubating peptide conjugates with RBCs for
only one hour (Figure S30), whereas the effects started at concentrations higher than 5 µM.
Altogether, we concluded all CB-sC18 conjugates had high membrane activities. However,
this property is impressively dependent on the number of CBs attached to the CPP.

3.4. Cytotoxicity and Cellular Uptake Studies

Following, CB-sC18 conjugates’ interaction with living cells was of interest. We chose
HeLa cells, since we have already used them in many studies including sC18 [25,34]. We
first assessed the cytotoxicity of the novel peptides towards this cell line (Figure 3A). As
expected from our previous studies, sC18 exhibited no cytotoxicity when incubated for
24 h with the cells [35]. In contrast, a clear decrease in cell viability was visible for all novel
CB-sC18 conjugates (Figure 3A). While the cytotoxic activity increased from CB1-sC18 to
CB2-sC18, conjugates CB3-, CB4-, and CB5-sC18 showed nearly the same activity profile,
concluding that there is no direct correlation between the number of CBs coupled to the
peptide and their cytotoxic properties. Nevertheless, the observed cytotoxic profiles agreed
with the LUV experiments using negatively charged vesicles, where we measured a very
fast dye release for all three conjugates CB3- to CB5-sC18, presumably due to membrane
distortion. Since for both controls alone (meta-carborane-1-carboxylic acid as well as sC18)
nearly no cytotoxicity was detected (Figure S31), we allocated this high membrane activity
to the higher alpha-helical content in combination with the enlarged hydrophobic face
within the CB-conjugates that was present after introducing CBs to sC18.

Next, we investigated the cellular uptake of the different CB-sC18 conjugates in
HeLa cells. We performed microscopy studies using confocal laser scanning microscopy
(CLSM), and quantified the uptake by flow cytometry (Figure 3B,C). Since it has been
previously demonstrated that CPP uptake might be influenced by the choice of fluorophore
and its position within the CPP sequence [36,37], we first assessed whether it would
make any difference if sC18 was labeled with CF at the N-terminal or at position 12. As
depicted in Figure S32, we did not determine any impact on the internalization ability
of the peptide, verifying position 12 of sC18 as suitable for CF labeling. However, all
conjugates were able to internalize into HeLa cells already after 30 min of incubation time
and at non-toxic concentrations of 1 µM (Figure S33). The control peptide sC18 as well as
CB1-sC18 were internalized nearly to the same extent. Again, cellular uptake increased
when more CBs were attached to the peptide, whereas it was highest for CB4-sC18 and
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decreased again for the most hydrophobic conjugate CB5-sC18. Additionally, all conjugates
showed a vesicular distribution within the cytosol of the cells, which was even more
visible, when incubating the cells for 2 h (Figure 3B). This observation might be a hint of
an endocytotic internalization pathway. Moreover, as illustrated in Figure 3C, CB4-sC18
was again internalized the most, and the cellular uptake significantly increased for all
conjugates when incubating cells for 2 h, besides for CB1-sC18. Particularly, CB3–5-sC18
were internalized to a much higher extent when incubating the cells for 2 h. This might
be explained by their highly increased hydrophobic character, and therefore, stronger and
more intense interaction with the hydrophobic membrane core. The general decreased
uptake of CB5-sC18 might be a result of formed self-assemblies, which are presumably
taken up to a lesser extent or need more time for internalization. All in all, these results
emphasized again that the attachment of CBs highly supported and adjusted the cellular
uptake of all conjugates, highlighting CB4-sC18 as the most active candidate.
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3.5. Cargo Delivery Studies

Lastly, we were interested in whether the CB-sC18 conjugates would be useful for
intracellular cargo delivery. We chose two different cargoes, daunorubicin (Dau), which has
a reasonably good cell membrane permeability by itself, as well as plasmid DNA encoding
for the red fluorescent protein mCherry, in order to analyze if CB-sC18 conjugates were able
to support the intracellular accumulation in HeLa cells of otherwise non-cell-permeable
molecules. Since CB4-sC18 performed the best, but CB1-sC18 exhibited the lowest cytotoxic
effect, we used both conjugates for our studies. Furthermore, we were interested in whether
the conjugates could be applied as delivery enhancers by just co-incubating the cargo with
transporter, e.g., the CB-CPP conjugate.
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Our results demonstrated that both CB1-sC18 as well as CB4-sC18 did not alter the
cytotoxicity of Dau. Moreover, daunorubicin’s activity was slightly increased using 100
nM Dau in combination with CB4-sC18 (Figure 4A). Of more interest was that CB4-sC18
proved to be versatile to support the internalization of pDNA encoding for mCherry. As
depicted in Figure 4B, when cells were inspected 72 h after transfection, we detected no
fluorescent signal for the control cells (pDNA alone) and only a weak red signal when the
cells were incubated with a mixture of CB1-sC18 and mCherry pDNA. Instead, cells that
were transfected with a solution of CB4-sC18 and mCherry pDNA demonstrated strong
red intracellular signals derived from a successful plasmid transfection. Having a closer
look at the intensity values of fluorescent cells, we observed an almost similar intensity
of lipofectamine-transfected cells compared to cells that were covered with CB4-sC18 and
mCherry pDNA (see the line profiles in Figure 4B and Figure S35).
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Figure 4. Cargo delivery properties of CB-sC18 conjugates. (A) Proliferative activity of CB-sC18 conjugates, Dau and
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analysis of HeLa cells transfected with mCherry encoding pDNA using either CB1-sC18, CB4-sC18, or lipofectamine 2000,
scale bar: 20 µm.

