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ABSTRACT

The co-regulation of transcription factors (TFs) has
been widely observed in various species. Why is
such a co-regulation mechanism needed for tran-
scriptional regulation? To answer this question,
the following experiments and analyses were per-
formed. First, examination of the human gene regu-
latory network (GRN) indicated that co-regulation
was significantly enriched in the human GRN.
Second, mathematical simulation of an artificial
regulatory network showed that the co-regulation
mechanism was related to the biphasic dose–
response patterns of TFs. Third, the relationship
between the co-regulation mechanism and the
biphasic dose–response pattern was confirmed
using microarray experiments examining different
time points and different doses of the toxicant
tetrachlorodibenzodioxin. Finally, two mathematical
models were constructed to mimic highly co-
regulated networks (HCNs) and little co-regulated
networks (LCNs), and we found that HCNs were
more robust to parameter perturbation than LCNs,
whereas LCNs were faster in adaptation to environ-
mental changes than HCNs.

INTRODUCTION

Biological organisms have evolved huge and complex gene
regulatory networks (GRNs) to properly respond to
external and internal changes. These huge and complex
GRNs comprise transcription factors (TFs) that control
the expression levels of a genome and the target genes
(TGs) controlled by the TFs. It is well known that the
TGs are usually controlled not by a single TF but by
multiple TFs (1–5). This leads to the question of what

kind of dynamical properties of a GRN are responsible
for the evolution of such a co-regulation mechanism.
One clue to the responsible dynamic properties of the

co-regulation mechanism is that GRNs of more complex
organisms show higher degrees of co-regulation (3). This
has led to speculation that the co-regulation mechanism
might be enriched for dynamic properties specifically
related to eukaryotes rather than prokaryotes, and multi-
cellular organisms rather than single-celled organisms.
Many studies support such speculation. First, the
co-regulation mechanism of the yeast GRN participates
in major eukaryotic signaling systems such as ubiquitin
pathways and protein kinase cascades. It also integrates
disparate cellular processes (1). Second, the co-regulation
mechanism of the GRNs of multicellular organisms plays
an important role in the control of tissue-specific gene
expression during the differentiation of various cell types
(4,6,7). Third, the division of network components into
three levels (top, middle and bottom) in a hierarchical
context illustrates that the co-regulation mechanism is
more enriched in the middle level than in the other levels
(3). This third evidence supports the aforementioned
speculation since more complex organisms show more
hierarchical levels in their GRNs (3,8,9). All these obser-
vations provide some clues as to the nature of the
co-regulation mechanism in terms of comparative
genomics or network topologies. However, no satisfactory
explanation has emerged yet regarding the evolutionary
design principles or dynamic properties underlying the de-
velopment of such a co-regulation mechanism.
In this article, we exploited the dynamic properties

related to the co-regulation mechanism and obtained the
following results: (i) co-regulation is enriched in the
human GRN, and this enrichment is related to a high
rate of evolution and multicellular organismal processes
such as developmental processes; (ii) the co-regulation
mechanism of a TF can cause a biphasic dose–response
curve and (iii) the co-regulation mechanism can enhance
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the robustness, but can also attenuate the adaptability of a
GRN. Taken together, these results suggest that complex
biological organisms evolved the co-regulation mechanism
for their GRNs by inducing or increasing biphasic
behavior in order to enhance robustness while sacrificing
adaptability.

MATERIALS AND METHODS

Statistical analysis

A one-sided, one-sample z-test was performed to evaluate
the statistical abundance of the sum of weights of each TF
in TF co-regulation networks. A one-sided two-sample
t-test was used to evaluate the evolutionary rate, tissue
variability, messenger RNA (mRNA) abundance, topo-
logical properties, adaptability and robustness. For the
regulation coherency index (RCI), a two-sided paired
t-test was applied. Fisher’s exact test was used to
evaluate the enrichment of ligands, extracellular
proteins, receptors and membrane proteins in the TGs
of the biphasic TFs (BTFs) and the TGs of the
monophasic TFs (MTFs).

Evolutionary rate and tissue variability

Evolutionary rates were defined by the ratios of the
non-synonymous substitution rates (dN) and synonymous
substitution rates (dS) for homologous gene pairs in
humans and mice and were retrieved from the Human
PAML Browser (10). The tissue variability of a gene is
defined as the standard deviation of mRNA expression
abundance in 79 human tissues (11).

