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SUMMARY

The massive size of single-cell RNA sequencing datasets often exceeds the capa-
bility of current computational analysis methods to solve routine tasks such as
detection of cell types. Recently, geometric sketching was introduced as an alter-
native to uniform subsampling. It selects a subset of cells (the sketch) that evenly
cover the transcriptomic space occupied by the original dataset, to accelerate
downstream analyses and highlight rare cell types. Here, we propose algorithm
Sphetcher that makes use of the thresholding technique to efficiently pick repre-
sentative cells within spheres (as opposed to the typically used equal-sized
boxes) that cover the entire transcriptomic space. We show that the spherical
sketch computed by Sphetcher constitutes a more accurate representation of
the original transcriptomic landscape. Our optimization scheme allows to include
fairness aspects that can encode prior biological or experimental knowledge. We
show how a fair sampling can inform the inference of the trajectory of human skel-
etal muscle myoblast differentiation.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has emerged as a revolutionary tool that can shed light on many

corners of cell biology that were unaccessible to previous approaches. The technology has improved

dramatically over the last few years, especially in terms of throughput. Droplet-based technologies allow

to profile the expression of every gene in the genome for hundreds of thousands of cells at once, and

even experiments profiling the transcriptome of millions of cells have become increasingly common

(Cao et al., 2019). Furthermore, the meaningful interpretation of single-cell datasets requires their integra-

tion across different biological contexts, yielding datasets whose enormous size exceeds the capability of

current computational analysis methods to solve routine tasks such as clustering, trajectory inference, and

visualization in practical time or require excessive amounts of memory.

In practice, methods are often run on a smaller subset of the data to bridge the gap between the scalability

of the algorithm and the volume of the data (Hie et al., 2019). The commonly applied uniform subsampling

strategy, however, ignores the similarity or dissimilarity between gene expression patterns of single cells

and thus risks overlooking rare cell states. Spatial random sampling (SRS) (Rahmani and Atia, 2017) and

k-means++ (Arthur and Vassilvitskii, 2007), on the other hand, take into account the structure of the data

when sampling the data. Experiments performed in Hie et al. (2019), however, demonstrated that these

data-dependent methods do not scale efficiently to large datasets and provide unbalanced samples

that hamper downstream analyses. Clustering the full data first followed by sampling from clusters, as per-

formed by dropClust (Sinha et al., 2018), has similar issues (Hie et al., 2019). Hie et al. (2019) introduced geo-

metric sketching as an alternative approach that efficiently samples cells evenly across gene expression

space rather than proportional to the abundance of cells that are in a similar state. For purely computa-

tional reasons, however, Hie et al. (2019) approximate the transcriptomic space of single cells by equal-

sized boxes rather than spheres, from within which cells are randomly selected as representatives into

the sketch.

Here, we propose algorithm Sphetcher that makes use of the thresholding technique originally proposed

for the design of approximation algorithms for bottleneck problems to efficiently pick representative cells

within spheres of a fixed size into a spherical sketch of different metric spaces. We provide theoretical
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guarantees for the spherical sketch computed by Sphetcher and demonstrate through experiments on six

single-cell datasets that these theoretical guarantees are indeed reflected in a more accurate representa-

tion of the original transcriptomic space, which in turn benefits downstream analyses such as clustering and

allows to detect a rare population of inflammatory macrophages. Furthermore, our optimization scheme

naturally allows to include fairness aspects that require to include cells of each pre-defined category

that can encode prior biological or experimental knowledge such as cell type or collection time point.

We demonstrate how our fairness-inspired model can help to incorporate the collection time point of cells

in a time series experiment into the reconstruction of their developmental trajectory. Carefully combined

with a prior grid sampling strategy that is orders of magnitude faster than geometric sketching, Sphetcher

requires only 16 minutes to compute a sketch for a mouse embryonic dataset comprising two million cells.

RESULTS

Overview of Our Spherical Sketching Algorithm

Given a large scRNA-seq dataset, we seek to select a subset of cells, a so-called sketch (Hie et al., 2019),

that evenly represents the geometry of the transcriptional space occupied by the original data. As originally

proposed in Hie et al. (2019), we intuitively aim at capturing the transcriptional heterogeneity of single cells

by removing predominantly cells that show similar expression patterns to other cells while preserving rare

cell states. A sketch of a given size represents the full data well if every original cell is close to a cell in the

sketch, according to somemeasure of distance between two cells. In other words, spheres of a small radius

centered at each cell in the sketch must contain, or cover, every cell in the full dataset. The smaller the

radius, the better the sketch represents the original transcriptional space.

Our algorithm implemented in software tool Sphetcher guesses the smallest possible radius forwhich a sketch of

a given size exists that covers all remaining cells with spheres of this radius (Figure 1). For eachguess, it computes

the smallest size sketch that covers all cells and tries a smaller or larger radius in the next iteration if the resulting

sketch contains too few or toomany cells, respectively. It computes the smallest sketch that covers all cells using

a greedy set cover approach. In each iteration it adds the cell to the sketch that contains the largest number of

yet uncovered cells within the given distance.We employ the disk-friendly greedy (DFG) algorithmdeveloped in

Cormode et al. (2010) that scales to very large scRNA-seq datasets. For very large datasets, the spherical sketch-

ing approach is combined with a prior grid sampling that we show increases the radius of covering spheres by

only a small factor (Transparent Methods).