4. Discussion

Our findings presented in this work prove that introducing CBs to cell-penetrating
peptides modulates and enhances their membrane activity. We could demonstrate that
the increased hydrophobicity caused by the attached CBs combined with the higher alpha-
helical content significantly improved lipid phase interaction and thus, cellular uptake
into HeLa cells for the CPP sC18. Beside their cellular uptake mediated by endocytosis,
we assume that CB-CPPs intensively interact with lipid environments. More precisely,
we hypothesize that CB-peptides, particularly those having more than two CBs included,
tightly interact with lipid membranes in a way that they, in a first step, approach the
membrane surface attracted by electrostatic interaction and facilitated by their amphipathic
helix. Second and probably simultaneously, the CB tail is likely be inserted into the lipid
core, tightly interacting with the fatty acid alkyl chains, and presumably sticking to it,
inducing the following cell entry processes by formation of transient pores or inverted mi-
celles. We cannot exclude that these interactions also lead to the recruitment of membrane
components important for endocytotic uptake pathways. Since the CMC measured was
above the concentration that was used in these experiments, we assume that CB-peptides
contact the membrane surface in a singular state. However, we cannot completely exclude
that self-assembled structures also play a role in membrane interaction, as displayed in
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Figure 5. In addition, we observed an intracellular vesicular distribution of the conjugates
and therefore, we suppose that mainly endocytosis took place as the entry pathway at
the concentrations applied. However, which pathway exactly is the favored one has to be
elucidated in more detail in future studies.
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branes is demonstrated. Not shown is endocytosis, which we observed as one of the preferred
internalization pathways (see Figure 3). Left: low concentrations of CB-CPP conjugates interact
with the outer surface of the plasma membrane, leading to pore formation events and potential
membrane distortion. Right: high concentrations of CB-peptide conjugates might result in potential
self-assembly processes.

Interestingly, our findings were transferable to the CPP pVEC, which was affected
in the same manner as sC18 (Figure 1), concluding that CB coupling indeed alters the
conformation of CPPs. Thus, the herein reported CB-CPP conjugates might present an
interesting and valuable toolbox to study the first steps of CPP cellular uptake at the cellular
membrane. More importantly, with the attachment of CB, one might further improve the
overall performance of CPPs in terms of lipid–peptide interaction and internalization
ability. Our results fit recent reports in which it was shown that peptides comprising high
hydrophobic/amphipathic character induce membrane penetration and disrupting events
when they insert deeply into the hydrophobic core of phospholipid membranes [38–40].
Additionally, we propose that in our case, the developed secondary structure played a
crucial role for CB-CPP interplay and insertion within the lipid bilayer [41].

In line with these observations were the results obtained from our cellular studies.
When increasing the applied conjugate concentrations, we observed increased cytotoxicity
in HeLa cells as well as increased hemolytic activity in RBCs dependent on the number of
CBs attached. However, all these effects were observed beyond a concentration threshold
of 1 µM. Of note is that the new CB-conjugates were internalized highly efficiently and
exhibited no cytotoxic effects when applied at lower concentrations of about 1 µM or below
(Figure S33), which could make them interesting candidates for drug delivery applications.

Therefore, in preliminary studies, we investigated their performance as transport
enhancers by simple co-incubation experiments. When incubating the anticancer drug
daunorubicin with CB-sC18 conjugates, the activity of Dau was principally not diminished.
Furthermore, CB4-sC18 showed slightly better activities compared to CB1-sC18, since it
could slightly increase the cytotoxic activity of Dau (when co-incubated with 100 nM Dau).
The fact that the preferred uptake of daunorubicin was not decreased in the presence of
the peptides was possibly due to very fast uptake of the drug itself. Notably, we have
seen a similar effect in previous studies, in which we used a cyclic peptidomimetic version
of sC18 for enhancing the intracellular accumulation of daunorubicin. In this case, no
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improvement was detected when both substances were co-incubated and added to the
cells [29]. On the other side, we investigated the ability of CB1-sC18 and CB4-sC18 in terms
of nucleic acid delivery. Obviously, the transfection efficiency of the CB1-sC18/pDNA
solution was only low, since only less cells showed a relatively weak signal after 72 h.
Compared to this, we detected a clear strong red signal within cells that were transfected
with the corresponding CB4-sC18/pDNA solution. Since the pDNA alone did not show
any signal, we assume a successful delivery of the pDNA facilitated by CB4-sC18. In
addition, we performed electro mobility shift assays (EMSA, see Figure S34) and observed
that at the used pDNA/CB-CPP ratio, the pDNA was retarded. Thus, we conclude that a
successful complex-like formation between both compounds is a prerequisite for successful
transfection of the pDNA. Moreover, the intensity of the signal is comparable to the signal
detected by the lipofectamine control (see Figure 4B and Figure S35), highlighting the high
potential of CB-sC18 conjugates, particularly CB4-sC18, to act as transfection agent.

