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Abstract: Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI) were
evaluated for the prediction of the microbiological quality of poultry meat via regression and
classification models. Chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight
isothermal and two dynamic temperature profiles. Samples were analyzed microbiologically (total
viable counts (TVCs) and Pseudomonas spp.), while simultaneously MSI and FT-IR spectra were
acquired. The organoleptic quality of the samples was also evaluated by a sensory panel, establishing
a TVC spoilage threshold at 6.99 log CFU/cm2. Partial least squares regression (PLS-R) models were
employed in the assessment of TVCs and Pseudomonas spp. counts on chicken’s surface. Furthermore,
classification models (linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
support vector machines (SVMs), and quadratic support vector machines (QSVMs)) were developed
to discriminate the samples in two quality classes (fresh vs. spoiled). PLS-R models developed
on MSI data predicted TVCs and Pseudomonas spp. counts satisfactorily, with root mean squared
error (RMSE) values of 0.987 and 1.215 log CFU/cm2, respectively. SVM model coupled to MSI data
exhibited the highest performance with an overall accuracy of 94.4%, while in the case of FT-IR,
improved classification was obtained with the QDA model (overall accuracy 71.4%). These results
confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry products.

Keywords: poultry meat; spoilage; multispectral imaging; Fourier-Transform Infrared spectroscopy
(FT-IR); regression models; classification models; multivariate data analysis

1. Introduction

Food waste amounts to 14% of the worlds’ food consumption [1], while meat and
specifically poultry production is forecasted to rise at 137 million tones [2]. In addition,
consumer’s awareness and demand for high quality and safety meat and poultry has
been continuously increased. For this purpose, non-invasive spectroscopic sensors have
been used in the evaluation of the quality and freshness of meat products [3] through the
implementation of process analytical technology (PAT) [4,5]. The underlying principle of
PAT is to combine spectral data acquired through real-time (in-, on-, at-line) non-destructive
analytical techniques with multivariate data analysis for the development of models
assessing food quality. These models, along with their datasets, could be uploaded in the
cloud, updated regularly with new data in order to be consultative to the food industry [6].

In recent years, multispectral imaging (MSI) and Fourier transform infrared (FT-IR)
spectroscopy have been investigated as alternative methods for the evaluation of a variety
of meat products [7–9]. The former method is a merge of UV and NIR with computer
vision, and it has been proposed as an ecological approach for rapid quality evaluation of
meat and poultry [10–12]. Until now, spectral data in the visible and near-infrared region
(400–1700 nm) have been employed in the development of quantitative or qualitative
models for the determination of the bacterial population (TVCs and Pseudomonas spp.) on
chicken meat during spoilage [13–15]. In the same context, MSI analysis has been proved
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a solution to the identification of adulteration/food fraud of minced beef with chicken
meat [16], as well as for the detection of food fraud in minced pork adulterated with
chicken [17]. Moreover, fecal contaminants in poultry line [18] and the presence of tumors
on the surface of chicken breasts [19] have been accurately detected via MSI analysis. This
innovative method was successfully employed in the at-line estimation of the time from
slaughter in four different poultry products [20].

Likewise, the potential of FT-IR for the qualitative and quantitative assessment of the
microbiological quality of meat products has been explored by other researchers [21–25].
Especially for poultry, FT-IR was recommended as an effective approach for the differ-
entiation of intact chicken breast muscle during spoilage [22]. Additionally, the level of
spoilage bacteria on the surface of chicken meat was successfully estimated via FT-IR
spectroscopy [21]. Further investigation of this promising method for real-time evaluation
of the freshness of stored chicken breast fillets was undertaken by Vansconcelos et al. [26].
FT-IR analysis was also proposed as an efficient approach for the categorization of chicken
meat among seven raw types of food, irrespective of variations among batches and storage
conditions (temperature, storage duration, packaging, spoilage levels) [3].

Spectral data acquired by nondestructive methods such as MSI and FT-IR have been
analyzed by a variety of unsupervised and supervised machine learning algorithms for
the rapid quality assessment in food matrices including meat [25,27,28]. Partial least
squares regression (PLS-R), linear discriminant analysis (LDA), and quadratic discriminant
analysis (QDA) have been reported as reliable tools for the development of predictive
models for spoilage or adulteration assessment in meat [9,29–31]. Moreover, deep learning
methodologies such as artificial neural networks (ANNs) and support vector machines
(SVMs) [32] have been employed, validated, and compared through available websites
(e.g., sorfML, Metaboanalyst) or softwares (R, MatLab, Python), in an attempt to provide
accurate quantitative and qualitative models for food spoilage assessment [28,33–37].