In addition, our greedy algorithm can incorporate prior categorical information on, e.g., biological cell

types or collection time point of cells. In a fairness-inspired model it selects at least a given number of rep-

resentatives from each class into the sketch.

A detailed description of our algorithm and the parameters used in the experiments are provided in Trans-

parent Methods. We also provide a theoretical analysis that shows that if we are willing to include slightly

more cells in the sketch, our greedy algorithm is guaranteed to find the covering of cells with spheres with

optimal, that is, with smallest possible radius. Furthermore, we give theoretical justification for the practical

performance of our greedy set cover approach and its robustness to noise present in scRNA-seq data.

  

Large-scale scRNA-seq data Spherical covering Sketch

Figure 1. Overview of Sphetcher

For a (large) scRNA-seq dataset (left), Sphetcher uses a disk-friendly greedy algorithm to compute a smallest size set of

spheres of a fixed radius that cover all cells (middle). It guesses the smallest possible radius such that a given number of

spheres of that radius suffice to cover all cells. One representative cell (the center) from each sphere is selected into the

final spherical sketch (right).
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Sphetcher More Accurately Sketches the Transcriptomic Space

To evaluate how well the spherical sketch computed by our method Sphetcher represents the original tran-

scriptomic space, we use the same robust Hausdorff distance measure as Hie et al. (2019) (Transparent

Methods). Intuitively, a small Hausdorff distance between a sketch and a full dataset indicates an accurate

representation that contains for every cell in the original data a close cell in the sketch. We compare our

sketch to the geometric sketch computed by Hie et al. (2019), which the authors demonstrated to consis-

tently achieve smaller Hausdorff distances than uniform sampling and data-dependent sampling methods

SRS and k-means++. The geometric sketch computed in Hie et al. (2019) seeks to minimize the same objec-

tive function (Transparent Methods) but simplifies the approximation of the geometric space by equal-

sized boxes rather than spheres. We benchmark Sphetcher on six public single-cell datasets from mouse

and human that vary in size and number of cell populations: human pancreas (muraro) (Muraro et al.,

2016) with 2,126 cells, 10 populations; mouse embryonic stem cells (klein) (Klein et al., 2015) with 2,717 cells,

4 populations; mouse cortex and hippocampus (zeisel) (Zeisel et al., 2015) with 3,005 cells, 9 populations;

mouse hypothalamus (chen) (Chen et al., 2017) with 14,437 cells, 47 populations; mouse nervous system

(zeiselCNS) (Zeisel et al., 2018) with 465,281 cells, 7 populations; and adult mouse brain (saunders) (Saun-

ders et al., 2018) with 665,858 cells and 11 populations. Figures 2 and S1 show the Hausdorff distances of 10

random trials on sketch sizes ranging from 1% to 10% of the full dataset. Values reported here can deviate

slightly from the original publication (Hie et al., 2019) due to different preprocessing (Transparent

Methods). Our sampling approach based on spheres results in sketches that consistently lead to smaller

Hausdorff distances, across datasets and sketch sizes. As expected, larger sketches yield smaller Hausdorff

distances, but across all datasets the geometric sketch based on 10% of the data does not represent the full

data as well as our spherical sketch with just 1% of the data. In addition, sketches computed by Sphetcher

exhibit a considerably smaller variability over the random trials (Figure S2). Although the geometric sketch

randomly picks a cell in each box, Sphetcher’s only randomdecision is in breaking ties between equal-sized

sets during the greedy set cover computation (Transparent Methods). Remarkably, our naive grid sampling

strategy alone, which is part of our hybrid alternative for very large datasets (Transparent Methods),

achieves competitive Hausdorff distances on datasets zeiselCNS and saunders, especially for small sketch

sizes (Figure S3).

Clustering of Spherical Sketches Facilitates Cell-Type Identification

A common goal in scRNA-seq data analysis is to discover and characterize cell types, typically through clus-

tering methods. The quality of the clustering therefore plays a critical role in biological discovery. The

compact size of a geometric or spherical sketch that accurately summarizes the transcriptional heteroge-

neity in the full data facilitates such downstream analyses. Furthermore, Hie et al. (2019) observed that a

more balanced composition of abundant and rare cell types in a geometric sketch allows to better distin-

guish between cell types compared with a uniform sampling approach. Here, we apply a similar strategy as

in Hie et al. (2019) to evaluate the capability of a standard clustering algorithm to distinguish cell types

based on our spherical sketch as compared with the geometric sketch. We first cluster the sketches using

the graph-based Louvain algorithm (Blondel et al., 2008) and then propagate the labels to the remaining

cells by k-nearest neighbor classification. We use the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985)

to measure the similarity between the inferred clusterings and the ground truth clustering, which is based

Figure 2. Comparison of Hausdorff Distances

The spherical sketch computed by Sphetcher exhibits consistently smaller Hausdorff distances to the full dataset than geometric sketching, across datasets

and sketch sizes. For each sketch size, the results of 10 random trials are shown. Results on datasets zeisel, klein, and saunders are shown in Figure S1.