Mathematical model of the artificial network with
eight TFs

We constructed a nonlinear ordinary differential equation
(ODE) model as follows:
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where xi denotes the concentration of the active form of a
signaling protein, yi denotes the expression level of a gene,
kij denotes the rate constant of signaling in the range of
0.9–1.1, Aij denotes the activation matrix, Iij denotes the
inhibition matrix, kb denotes the basal level of the produc-
tion rate, kd denotes the degradation rate, S denotes the
stimulus level, n denotes the number of nodes, Vij denotes
the maximum velocity constant of gene expression in the
range of 0.9–1.1, Kij denotes the dissociation constant of
gene expression in the range of 0–1, h denotes the Hill
coefficient, Eij denotes the expression matrix, Rij denotes
the repression matrix and N(t) denotes the random noise
function in the range of 0–0.1, and L=1 for i=1 and
L=0 for i 6¼ 1. We set kb= kd=1 and h=4.

Cell culture and tetrachlorodibenzodioxin treatment

HepG2 cells were cultured in Dulbecco’s modified Eagle’s
medium (WelGENE) supplemented with 10% fetal bovine
serum (FBS) (WelGENE). The cells were grown in 6 cm
dishes and treated with 0.1, 1 and 10 nM tetrachlorodi-
benzodioxin (TCDD) or with an equal volume of toluene
and were then collected at the indicated times. Total RNA
was extracted from the TCDD-treated cells using TRIzol
reagent (Invitrogen). After DNase I (Takara) treatment,
total RNA was isolated by phenol extraction.

Reverse transcription polymerase chain reaction

Reverse transcription to generate the first strand comple-
mentary DNAs was performed using oligo-dT primers
and SuperScript RT-II (Invitrogen). Primers used for
polymerase chain reaction amplification were as follows:
CYP1A1, 50-CCG ACC TCT ACA CCT TCA CCC T-30

(forward) and 50-TGT ACC CTG GGG TTC ATC ACC
A-30 (reverse); Caspase-4, 50-AAC GTA TGG CAG GAC
AAA TGC T-30 (forward) and 50-CCT TCT CCA CGT
GGG TCT TGT A-30 (reverse); BDH1 (3-
hydroxybutyrate dehydrogenase), 50-ATG GAG ACC
TAC TGC AGC AGT G-30 (forward) and 50-ATC TCC
GGA GAG ATA GAT TCA CCA-30 (reverse); LMO7
(Homo sapiens LIM domain 7), 50-CAA ATG TGC TTT
CTG TAT CCT TCC-30 (forward) and 50-ATG CAA
TTG AAC AGA AAG GCT CAC-30 (reverse) and
GAPDH, 50-CCC ATC ACC ATC TTC CAG GAG
TGA GTG GAA GAC-30 (forward) and 50-CGC CCC
ACT TGA TTT TGG AGG GAT CTC GCC TAC
CG-30 (reverse).

Microarray experiments and data analysis

Gene expression data were obtained from 96 Affymetrix
HG-U133 Plus 2.0 arrays (four doses� eight temporal
variations� three replicates). For analysis, gene expres-
sion data were first normalized using R 2.6.1 with
Robust Multi-array Averaging normalization (12).
Second, differentially expressed gene (DEG) sets of the
TCDD-treated cells were identified by comparing with
the control cells (toluene-treated) for each of the concen-
trations (0.1, 1 and 10 nM) at each time point (0, 2, 8, 12,
16, 24, 36 and 52 h) using three different methods (linear
models for microarray analysis (LIMMA) (13), EBarray
(14) and the fold-change method). In the LIMMA,
P-values were corrected using the Benjamini and
Hochberg procedure (15) and identified DEGs using the
P< 0.05 criteria. In the EBarray, DEGs were identified
using a posterior probability threshold of 0.99 in both
the gamma–gamma model and the lognormal–normal
model. For the fold-change method, DEGs were identified
using 3-fold change criteria. Twenty-four DEG sets were
identified that met the criteria for significance using all
three methods for each concentration and at each time
point. Finally, the 24 DEG sets were combined into a
single set consisting of the 183 DEGs.
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Protein types

The ligands, extracellular proteins, receptors and
membrane proteins were selected as the nodes with cor-
responding genes classified into one of four GO terms:
‘receptor binding (GO:0005102)’, ‘extracellular region
(GO:0005576)’, ‘receptor activity (GO:0004872)’ and
‘membrane (GO:0016020)’ (16), respectively.