The aim of the present work was to develop and evaluate machine learning regression
(PLS-R) and classification models (LDA, QDA, SVMs, QSVMs) based on MSI and FT-IR
spectral data for the evaluation of the microbiological quality of chicken thigh fillets. More
specifically, PLS-R models were developed for the prediction of the microbiota of TVCs and
Pseudomonas spp. on the surface of chicken thigh, whereas LDA, QDA, SVMs, and QSVMs
models were employed for the classification of samples in two quality classes (fresh or
spoiled) based on the outcome of sensory analysis. The challenging task in this study was
not confined in model development, batch variation and different storage temperatures,
but it also considered external validation using two different dynamic temperature profiles
simulating temperature scenarios during transportation and storage in retail outlets.

2. Materials and Methods
2.1. Experimental Design

Three hundred and thirty (330) chicken thigh fillets (ca. 90–110 g/fillet) enclosed in
plastic packages (dimensions = 25 cm (width), 90 µm (thickness), permeability ca. 25, 90,
and 6 cm3 m−2day−1bar−1 at 20 ◦C and 50% RH for CO2, O2, and N2, respectively) were
obtained from a poultry industry in Greece and stored aerobically at eight isothermal con-
ditions (0, 5, 10, 15, 20, 25, 30, and 35 ◦C). Two independent experiments were undertaken
at all isothermal conditions using 4 different batches of chicken meat. Moreover, 72 samples
were stored at two dynamic temperature profiles (profile 1 = 12 h at 5 ◦C, 8 h at 10 ◦C, and
4 h at 15 ◦C; profile 2 = 12 h at 0 ◦C, 8 h at 5 ◦C, and 4 h at 10 ◦C), simulating temperature
scenarios that can be observed during transportation and storage in retail outlets [38]. At
pre-determined time intervals, packages were subjected to microbiological analyses for the
enumeration of total viable counts (TVCs) and Pseudomonas spp., in parallel with MSI and
FT-IR spectral data acquisition. At each sampling point, duplicate packages per isothermal
storage condition and triplicate packages from each dynamic temperature profile were
subjected to the abovementioned analyses. In addition, chicken samples were subjected to
sensory evaluation by a 14-member sensory panel to categorize the samples in two quality
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classes, namely fresh and spoiled as detailed below. Microbiological counts and sensory
scores were correlated with spectral data in order to develop quantitative and qualitative
models assessing chicken thigh’s microbial loads (TVCs, Pseudomonas spp.) as well as their
quality class (fresh-spoiled).

2.2. Microbiological Analysis and Sensory Evaluation

A total surface of ca. 20 cm2 (four slices of ca. 5 cm2 each with a maximum thickness
of 2 mm) from chicken thigh fillet was removed aseptically, by means of a sterile stainless
steel cork borer (2.5 cm in diameter), scalpel and forceps, added in 100 mL of sterile
quarter strength Ringer’s solution (Lab M Limited, Lancashire, UK) and homogenized in a
Stomacher device (Lab Blender 400, Seward Medical, UK) for 120 s at room temperature [39].
The microbial load on the surface of chicken was enumerated using serial decimal dilutions
in the same Ringer’s solution and 0.1 mL of the appropriate dilution was spread on the
following growth media: (a) Tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan,
Italy) for the determination of total viable counts (TVCs) incubated at 25 ◦C for 72 h;
(b) Pseudomonas agar base (LAB108 supplemented with selective supplement Cetrimide
Fucidin Cephaloridine, Modified C.F.C. X108, LABM) for the determination of presumptive
Pseudomonas spp. incubated at 25 ◦C for 48 h. The results were logarithmically transformed
and expressed as log CFU/cm2.

In parallel, sensory evaluation was performed by a 14 member in-house trained
sensory panel. For this purpose, samples (n = 103) were placed in sterile petri dishes
and scored according to their odor using a 3-point hedonic scale as follows—1 = fresh,
2 = acceptable, 3 = spoiled [40]. Samples with scores < 2 were characterized as fresh
(Class 1) whereas samples with scores ≥ 2 as spoiled (Class 2). Finally, the sensory outcome
was correlated with spectral data in order to assess the quality class of the samples directly
from the acquired MSI and FT-IR spectra.