Figure S3 shows Hausdorff distances achieved by our naı̈ve grid sampling strategy on datasets zeiselCNS and saunders.

ll
OPEN ACCESS

iScience 23, 101126, June 26, 2020 3

iScience
Article



on the biological cell types taken from the original study. Hie et al. (2019) demonstrated that unsupervised

clustering of geometric sketches consistently outperform clusterings of uniformly sampled cells, whereas

data-dependent methods k-means++ and SRS provide competitive results on only a few instances. In Fig-

ures 3 and S4 we show that the more even sampling of the transcriptional landscape by our spherical sketch

facilitates the detection of biological cell types. Across datasets and sampling sizes, the clustering of our

spherical sketches achieves better or comparable separation of cell types than the clustering of the corre-

sponding geometric sketch. In only three out of thirty-six instances, geometric sketching yielded slightly

better median ARI scores. Remarkably, in several cases the clustering of sketches better agrees with the

true biological cell types than the clustering based on the full data. This observation is consistent with

the assumption of a more balanced composition of cell types in a sketch, but an artifact of the clustering

algorithm cannot be excluded, especially in light of the impossibility theorem for clustering (Kleinberg,

2003). Note that despite a small variability in Hausdorff distance, the non-deterministic behavior of the

Louvain algorithm contributes to the different ARI scores observed in the repeated clustering of spherical

sketches.

Impact of Distance Metrics

Downstream analysis of scRNA-seq such as clustering and trajectory inference relies on a metric that mea-

sures the distance between cells in gene expression space. Distance metrics such as Euclidean distance,

correlation-based distance, and cosine similarity (adapted as distance) have been proposed as adequate

measures of dissimilarity, and its specific choice might depend on assumptions made by computational

analysis methods, properties of datasets, and the specific task at hand (Kim et al., 2018; Jaskowiak et al.,

2014). Although the Hausdorff distance is defined based on a given metric, geometric sketching ignores

the metric space and considers absolute differences in each dimension independently.

Here, we illustrate the flexibility of Sphetcher in optimizing the Hausdorff distance under different distance

metrics (see Transparent Methods) and demonstrate that the choice of metric can impact downstream clus-

tering analysis of scRNA-seq data. To this end, we sample a subset of cells from amedium size dataset with

complex population structure (chen) using Sphetcher with four different metrics: Euclidean, Manhattan,

cosine, and Pearson correlation distance. We cluster the four resulting sketches using the same approach

as in the previous section and compare the quality of the clusterings with the one obtained from a geomet-

ric sketch. Note that the geometric sketching approach proposed in Hie et al. (2019) cannot distinguish

different distance metrics. Figure 4 shows that spherical sketches computed by Sphetcher using Euclidean

distance as metric in the objective function yield most accurate clusterings of this dataset. Although cosine

and Pearson distances have a slightly negative effect on the quality of the clustering, Manhattan distance

and geometric sketching yield substantially less accurate clusterings, especially for small sketch sizes.

On dataset muraro, geometric sketching again achieves overall lower ARI scores than Sphetcher using

different metrics (Figure 4). In contrast to dataset chen, however, Euclidean-distance-based sampling

does not show any improvement over alternativemetrics, illustrating the benefit of Sphetcher’s unique abil-

ity to take into account different metrics suitable for different tasks.

Figure 3. Comparison of Sketch-Based Clustering Accuracy

Louvain clustering of spherical sketches computed by Sphetcher yields more accurate cell clusterings as measured by Adjusted Rand Index (ARI) than

geometric sketching based clustering. In both cases, labels assigned to cells in the sketch are propagated to the remaining cells using k-nearest neighbor

classification. The dotted line indicates the ARI score achieved by clustering the full data using the same Louvain algorithm. Results on datasets zeisel, klein,

and saunders are shown in Figure S4.
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Sphetcher Detects Rare Population of Inflammatory Macrophages

Hie et al. (2019) report and experimentally validate the discovery of a rare population of inflammatory mac-

rophages by clustering a geometric sketch of 20,000 cells sampled from a dataset of 254,941 umbilical cord

blood cells. In contrast, clustering the full dataset or a uniform subsample did not reveal this rare popula-

tion of cells, presumably due to their limited visibility among themore abundant inactivemacrophages. We

repeated the experiment by clustering our spherical sketch of same size (20,000 cells) obtained after prior

grid sampling (Sphetcher-H, Transparent Methods) using the Louvain community detection algorithm. As

expected, we were also able to discover a similar cluster of inflammatory macrophages based on the same

set of marker genes CD74, HLA-DRA, B2M, and JUNB (AUROC >0.88, Transparent Methods).

Fairness Incorporates Time Points in Trajectory Reconstruction

In time series studies of geneexpression, single cells are typically collected at different (known) timepoints. In this

section,we illustratehow fairnessaspects canbeusedto incorporate thisadditional information into theconstruc-

tion of a spherical sketch. Tocompare thegene expressiondynamics of human skeletalmusclemyoblast (HSMM)

differentiation with the reprogramming of fibroblasts to myotubes, in Cacchiarelli et al. (2018), single cells were

sampled every 24 h post-induction of myoblast differentiation, between 0 and 72 h. Consistent with the original

publication, we reconstruct the single-cell trajectory of HSMM differentiation using Monocle 2 (Qiu et al., 2017),

ignoring the information on the collection timepoint of cells. Figure5 (left) shows the resulting trajectory, inwhich

cells are initially in a cycling state andeither fully progress to contractilemyotubes or fail to differentiate. Cells are

colored by the four different time points. Formarked cells (black circle) the inferredpseudotime, i.e. their level of

progression through differentiation, and the actual time they were collected, disagree. Even though cells do not

always progress through the process of differentiation in a synchronous manner, the presence of fully differenti-

ated cells at time point 0, for example, is most likely an artifact caused by noise in the single-cell measurements.