In conclusion, we designed and synthesized a series of novel CB-CPP variants and
analyzed how CB clusters influence the biophysical characteristics of CPPs. We found out
that CBs affect secondary structure formation, probably leading to enhanced membrane
activities. Therefore, the herein created new conjugates proved to be versatile tools for
biological investigations, including, e.g., lipid–peptide interaction, as well as cargo delivery.
In terms of further possible future studies, we highlight them as interesting candidates for
application in BNCT therapy, where they might be ideal to transport high boron loads to
the site of interest. In fact, as we have seen mainly endosomal accumulation of our CB-sC18
conjugates, the boron delivery to the perinuclear site might be significantly increased by
making use of the endocytotic transport machinery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122075/s1, Figure S1: UV-chromatogram and corresponding ESI-MS spectrum
of sC18, Figure S2: UV-chromatogram and corresponding ESI-MS spectrum of CB1-sC18, Figure S3:
UV-chromatogram and corresponding ESI-MS spectrum of CB2-sC18, Figure S4: UV-chromatogram
and corresponding ESI-MS spectrum of CB3-sC18, Figure S5: UV-chromatogram and corresponding
ESI-MS spectrum of CB4-sC18, Figure S6: UV-chromatogram and corresponding ESI-MS spectrum of
CB5-sC18, Figure S7: UV-chromatogram and corresponding ESI-MS spectrum of CF-sC18 (pos. 12),
Figure S8: UV-chromatogram and corresponding ESI-MS spectrum of CB1-CF-sC18, Figure S9: UV-
chromatogram and corresponding ESI-MS spectrum of CB2-CF-sC18, Figure S10: UV-chromatogram
and corresponding ESI-MS spectrum of CB3-CF-sC18, Figure S11: UV-chromatogram and corre-
sponding ESI-MS spectrum of CB4-CF-sC18, Figure S12: UV-chromatogram and corresponding
ESI-MS spectrum of CB5-CF-sC18, Figure S13: UV-chromatograms of all conjugates recorded us-
ing a linear gradient from 20–80% ACN in water (incl. 0.1% trifluoroacetic acid) within 15 min,
Figure S14: Determination of critical micelle concentration (CMC) of meta-carboranyl-carboxylic
acid, Figure S15: Determination of critical micelle concentration (CMC) of sC18, Figure S16: Deter-
mination of critical micelle concentration (CMC) of CB1-sC18, Figure S17: Determination of critical
micelle concentration (CMC) of CB2-sC18, Figure S18: Determination of critical micelle concentration
(CMC) of CB3-sC18, Figure S19: Determination of critical micelle concentration (CMC) of CB5-sC18,
Figure S20: CD spectra of CB-sC18 conjugates (20 µM peptide concentration) in 10 mM phosphate
buffer (pH 7.0) with the addition of 50% TFE, Figure S21: Helical wheel projections of CB-sC18
conjugates, Figure S22: (A) UV-chromatogram and (B) corresponding ESI-MS spectrum of pVEC
after purification, Figure S23: (A) UV-chromatogram and (B) corresponding ESI-MS spectrum of CB1-
pVEC after purification. Figure S24: (A) UV-chromatogram and (B) corresponding ESI-MS spectrum
of CB2-pVEC after purification, Figure S25: (A) UV-chromatogram and (B) corresponding ESI-MS
spectrum of CB3-pVEC after purification Figure S26: (A) UV-chromatogram and (B) corresponding
ESI-MS spectrum of CB4-pVEC after purification, Figure S27: (A) UV-chromatogram and (B) corre-
sponding ESI-MS spectrum of CB5-pVEC after purification, Figure S28: UV-chromatogram overlay of
CB-pVEC conjugates, Figure S29: CD spectra of CB-pVEC conjugates (20 µM peptide concentration)
in 10 mM phosphate buffer (pH 7.0) with the addition of 50% TFE, Figure S30: Hemolytic activity
of carborane-peptide conjugates towards human red blood cells (RBCs), Figure S31: Cytotoxicity
profile of meta-1-carborane-carboxylic acid towards HeLa cells, Figure S32: Cellular uptake of sC18
into HeLa cells via flow cytometry, Figure S33: Internalization of CB-sC18 conjugates after 30 min,
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Figure S34: Electrophoretic mobility shift assay (EMSA), Figure S35: Overlay of intensity profiles,
Table S1: Names, sequences, analytical data and critical micelle concentration (CMC) of the CB-sC18
series, the CF-labeled CB-sC18 series and the CB-pVEC series.
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