2.3. Spectra Acquisition

Multi-spectral images (MSI) were captured using a Videometer-Lab instrument (Videome-
ter A/S, Herlev, Denmark) that acquires images in 18 different non-uniformly distributed
wavelengths from UV (405 nm) to short wave NIR (970 nm), namely, 405, 435, 450, 470, 505,
525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970 nm. Detailed information
about this spectroscopic sensor is provided elsewhere [41]. Each sample corresponded to
spatial and spectral data of size m × n × 18 (where m×n is the image size in pixels) [42].
Furthermore, canonical discriminant analysis (CDA) was employed as a supervised trans-
formation building method to divide the images into regions of interest (ROI) using the
Videometer-Lab version 2.12.39 software (Videometer A/S, Herlev, Denmark). The final
outcome of this segmentation process for each image was a dataset of spectral data includ-
ing the average value and the standard deviation of the intensity of the pixels within the
ROI at each wavelength.

FT-IR data were obtained using an FT-IR-6200 JASCO spectrometer (Jasco Corp.,
Tokyo, Japan) and a ZnSe 45 HATR (horizontal attenuated total reflectance) crystal (PIKE
Technologies, Madison, WI, USA) with a refractive index of 2.4 and a depth of penetration
of 2.0 µm at 1000 cm−1. Spectra measurements were performed using Spectra Manager
Code of Federal Regulations (CFR) software version 2 (Jasco Corp., Tokyo, Japan) in the
wavenumber range of 4000–400 cm−1, by accumulating 100 scans with a resolution of
4 cm−1 and a total integration time of 2 min.

2.4. Data Pre-Processing and Analysis

MSI spectral data were pre-processed by baseline offset treatment [43,44] for the
development of PLS-R models in order to reduce random or systematic variations and
simultaneously improve image resolution [45]. Likewise, for the development of the classi-
fication models, MSI data were subjected to standard normal variate (SNV) transformation
prior to analysis [46]. Model training was undertaken with the dataset obtained from the
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storage experiments at isothermal conditions (n = 330), where 142 (43.1%) and 188 (56.9%)
of the samples were defined as fresh (Class 1) and spoiled (Class 2), respectively. Model
optimization was based on leave-one-out full-cross validation (LOOCV) process for PLS-R
models and k-fold validation (k = 5) for the classification models. Moreover, the efficacy of
the developed models to assess the quality of chicken samples was evaluated by external
validation using independent datasets from the two dynamic temperature scenarios (n = 72;
Class 1 = 36 samples, 50%; Class 2 = 36 samples, 50%).

FT-IR spectral data were modified by Savitzky-Golay first derivative (second polyno-
mial order, 11-point window) for the development of PLS-R models, while for classification
models’ spectral data pre-treatment was based on the same model with a 9-point window in
order to reduce baseline shift and noise [9]. Spectral data in the range of 1000 to 2000 cm−1

were included in the analysis, since these regions are documented as relevant to meat
spoilage [37]. FT-IR models were also validated with data sets from dynamic temperature
profiles (n = 63), including 30 (47.6%) fresh and 33 (52.4%) spoiled samples. The procedure
of model training and validation is graphically presented in Figure 1.
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Figure 1. Flowchart describing quantitative and qualitative model development and validation.

PLS-R models for the estimation of TVCs and Pseudomonas spp. counts on chicken
thighs surface were developed and validated by the software Unscrambler © ver. 9.7
(CAMO Software AS, Oslo, Norway). Moreover, linear discriminant analysis (LDA) [47],
quadratic discriminant analysis (QDA) [31], support vector machines (SVMs), and quadratic
support vector machines (QSVMs) [48] models were employed for the classification of
samples according to their spoilage level using MATLAB 2012a software (The MathWorks,
Inc., Natick, MA, USA). The performance of the developed models was evaluated via the
following metrics and indexes: root mean squared error (RMSE), correlation coefficient (r),
overall accuracy, sensitivity, and specificity [49,50].