We sought to automatically detect and remove cells for which the collection time point disagrees with their

transcriptomic state through a constrained sketching approach. Instead of imposing a hard constraint that

removes ‘‘outlier’’ cells, we let our sketching algorithm decide if cells at different time points are necessary

to evenly represent the global transcriptional space. Because our fairness-inspired model imposes

covering constraints that require a certain number of cells to be sampled from each time point (Transparent

Methods), a fair sampling of cells will implicitly discourage the selection of outlier cells that lie close to cells

in a similar state but which have been collected at different time points.

We compare the trajectories computed by Monocle 2 from the geometric sketch, our (unconstrained)

spherical sketch, and our fairness-inspired spherical sketch that picks at least four cells from each time

point. On all sketches, the overall structure of the inferred trajectory agrees with the trajectory computed

from the full data (Figures 5 (right) and S5–S7). However, although outlier cells are included in both the geo-

metric sketch (8 out of 8 trials, Figure S6) and the unconstrained spherical sketch (2 out of 8 trials, Figure S7),

Sphetcher under fairness constraints decides to not use outlier cells to represent the transcriptional space.

Fairness encourages Sphetcher, for example, to not include fully differentiated cells from time point 0 into

the sketch (Figures 5 (right) and S5). Even more, although constrained Sphetcher includes at least one cell

Figure 4. Impact of Distance Metrics on Clustering Performance

Although clustering based on spherical sketches computed by Sphetcher using Euclidean distance yields most accurate

results on dataset chen, alternative metrics used by Sphetcher lead to higher ARI scores on dataset muraro, illustrating

the importance of Sphetcher’s flexible optimization scheme. In contrast, geometric sketching does not distinguish

different distance metrics and yields overall less accurate clusterings.
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collected at time point 72 in the final state (Full) in Figure 5 and in all trials in Figure S5, unconstrained

sketches do not retain any such cell in any but a single trial (Figures S6 and S7).

In addition, we construct gene expression kinetics plots usingMonocle 2 for a set of genes assessed in Cac-

chiarelli et al. (2018). The expression dynamics inferred from our fair spherical sketch appear smoother than

those obtained from the full data, and cells in our sketch better fit the interpolated expression (Figure S8).

Scalability

Here, we demonstrate scalability of our hybrid strategy Sphetcher-H that combines grid sampling with sub-

sequent spherical sketching (Transparent Methods) to large single-cell datasets. In Table 1 we compare the

running time of Sphetcher-H with the construction of a geometric sketch (Hie et al., 2019) on the zeiselCNS,

saunders, and umbilical cord blood datasets used in previous benchmarks as well as on a dataset (cao)

comprising two million cells (Cao et al., 2019). On the latter dataset, geometric sketching and

Sphetcher-H require in total around 30 min and 16 min of computation, respectively. Remarkably, our naive

grid sampling strategy alone is orders of magnitude faster than geometric sketching but achieves compet-

itive Hausdorff distances on the zeiselCNS and saunders datasets (Figure S3).

DISCUSSION

We have introduced Sphetcher, a novel method that computes a small sketch of single-cell datasets that accu-

rately summarizes its transcriptional heterogeneity. Sphetcher utilizes the thresholding technique to efficiently

pick representative cells within spheres that better approximate the global geometry than boxes. Furthermore,

we provide theoretical justification for its robust performance in practice. Sphetcher is able to accelerate scRNA-

seq analyses such as the detection of cell types through clustering or the reconstruction of developmental tra-

jectories. At the same time, it has the ability to shift the focus froma ‘‘more data, less algorithm’’ regime to a ‘‘less

(but accurate) data, more algorithm’’ approach. For example, highly accurate yet computationally expensive al-

gorithms such as consensus clustering by SC3 (Kiselev et al., 2017) might become practical again on a spherical

sketch computed by Sphetcher from a large-scale dataset. In addition, Sphetcher is sensitive to rare cell types, is

flexible in its use of different distancemetrics, and allows to use prior categorical information on, e.g., biological

cell types or collection time point to guide the selection of cells into a representative sketch.

Limitations of the Study

In most of the experiments in this study, Sphetcher used Pearson correlation as distance metric and was

combined with a specific algorithm for downstream analysis. Even though Louvain community detection

and Monocle 2 are widely used for scRNA-seq clustering and the inference of single-cell trajectories,

respectively, Sphetcher’s underlying model might be less compatible with assumptions made by other al-

gorithms. In particular, Sphetcher’s aim to minimize the maximum distance of cells to the sketch according

to some metric might conflict with internal preprocessing routines applied by computational scRNA-seq

analysis software. This interplay of sketching with respect to a given distance metric and subsequent algo-

rithmic analysis was not systematically addressed in this study.

Figure 5. Single-Cell Trajectories of HSMM Differentiation

Single-cell trajectories of HSMM differentiation as reconstructed by Monocle 2 from the full data (left) and from

Sphetcher’s spherical sketch with fairness constraints (right) consistently describe progression through differentiation.

Cells for which inferred pseudotime and collection time point disagree are marked with a black circle and were

automatically removed as ‘‘outlier’’ cells by Sphetcher. See also Figures S5–S7.
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Furthermore, the incorporation of collection time points of cells in trajectory reconstruction demon-

strates proof of principle. Additional experiments are required to fully address the benefits of

leveraging prior (partial) knowledge on, e.g., cell types in the selection of representative cells into a

sketch.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Stefan Canzar (canzar@genzentrum.lmu.de).

Materials Availability

This study did not generate new materials.

Data and Code Availability

Sphetcher is available at https://github.com/canzarlab/Sphetcher, where we also make spherical sketches

of public, large scRNA-seq dataset available for download.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101126.
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Dataset # Cells Sphetcher-H Geometric Sketching

Grid Distances Set Cover

Cord blood 254,941 1.0 43.0 88.0 23.0

ZeiselCNS 464,713 3.0 153.0 116.0 120.0

Saunders 665,385 5.0 318.0 200.0 201.0

Cao 2,026,641 10.0 600.0 400.0 1869.0

Table 1. Comparison of CPU Time (in Seconds) of Geometric Sketching and Sphetcher-H

Running times are reported separately for the prior grid sampling, the calculation of pairwise distances, and the computation

of a covering of all cells with spheres using a greedy set cover approach (Transparent Methods).
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Figure S1. Comparison of Hausdorff distances, related to Figure 2. The spherical sketch computed
by Sphetcher exhibits consistently smaller Hausdorff distances to the full dataset than geometric
sketching, across datasets and sketch sizes. For each sketch size, the results of 10 random trials are
shown.
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Figure S2. Comparison of Jaccard index, related to Figure 2. We compare the composition of
the sketches computed in different random trials. The Jaccard index is computed for all pairs of
random trials and the average is taken over all pairs for a given sketch size. The Jaccard index
measures the similarity of two sketches by dividing the number of cells that they have in common
by the total number of cells contained in either of the sketches. The Jaccard index ranges from 0
to 1, where 0 indicates that the two sketches have no cells in common, while 1 indicates identical
sketches. Sphetcher returns highly similar sketches in different random trials, while the set of cells
contained in geometric sketches can vary considerably between runs. In addition, these different
geometric sketches differ in the quality of representation of the original transcriptomic space (Figure
2 and Figure S1). Note that the similarity of geometric sketches returned in different runs slowly
increases with larger sample size, since the algorithm has fewer choices to pick a cell in smaller
boxes. In contrast, Sphetcher’s random tie breaking between equal-sized sets does not depend on
the sample size and thus provides highly stable sketches even for small numbers of cells.
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Figure S3. Comparison of Hausdorff distances, related to Figure 2. The näıve grid sampling strat-
egy alone, which is part of our hybrid alternative for very large datasets (Transparent Methods),
achieves competitive Hausdorff distances to geometric sketching on datasets zeiselCNS and saun-
ders, especially for small sketch sizes. For each sketch size, the results of 10 random trials are
shown.
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Figure S4. Comparison of sketch based clustering accuracy, related to Figure 3. Louvain clustering
of spherical sketches computed by Sphetcher yields more accurate cell clusterings than geometric
sketching based clustering. The dotted line indicates the ARI score achieved by clustering the full
data using the same Louvain algorithm.



Figure S5. HSMM differentiation trajectories reconstructed by Monocole 2 from Sphetcher’s sketch
with fairness constraints, related to Figure 5. In 8 trials, Sphetcher did not include ’outlier’ cells
when its fairness model requires to include at least 4 cells from each time point. For outlier cells
inferred pseudotime and actual collection time disagree. At the same time, cells collected at time
point 72 in the final state are consistently retained.
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Figure S6. HSMM differentiation trajectories reconstructed by Monocole 2 from geometric sketches,
related to Figure 5. In each of 8 trials, geometric sketches included outlier cells (black circles) for
which inferred pseudotime and actual collection time disagree. At the same time, in only a single
case a cell in final state collected at time point 72 is retained.
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Figure S7. HSMM differentiation trajectories reconstructed by Monocole 2 from Sphetcher’s sketch
without fairness constraints, related to Figure 5. In 2 out of 8 trials, spherical sketches included
outlier cells (black circles) for which inferred pseudotime and actual collection time disagree. At
the same time, cells in final state collected at time point 72 are lost in each trial.
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Figure S8. Gene expression dynamics, related to Figure 5. Expression dynamics along pseudotime
were computed by Monocle 2 from full data (left) and from the sketch produced by Sphetcher with
fairness constraints (right) for genes ID3, IGF1R, MYH3, and MYOG.