3. Results and Discussion
3.1. Microbiological Analysis and Sensory Evaluation

The population dynamics of TVCs and Pseudomonas spp. on the surface of chicken
thigh fillets stored at isothermal conditions (0, 5, 10, 15, 20, 25, 30, and 35 ◦C) are pre-
sented in Figure 2. The initial population of TVC (Figure 2A,B) and Pseudomonas spp.
(Figure 2C,D) was 4.02 (±0.38) and 3.75 (±0.11) log CFU/cm2, respectively, confirming
previous literature findings [22,51,52]. As expected, storage temperature significantly influ-
enced microbial growth resulting in sample deterioration and spoilage. For poultry, TVCs
values exceeding 7.0 log CFU/cm2 have been reported by other researchers to signify the
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end of shelf-life due to spoilage [52–54]. More specifically, in this study TVCs reached
values above 7.0 log CFU/cm2 at 15 ◦C in 30 h (7.2 ± 0.15 log CFU/cm2), at 10 ◦C in 72 h
(7.24 ± 0.39 log CFU/cm2), at 5 ◦C in 144 h (7.62 ± 0.63 log CFU/cm2) and at 0 ◦C in 240 h
(7.17 ± 0.42 log CFU/cm2). Pseudomonas spp. counts were similar to TVCs population
and spoilage was evident at 15 ◦C in 48 h (7.3 ± 0.33 log CFU/cm2), at 10 ◦C in 72 h
(7.06 ± 0.48 log CFU/cm2), at 5 ◦C in 120 h (7.22 ± 0.18 log CFU/cm2), and at 0 ◦C in
216 h (6.75 ± 0.23 log CFU/cm2). Furthermore, samples appearance and odor rapidly
deteriorated at high storage temperatures and TVCs reached 7.0 log CFU/cm2 at 20 ◦C in
32 h (7.36 ± 0.39 log CFU/cm2), at 25 ◦C in 24 h (7.78 ± 0.18 log CFU/cm2), at 30 ◦C in
24 h (7.95 ± 0.40 log CFU/cm2), and at 35 ◦C in 12 h (6.8 ± 0.46 log CFU/cm2). Similarly,
Pseudomonas spp. approached 7.0 log CFU/cm2 at 20 ◦C in 32 h (6.97 ± 0.39 log CFU/cm2),
at 25 ◦C in 24 h (6.95 ± 0.36 log CFU/cm2), at 30 ◦C in 24 h (6.89 ± 0.68 log CFU/cm2), and
at 35 ◦C in 24 h (6.69 ± 0.60 log CFU/cm2).
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Figure 2. Changes in the population (log CFU/cm2) of total viable counts (TVCs) (A,B) and Pseudomonas spp. (C,D) in
chicken thigh samples during storage at different isothermal conditions (A,C: 0, 5, 10 and 15 ◦C; B,D: 20, 25, 30, and 35 ◦C).
Data points are average values of four replicates of samples ± standard deviation.

Moreover, the microbiological results from the two dynamic temperature profiles
are shown in Figure 3. The initial TVCs and Pseudomonas spp. counts were 3.82 ± 0.21
log CFU/cm2 and 2.51 ± 0.28 log CFU/cm2, respectively (first dynamic temperature
profile, Figure 3A), and 4.13 ± 0.40 log CFU/cm2 and 2.87 ± 0.65 log CFU/cm2, re-
spectively (second dynamic temperature profile, Figure 3B). Stored samples at these
dynamic profiles were considered spoiled in 96 h (TVC = 6.96 ± 0.25 log CFU/cm2,
Pseudomonas spp. = 6.19 ± 0.29 log CFU/cm2) for the first dynamic profile and in 120 h
(TVC = 7.08 ± 0.01 log CFU/cm2, Pseudomonas spp. = 7.05 ± 0.03 log CFU/cm2) for the
second dynamic profile. This one-day delay of spoilage could be attributed to the different
metabolic footprint of chicken samples due to temperature alterations affecting thus micro-
bial growth [55,56]. Statistical analysis for the microbiological results (one-way ANOVA
via MATLAB 2012a software (The MathWorks, Inc., Natick, MA, USA)) is available in
Tables S1 and S2.
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Figure 3. Changes in the population (log CFU/cm2) of total viable counts (TVCs) (solid line) and Pseudomonas spp. (dashed
line) in chicken thigh samples stored under periodically changing temperature conditions. (A) Profile 1 = 12 h at 5 ◦C, 8 h at
10 ◦C, and 4 h at 15 ◦C; (B) Profile 2 = 12 h at 0 ◦C, 8 h at 5 ◦C, and 4 h at 10 ◦C. Data points are mean values of triplicate
samples ± standard deviation.