Transparent Methods

Sketching scRNA-seq as k-center problem

Given a large scRNA-seq dataset, we seek to select a subset of cells, a so-called sketch (Hie et al.
2019), that evenly represents the geometry of the transcriptional space occupied by the origi-
nal data. As originally proposed in Hie et al. (2019), we use the Hausdorff distance to measure
how well the sketch captures the transcriptional heterogeneity in the data. Given n data points
X = {x1, x2, . . . , xn} representing the m-dimensional gene expression measurements xi ∈ Rm of n
individual cells, and a metric d that measures the dissimilarity between pairs of cells, the Hausdorff
distances between a sketch XS ⊆ X and the full dataset is given by:

dH(XS , X) = max
x∈X

{
min
y∈XS

d(x, y)
}

(1)

A sketch achieves a small Hausdorff distance if it includes for every cell in the original dataset a
cell that is close to it in gene expression space. Finding a best sketch of size k, i.e. a sketch that
minimizes the Hausdorff distance is known as the metric k-center problem in the combinatorial
optimization literature. It is known to be NP -hard, but a solution with Hausdorff distance at most
2 times the optimal distance can be found by a simple greedy strategy: In each iteration, pick the
point farthest away from the current set of centers and add it as a new center. Although this greedy
approach has time complexity O(nk), it does not scale efficiently to large scRNA-seq datasets that
require a larger number of cells k to be accurately represented.

A thresholding algorithm

To find a sketch of size k with small Hausdorff distance (1) to a single-cell dataset, we employ the
thresholding technique that was originally proposed for the design of approximation algorithms for
bottleneck problems (Hochbaum & Shmoys 1986). In essence, we are guessing the optimal distance
in (1) and for every guess L try to find a feasible solution, that is, a subset of cells of cardinality at
most k such that spheres of radius L centered at cells in the subset cover all remaining cells. Then
the smallest L∗ for which such a feasible sketch exists denotes the optimal solution. We model the
problem of finding the smallest set of cells such that the maximal distances from any other cell to
the subset is at most a given threshold L as a set cover problem, SetCoverX(L): Given a universe
U = X of n data points, we build a collection S = {S1, S2, . . . , Sn} of n subsets of U by including in
each set Si all points that lie within distance of L from xi, i.e. Si = {xj | d(xi, xj) ≤ L}. Then the
minimum number of sets in S that cover every element of the universe corresponds to a smallest
subset of points covering all remaining points with spheres of radius L.

A widely used algorithm for the set cover problem is based on a greedy strategy (Johnson 1974):
Starting from an empty set, in each iteration pick the set in S that covers the largest number of
elements yet uncovered and add it to the solution. The greedy algorithm is guaranteed to find a
cover which is within a logarithmic factor of the optimal solution (Johnson 1974). Moreover, it has
been observed across a wide range of instances that the greedy algorithm produces solutions close
to the optimum. A direct implementation of the greedy algorithm, however, scales poorly to large
scRNA-seq datasets. We therefore employ the disk-friendly greedy (DFG) algorithm developed in
Cormode et al. (2010) for very large datasets. It achieves a dramatic performance improvement
over the standard greedy algorithm by applying a geometric scale bucketing approximation. Fur-
thermore, the DFG algorithm runs in linear time with respect to the total size of candidate sets, i.e
in O(

∑
i |Si|), while guaranteeing to output a set cover which is within a logarithmic factor of the

optimum. More precisely, the algorithm allows to choose a parameter p that represents a trade-off



between the running time (which is O((1 + 1
p−1)

∑
i |Si|)) and the approximation ratio (which is

1 + p lnn). The complete algorithm is summarized in Algorithm 1. Let us denote by Greedy(L)
the set cover returned by the greedy algorithm when applied to sets Si = {xj | d(xi, xj) ≤ L}, and

let L̃(k) := min{L | Greedy(L) has size at most k} which can be found by a logarithmic number
of calls to the greedy algorithm via binary search: If Greedy(L) is at most k, we decrease the
threshold, otherwise we increase it (halving the length of the search interval in both cases), until
the radius L lies in an interval of size at most ε.

Algorithm 1: Sphetcher

1 Input: Dataset X = {x1, . . . , xn} ⊂ Rm, size of the sketch k, and precision ε.
2 Initialization: Lmin = 0, Lmax = maxi,j d(xi, xj).
3 while Lmax − Lmin > ε do
4 L← (Lmin + Lmax)/2

5 Solve SETCOVERX(L) using the DFG algorithm.
6 if |Greedy(L)| ≤ k then
7 Lmax ← L
8 else
9 Lmin ← L

10 end

11 end
12 Output: XS = {xi|Si ∈ Greedy(L)}.

If we are willing to increase the size of XS by a logarithmic factor, Algorithm 1 is guaranteed
to return a sketch with optimal Hausdorff distance.

Theorem 1. Let L∗ be the optimal distance in (1) for |XS | = k. If we run the thresholding
approach for |XS | = k ln(n), then the solution we obtain has Hausdorff distance at most L∗. In
other words, L̃(k ln(n)) ≤ L∗.

Proof. By definition of L∗, SetCoverX(L∗) has size at most k. Thus, by the known approximation
factor of the greedy algorithm, Greedy(L∗) has size at most k ln(n), which implies by the definition
of L̃(k ln(n)) that L̃(k ln(n)) ≤ L∗.

Grid sampling with guarantees

For datasets much larger than 100,000 cells, we apply a hybrid strategy to reduce the computational
cost of determining the neighborhood of each point in Algorithm 1. To this end, we divide the space
into equal-sized boxes from which we pick one point at random. In contrast to geometric sketching,
we do not attempt to optimally define boxes in each dimension, but leave it to the subsequent
thresholding algorithm to properly cover the space by spheres. In fact, we show that if we carefully
choose the applied threshold taking into account the size of the grid, our hybrid sampling strategy
increases the Hausdorff distance by at most a factor of (1 + ε), where ε > 0 controls the size of the
grid.

Let SetCoverX(L,Z) denote an optimal set covering all the points in X with spheres of radius
L whose centers are chosen from Z ⊆ X. Let Greedy(L,Z) denote the set obtained by the greedy
algorithm described above covering all the points in X with spheres of radius L whose centers are
chosen from Z ⊆ X. We know that |Greedy(L,Z)| ≤ |SetCoverX(L,Z)| ln(n), where n = |X|.
Let Lmin be the minimum distance between two points in X and Lmax be the maximum distance



between two points in X. Let I be the smallest integer such that (1 + ε)ILmin ≥ Lmax. Our
hybrid algorithm that carefully combines grid sampling with the thresholding approach is given in
Algorithm 2 (Sphetcher-H).

Algorithm 2: Sphetcher-H

1 Input: Dataset X = {x1, . . . , xn} ⊂ Rm, size of the sketch k, and ε > 0.
2 Initialization: Lmin = mini,j d(xi, xj), an integer I as defined before.
3 for i = 0,. . . , I do
4 L← (1 + ε)iLmin

5 Partition the space into a uniform grid G(L) of size εL/
√
m

6 Let Z(L) ⊆ X be the set obtained by choosing one point in each non-empty cell
7 Y (L)← Greedy

((
1 + (1 + ε)ε

)
L,Z(L)

)
8 end

9 Output: Y (L̂(k)), where L̂(k) = min{L : |Y (L)| ≤ k}.

The following theorem limits the increase in Hausdorff distance through Sphetcher-H by at most a
factor of (1 + ε).

Theorem 2. Let L∗ be the Hausdorff distance dH(XS , X) between X and an optimal set XS of
size k, then dH(Y (L̂(k ln(n))), X) ≤ (1 + ε)L∗.

Proof. Let L be the distance set in the for loop (Algorithm 2: steps 3 to 7) such that L∗ ≤
L < (1 + ε)L∗. By definition of L∗, we know that |SetCoverX(L∗, X)| ≤ k. So, let us write
SetCoverX(L∗, X) = XS := {x1, ..., xk}. Let X ′S = {x′1, ..., x′k} ⊆ Z(L) be chosen such that x′i
lies in the same cell of the grid G(L) as xi. Hence, dH(xi, x

′
i) ≤ εL implies that

dH(XS , X
′
S) ≤ εL < (1 + ε)εL∗.

Thus for any point x ∈ X, we have

dH(x,X ′S) ≤ dH(x,XS) + dH(XS , X
′
S) ≤ (1 + (1 + ε)ε)L∗ ≤ (1 + (1 + ε)ε)L.

It follows that |SetCoverX((1 + (1 + ε)ε)L,Z(L))| ≤ k and hence,

|Greedy((1 + (1 + ε)ε)L,Z(L))| ≤ k ln(n),

that is, |Y (L)| ≤ k ln(n). By definition of L̂, we have L̂ ≤ L < (1 + ε)L∗.

Fair sampling

One of the advantages of our model is its flexibility to incorporate fairness aspects. For example,
assume we have prior knowledge of (some) of the cell types present in the sample. Cells might
have been pre-sorted, and some cell types such as T cell subtypes are well characterized and can
be identified based on known markers, without relying on an unsupervised clustering of the data.
Furthermore, when reusing scRNA-seq datasets shared through repositories or data archives, the
annotation of cell types, i.e. their labels, are typically provided as part of the original study.
Similarly, in time series studies of gene expression, cells are collected at different time points which
can supervise the sketching algorithm to preferentially select cells for which collection time point
and transcriptomic state agree.



Our goal is to use prior categorical information on, e.g., biological cell types or collection
time point to guide the selection of cells into a representative sketch, without fully relying on
the correctness of cell type labels nor their synchronous progression through biological processes.
We incorporate prior categorical information as covering constraints into our model: We seek to
select a subset of cells that represent the geometric space of the original data according to (1)
but at the same time contain at least a given number of representatives from each class. More
formally, let X1, X2, . . . , Xm ⊆ X denote known clusters that do not necessarily partition the
whole dataset X, we want to sample k cells that contain at least li ∈ N+ cells from each Xi, for
all i = 1, 2, . . . ,m, while minimizing the Hausdorff distance of the sketch to the original dataset.
This generalization of the k-center problem is similar to the colorful k-center problem, which does
not require to include class members into the sketch but instead a certain number of elements from
each class need to be covered by spheres around selected centers. For the colorful k-center problem
a constant approximation in the Euclidean plane was recently introduced (Bandyapadhyay et al.
2019). In Anegg et al. (2020), the authors study a variant of this problem in which classes are
allowed to overlap. Neither of the proposed algorithms is directly applicable to scRNA-seq data,
due to low-dimensionality assumptions or the use of the ellipsoid method, respectively.