More detailed information about chicken thigh fillets spoilage was derived by sensory
evaluation, where 56.9% of the samples were scored above 2 and considered spoiled.
Samples stored at 0 ◦C were considered acceptable until 240 h of storage, while samples
stored at 30 and 35 ◦C were evaluated as spoiled after 6 and 12 h, respectively. In addition,
deterioration of odor due to spoilage was evident in 96 h at 5 ◦C, 48 h at 10 ◦C, and 24 h
at 15, 20, and 25 ◦C. The correlation of sensory scores to samples temperature and TVCs
populations is provided at Table 1. TVCs values above 6.99 log CFU/cm2 corresponded
to samples rated with an average score greater than 2, similarly to other studies where
spoilage threshold was established at 7.0 log CFU/cm2 for poultry [53]. Based on this
criterion, samples were assigned in two quality classes, namely fresh (score < 2) or spoiled
(score ≥ 2), and were further employed in the development of classification models.
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Table 1. Sensory scores and TVCs counts for chicken thigh samples corresponding to the sensory
rejection time at each storage temperature.

Temperature (◦C) Storage Time (h) Odor TVCs (log CFU/cm2)

0 240 2.5 6.99
5 96 2.3 7.08

10 48 2.3 6.90
15 24 2.1 7.46
20 24 2.5 7.40
25 24 2.9 8.22
30 6 2.1 5.1
35 12 2.2 6.84

TVCs average (log CFU/cm2) 6.99

3.2. Correlation of Microbiological Data to Spectral Information

PLS-R model parameters (slope and offset) and performance metrics (r, RMSE), for
the estimation of the population of TVCs and Pseudomonas spp. using MSI spectral data,
are presented in Table 2, for model calibration, full cross validation, and external validation
(prediction). For TVCs, the calculated values of RMSE and r during model calibration and
cross validation were 0.730 and 0.779 log CFU/cm2, as well as 0.861 and 0.840, respectively,
whereas the respective values for external validation were 0.987 log CFU/cm2 and 0.895,
respectively. The performance of the PLS-R model was also graphically illustrated by
the comparison of the observed vs. predicted TVCs (Figure 4A). Predicted values were
mostly located within the area of ±1.0 log CFU/cm2, which is considered microbiologi-
cally acceptable, while an overestimation for low counts (below 4.0 log CFU/cm2) was
evident. Regarding PLS-R model assessing Pseudomonas spp. counts via MSI data, RMSE
and r values were 0.828 log CFU/cm2 and 0.853, respectively, for calibration, while for
full cross validation they were 0.886 log CFU/cm2 and 0.830, respectively. For external
validation (prediction) of Pseudomonas spp. counts, RMSE and r values were estimated at
1.215 log CFU/cm2 and 0.904 respectively. Nevertheless, the prediction of Pseudomonas spp.
counts demonstrated deviations (overestimation) from the ± 1.0 log CFU/cm2 area, espe-
cially for samples with Pseudomonas spp. loads lower than 4.0 log CFU/cm2 (Figure 4B).

Table 2. Performance metrics of the developed PLS-R models estimating TVCs and Pseudomonas spp.
counts of chicken thigh samples via MSI spectral data analysis.

TVCs n LVs Slope Offset r RMSE

Calibration
Full Cross Validation

Prediction

330 10 0.741 1.684 0.861 0.730

330 10 0.726 1.787 0.840 0.779

72 0.774 2.023 0.895 0.987

Pseudomonas spp. n LVs slope offset r RMSE

Calibration
Full Cross Validation

Prediction

330 10 0.727 1.615 0.853 0.828

330 10 0.711 1.714 0.830 0.886

72 0.702 2.441 0.904 1.215
n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared error.
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The important wavelengths contributing to the prediction of the selected microbial
groups were obtained according to PLS-R beta coefficients (B), derived by the Unscrambler
software and Marten’s Uncertainty test (Figure 5). The wavelengths 630, 645, 660, 700, and
850 nm were identified as significant (b coefficient greater than 0.2) for determining TVCs
counts on the surface of chicken thigh. The significant contribution of the wavelength
range 630–700 nm for the determination of meat and poultry spoilage has been reported in
previous studies, and could be linked to myoglobin, metmyoglobin, deoxymyoglobin or
oxymyoglobin [11,20]. According to the B regression coefficients of the PLS-R models, the
quantitative equations for the estimation of TVCs and Pseudomonas spp. counts via MSI
application could be described as follows:

YTVCs = 5.983 + 0.303 × Xmean,405nm + 0.158 × Xmean,450nm − 0.532 × Xmean,470nm + 0.292 × Xmean,525nm − 0.853 × Xmean,630nm
+ 0.695 × Xmean,645nm + 0.767× Xmean,660nm − 0.670 × Xmean,700nm − 0.460 × Xmean,850nm + 0.145 × Xmean,890nm + 0.309 ×
Xmean,910nm + 0.352 × Xmean,940nm − 0.255 × Xmean,970nm − 0.377× XSD,435nm + 0.426 × XSD,470nm + 0.308 × XSD,505nm+ 0.244 ×
XSD,525nm − 0.607 × XSD,590nm + 0.160 × XSD,645nm + 0.171 × XSD,660nm − 0.212 × XSD,850nm − 0.132× XSD,870nm

(1)

YPseudomonas spp. counts = 5.416 + 0.204 × Xmean,405nm + 0.308 × Xmean,450nm − 0.745 × Xmean,470nm + 0.326 × Xmean,525nm − 1.020
× Xmean,630nm + 0.802 × Xmean,645nm + 0.885 × Xmean,660nm − 0.766 × Xmean,700nm − 0.500 × Xmean,850nm + 0.332 × Xmean,910nm +
0.422 × Xmean,940nm − 0.344 × Xmean,970nm − 0.602× XSD,435nm + 0.501 × XSD,470nm + 0.367 × XSD,505nm+ 0.272 × XSD,525nm −
0.679× XSD,590nm + 0.244 × XSD,645nm + 0.222 × XSD,660nm − 0.321 × XSD,850nm − 0.204× XSD,870nm − 0.133 × XSD,890nm + 0.159
× XSD,910nm + 0.177 × XSD,970nm

(2)

In the above equations, the response variable (Y) can be approximated by a linear
combination of the values of the predictors (X) through coefficients called regression or
B -coefficients. Specifically, Y is the estimated value for TVCs and Pseudomonas spp.,
respectively, whereas Xmean and XSD are the mean intensity and the standard deviation of
the pixels at the respective wavelength during MSI acquisition, respectively.
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Likewise, model performance for the estimation of TVCs and Pseudomonas spp. counts
via FT-IR spectral data analysis is presented in Table 3. For the TVCs prediction model,
RMSE and r values for calibration and full cross validation were 0.734 log CFU/cm2 and
0.856, as well as 0.899 log CFU/cm2 and 0.781, respectively, while for external validation
they were 1.251 log CFU/cm2 and 0.583, respectively. Similarly, for the prediction of
Pseudomonas spp. counts via FT-IR analysis, RMSE and r values were 0.838 log CFU/cm2

and 0.849 for calibration, 1.037 log CFU/cm2 and 0.762 for full cross validation, and
1.589 log CFU/cm2 and 0.514 for external validation, respectively. The performance of the
PLS-R models was also graphically verified by the comparison of the observed versus
predicted counts of TVCs and Pseudomonas spp. (Figure 6), demonstrating an overesti-
mation in the fail-safe zone for samples with TVCs values lower than 4.0 log CFU/cm2

(Figure 6A). In contrast, according to Figure 6B, Pseudomonas spp. predicted counts devi-
ated from the acceptable limit of ± 1.0 log CFU/cm2, presenting both overestimated (for
counts < 4.0 log CFU/cm2) and underestimated (for counts > 7.0 log CFU/cm2) values.
In addition, the influence of each wavenumber in the development of the PLS-R models
via FT-IR spectroscopy is highlighted by the beta coefficients (Figure 7), as well as by the
representative spectra acquisition for fresh (0 h at 0 ◦C) and spoiled (366 h at 0 ◦C) samples
(Figure 8). Four main regions demonstrated high impact on model development, namely:
region A (1720–1790 cm−1); region B (1630–1690 cm−1); region C (1500–1550 cm−1) and
region D (1300–1100 cm−1). It is well established that these absorption regions are related
to the proteolytic activity of microbiota and the formation of biofilms, and more specifically
of Pseudomonas spp. during spoilage of chicken breast [21,22,24,57].