If li = 1, for all i = 1, . . . ,m, we have hitting set constraints XS ∩Xi 6= ∅, i = 1, . . . ,m, which
can be modeled as m additional elements in the universe of our set cover formulation of the problem.
Given a threshold L, the corresponding set cover problem (U ,S) is U = {x1, . . . , xn, X1, . . . , Xm}
and S = {S1, S2, . . . , Sn} with Si = [xi] ∪ {Xj | xi ∈ Xj}. Here [xi] contains xi and its neighbors
within distance L. Picking a set Si into our set cover solution now does not only cover all cells
within distance L of xi, but xi also hits all clusters {Xj | xi ∈ Xj}. Having cast the constrained
sampling problem as an instance of our thresholding framework, we solve it by the same algorithm
(Algorithm 1). For general li ∈ N+, we simply partition Xi into li parts and apply the above
approach, which however is no longer guaranteed to obtain the optimal Hausdorff distance.

Set cover under perturbation

This section provides the theoretical insight for the practical performance of the greedy set cover
approach and its robustness to noise present in, e.g., scRNA-seq data. In step 5 of Algorithm 1
we need to construct the neighborhood for every point xi that contains all points within a given
distance threshold. Due to noise, the true distances will be slightly perturbed and yield imprecise
estimates of neighborhoods. Since an instance to our set cover formulation contains a set for the
neighborhood of each point, error-prone neighborhoods will affect our (greedy) search for the set
with the largest number of uncovered elements. Here, we show that as long as we are able to pick a
set with large enough number of uncovered elements, we can essentially preserve the approximation
guarantee. More precisely, denote by Ct the set of elements covered after t iterations of the
greedy search (C0 = ∅). Assume that in each iteration t, errors in the distances prevent us from
finding the set S∗t with the maximum value of |Si\Ct−1|, but instead we select a set St such that
E(|St\Ct−1|) ≥ cmaxi |Si\Ct−1| for some constant c, where E(X) denotes the expected value of
random variable X. We show that with high probability, we will find a set cover within 2 ln(n)/c the
size of an optimal solution, which differs only by a constant factor from the approximation guarantee
of the (precise) greedy algorithm. Note that inapproximability results (Slav́ık 1997) show that the
greedy algorithm is essentially the best-possible polynomial time approximation algorithm for set
cover up to lower order terms. Let U be the whole set of elements of size n. We have the following
theorem.



Theorem 3. If an iterative algorithm always chooses a set St to add to the current solution with

E(|St\Ct−1|
∣∣Ct−1) ≥ cmax

i
|Si\Ct−1|,

for c ≤ 1, then with (high) probability 1− 1
n it returns a set cover that is larger than the optimum

set cover by a factor of at most 2 ln(n)/c.

Proof. Let the number of sets in the optimal solution be σ. We know that at each iteration there
is some set that covers at least |U\Ct|/σ new elements. It follows that

E(|U\Ct+1|
∣∣Ct) = |U\Ct| − E(|St+1\Ct|

∣∣Ct) ≤ |U\Ct| − cmax
i
|Si\Ct| ≤

(
1− c

σ

)
|U\Ct|.

Now taking the expectation over all possibilities for Ct we get

E(|U\Ct+1|) ≤
(

1− c

σ

)
E(|U\Ct|),

and iterating we end up with

E(|U\Ct|) ≤ |U|
(

1− c

δ

)t
≤ ne−tc/σ.

Setting t = 2σ ln(n)/c implies that E(|U\Ct|) ≤ 1
n , and hence by Markov’s Inequality:

Pr(|U\Ct| ≥ 1) ≤ E(|U\Ct|) ≤
1

n
.

Thus, with probability at least 1− 1
n , the sets we selected form a set cover.

Benchmarks

Sphetcher

We have implemented Algorithms 1 and 2 along with a fair sampling option in software tool
Sphetcher in C++. We applied our hybrid strategy Sphetcher-H (Algorithm 2) on datasets exceed-
ing 200,000 cells, which included datasets zeiselCNS, saunders, cao as well as the umbilical cord
blood cells dataset. Unless stated otherwise, Sphetcher uses Pearson correlation as distance metric
d, and we set the precision ε = 10−4 in Algorithm 1. Note that throughout this work, the size of
our spherical sketch denotes the actual number of cells rather than their logarithmic approximation
in Theorem 1.

Data and evaluation

All data were uniformly preprocessed by natural log-transformation of gene counts (after adding a
pseudo-count of 1) followed by projection to 100 principle components.

We measure how well a sketch represents the original transcriptomic space by the robust Haus-
dorff distance. Compared to the classical definition of the Hausdorff distance, the robust variant of
the distance between a sketch XS ⊆ X and the full dataset is less sensitive to outliers (Huttenlocher
et al. 1993):

dHK(XS , X) = Kth
x∈X

{
min
y∈XS

d(x, y)
}
, (2)

where Kth
x∈X denotes the Kth largest distance to an element in X. Consistent with Hie et al. (2019),

we set K = d1e−4× |X|e in our experiments.



Marker genes inflammatory macrophages

We computed AUROC for marker genes reported in Hie et al. (2019) separating inflammatory
macrophages from remaining macrophages using the Python package provided with the original
publication at https://github.com/brianhie/geosketch.
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