3.3. Classification Models for the Assessment of Spoilage

The performance of the selected models to classify the samples in the respective quality
classes (fresh or spoiled) through MSI spectral data is demonstrated by the confusion matrix
(Table 4) for LDA, QDA, SVM, and QSVM. For the LDA model, 219 out of 330 samples
and 49 out of 72 samples were correctly classified in both quality classes during model
development (FCV) and prediction, respectively, providing overall accuracy of 66.4% and
68.1%. During FCV process, sensitivity and specificity were 59.4% and 73.3%, respectively,
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whereas for model prediction the calculated sensitivity and specificity were 76.0% and
63.8%, respectively. For QDA model, 214 out of 330 samples (overall accuracy 64.8%) and
50 out of 72 samples (overall accuracy 69.4%) were classified in the correct class for model
FCV and prediction, respectively. Moreover, sensitivity and specificity were estimated at
57.6% and 72.8%, respectively, for model FCV and at 73.3% and 66.7%, respectively, for
the model prediction. It is notable that improved results were obtained by the application
of SVM model where 301 out of 330 samples (overall accuracy 91.2%) and 68 out of
72 samples (overall accuracy 94.4%) were correctly classified in the respective quality
class during model development (FCV) and prediction, respectively. In addition, for SVM
model sensitivity and specificity, percentages exhibited their highest values at 94.4% during
external validation. Likewise, for QSVM implementation, 287 from 330 samples and 66
from 72 samples were efficiently identified during model development and prediction,
with an overall accuracy of 87.0% and 91.7%, respectively. For this model, sensitivity
and specificity percentages were calculated at 83.7% and 89.6% for model FCV, while for
external validation the estimated values were 94.1% and 89.5%, respectively.

Table 3. Performance metrics of the developed PLS-R models estimating TVCs and Pseudomonas spp.
counts of chicken thigh samples via FT-IR spectral data analysis.

TVCs n LVs Slope Offset r RMSE

Calibration
Full Cross Validation

Prediction

328 10 0.732 1.747 0.856 0.734

328 10 0.678 2.115 0.781 0.899

63 0.367 4.192 0.583 1.251

Pseudomonas spp. n LVs slope offset r RMSE

Calibration
Full Cross Validation

Prediction

328 10 0.719 1.669 0.849 0.838

328 10 0.660 2.033 0.762 1.037

63 0.282 4.152 0.514 1.589
n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared error.
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Regarding FT-IR classification models (Table 5), the LDA model classified correctly
240 out of 328 samples and 44 out of 63 samples during model FCV and external validation,
respectively, with overall accuracy reaching 73.2% and 69.8%, respectively. Sensitivity and
specificity percentages were 64.1% and 84.7% for model development, whereas for external
validation these performance metrics were 70.4% and 69.4%, respectively. For QDA method,
216 out of 328 samples and 45 out of 63 samples were classified at their proper quality group
during FCV and external validation, respectively. QDA model enhanced performance
against the remaining three models was underlined by its ability to classify fresh samples
from an independent validation data set with sensitivity and specificity values of 70.0%
and 72.7%, respectively. For QSVM model, 284 out of 328 samples were correctly classified
during model development (overall accuracy 86.6%, sensitivity 82.4%, specificity 90.0%),
whereas only 38 from 63 samples were located in their correct class during model prediction
(overall accuracy 60.3%, sensitivity 55.8%, specificity 70%). Finally, for SVM model 287
out of 328 samples were accurately classified during model FCV (overall accuracy 87.5%,
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sensitivity 90.7%, specificity 85.1%), whereas during model prediction 44 out of 63 samples
were classified correctly in their respective quality class (overall accuracy 69.8%, sensitivity
63.4%, specificity 81.8%).

Table 4. Confusion matrix and performance indexes of the developed classification models (LDA,
QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples based on MSI
spectral data.

Model Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

LDA

FCV
Fresh 98 67

330
59.4 73.3

Spoiled 44 121 73.3 59.4
Overall accuracy (%) 66.4

Prediction
Fresh 19 6

72
76.0 63.8

Spoiled 17 30 63.8 76.0
Overall accuracy (%) 68.1

QDA

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 99 73

330
57.6 72.8

Spoiled 43 115 72.8 57.6
Overall accuracy (%) 64.8

Prediction
Fresh 22 8

72
73.3 66.7

Spoiled 14 28 66.7 73.3
Overall accuracy (%) 69.4

SVM

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 130 17

330
88.4 93.4

Spoiled 12 171 93.4 88.4
Overall accuracy (%) 91.2

Prediction
Fresh 34 2

72
94.4 94.4

Spoiled 2 34 94.4 94.4
Overall accuracy (%) 94.4

QSVM

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 123 24

330
83.7 89.6

Spoiled 19 164 89.6 83.7
Overall accuracy (%) 87.0

Prediction
Fresh 32 2

72
94.1 89.5

Spoiled 4 34 89.5 94.1
Overall accuracy (%) 91.7

It needs to be noted that MSI-SVM and FT-IR-QDA combinations could not only
efficiently classify samples in their correct quality class, with overall accuracy of 94.4% and
71.4%, respectively, but, simultaneously, the misclassified samples were equally distributed
in the safe and in the dangerous side, with specificity reaching 94.4% and 72.7%, respectively.
Another interesting finding from MSI-SVM model was the low difference in the overall
accuracy percentages (91.2% vs. 94.4%) observed between model FCV and prediction,
indicating robust model performance. Furthermore, the same trend was observed for
sensitivity and specificity (94.0% in both cases). Previous researchers reported that SVMs
could result in the development of robust regression and classification models for poultry
products [31,58]. SVM and QSVM models were more suitable for MSI spectral data, with
SVM linear classifiers presenting the best separation of data’s hyperplane [31]. In contrast,
probability parametric LDA and QDA models which assume that each class could be
described as a multivariate normal distribution [29,31], exhibited better discrimination



Foods 2021, 10, 2723 13 of 16

of classes for FT-IR data. This is in good agreement with other studies, where LDA was
proposed as a supervised multivariate classification method in FT-IR spectroscopic analysis
of meat samples [25]. Even though data matrices from MSI and especially FT-IR presented
high dimensionality, there was no evident class imbalance according to the prediction
performance of all developed models (Tables 4 and 5).

Table 5. Confusion matrix and performance indexes of the developed classification models (LDA,
QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples based on
FT-IR spectral data.

Model Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

LDA

FCV
Fresh 118 66 328 64.1 84.7

Spoiled 22 122 84.7 64.1
Overall accuracy (%) 73.2

Prediction
Fresh 19 8 63 70.4 69.4

Spoiled 11 25 69.4 70.4
Overall accuracy (%) 69.8

QDA

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 118 87 328 57.6 79.7

Spoiled 25 98 79.7 57.6
Overall accuracy (%) 65.9

Prediction
Fresh 21 9 63 70.0 72.7

Spoiled 9 24 72.7 70
Overall accuracy (%) 71.4

SVM

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 127 13 328 90.7 85.1

Spoiled 28 160 85.1 90.7
Overall accuracy (%) 87.5

Prediction
Fresh 26 15 63 63.4 81.8

Spoiled 4 18 81.8 63.4
Overall accuracy (%) 69.8

QSVM

Procedure O/P Fresh Spoiled Overall Sensitivity
(%)

Specificity
(%)

FCV
Fresh 122 26 328 82.4 90.0

Spoiled 18 162 90 82.4
Overall accuracy (%) 86.6

Prediction
Fresh 24 19 63 55.8 70.0

Spoiled 6 14 70.0 55.8
Overall accuracy (%) 60.3

4. Conclusions

The findings of this research indicated that MSI spectral data combined with PLS-R
could satisfactorily predict TVC and Pseudomonas spp. counts on the surface of chicken
thigh fillets regardless of storage temperature and batch variation. Similarly, satisfactory
performance was obtained by the implementation of the classification models, where MSI
spectral data coupled to SVM model achieved the most accurate identification of qual-
ity classes (fresh or spoiled) among samples. Moreover, QDA was considered the most
suitable classification model applied to FT-IR measurements. The generalization of the
developed models was ascertained by the utilization of chicken samples stored at two
dynamic temperature profiles simulating conditions of the distribution chain. Neverthe-
less, additional measurements and continuous information feedback (different seasons,
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packaging conditions, etc.) could improve the performance of the aforementioned models
and thus result in more successful assessment of the quality of poultry products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10112723/s1, Table S1: One way ANOVA for the TVC of chicken thigh fillet samples at
each isothermal storage temperature and dynamic temperature scenarios, Table S2: One way ANOVA
for Pseudomonas spp. counts of chicken thigh fillet samples at each isothermal storage temperature
and dynamic temperature scenarios.
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