GO analysis

GO analysis was performed as follows: first, 67 GO terms
were selected with the criterion that, among the GO terms
classified as involved in a biological process in one of the
three branches of the ontology, the number of correspond-
ing genes must be>1000. Second, the enrichment of BTFs
and MTFs (the exclusive TGs of the BTFs and those of
the MTFs) in the 67 GO terms was examined by perform-
ing Fisher’s exact test using the union of the BTFs and
MTFs (the exclusive TGs of the BTFs and those of the
MTFs) as a background set.

Adaptability, robustness and diversity

Adaptability was defined as follows:

Adaptability ¼ nm
.Xn

i¼1

Xm
j¼1

Si, j;

where n denotes the number of TFs, m denotes the number
of TGs, Si, j denotes the saturation time of TG j obtained
from the simulation in which only TF i was stimulated for
100 time steps, and the initial state was given by the last
state (100th time step) of the simulation result obtained
for the stimulation of TF i�1 alone. For i= 1, the initial
values were obtained from the simulation involving the
stimulation of TF n alone. The saturation time of a TG
was defined as the first time step at which the value of the
TG was within a 0.0001 threshold of the last value of the
TG.

Robustness was defined as follows:
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where m denotes the number of TGs, l denotes the number
of parameters in the ODE model, xj denotes the
steady-state value of the TG j, and xj,k,up and xj,k,down
denote the steady-state values of the TG j upon a 10%
up/down perturbation of the parameter k, respectively.

Diversity was defined as follows:
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where n denotes the number of TFs, m denotes the number
of TGs, xi,k denotes the steady-state values of the TG k
obtained from the simulation in which only TF i was
stimulated for 100 time steps.

Evolution of artificial networks

For the evolution of artificial networks, a biological
network evolution scheme was used (17,18) based on a
genetic algorithm (GA) (19). For the evolution of n-node
artificial networks composed of n/2 TFs and n/2 TGs,
where n is an even number, 100 vectors

C ¼ C1,C2, � � � ,C n=2ð Þ
2

� �
were generated with entries of

any number between 0 and 1. The vectors represent the
initial chromosomes. Each vector was transformed into a
network structure as follows:

(1) From each vector, a regulation matrix B ¼ Bi,j

� 	
n�n

was constructed, where

Bi,j ¼
Cði�1Þn=2þj�n=2, if i � n=2 and j > n=2
0, otherwise




(2) From each regulation matrix, an expression matrix
E ¼ Ei,j

� 	
n�n

and a repression matrix R ¼ Ri,j

� 	
n�n

were constructed, where Ei,j ¼
1, if Bi,j > 0:75
0, otherwise



and

Ri,j ¼
1, if 0 < Bi,j < 0:25
0, otherwise



.

If a network transformed from a chromosome con-
tained isolated nodes, it was replaced with a newly
generated chromosome with a transformed network that
contained no isolated nodes. This constraint was checked
at each generation of GA. Next, the fitness of each initial
chromosome based on the ODE model simulation was
evaluated using each transformed expression matrix and
repression matrix. The fitness for adaptability, robustness
or diversity of each chromosome was defined by the
average of 100 adaptability/robustness/diversity values
obtained by running the ODE simulation model 100
times with random parameter values. Starting with the
initial chromosome, GA was performed using a
mutation rate of 0.05.

RESULTS

Enrichment of co-regulatory interactions between human
TFs

First, to examine how human TFs participate in
co-regulation mechanisms, the human GRN was con-
structed on the basis of direct genetic regulation informa-
tion with experimental evidence in the literature (see
Supplementary Table S1 for details) by referring to
KEGG (20) and TRANSFAC (21) and then transformed
into a human TF co-regulation network (1) (Figure 1A
and B). Within the human TF co-regulation network,
each node denotes a TF, each link denotes a co-regulatory
interaction between two different TFs, and the thickness
of each link is proportional to the ‘weight’ of the inter-
action, defined by the number of co-regulated TGs
between the two TFs. Next, the enrichment of the sum
of the weights for each TF in the human TF co-regulation
network was examined by performing z-tests for empirical
distributions of the sum of these weights (see ‘Materials
and Methods’ section and Supplementary Table S2). The
empirical distributions were constructed by randomizing
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100 networks while preserving the out-degree of each TF.
Enrichment analysis showed that the ratio of
co-regulation-enriched TFs (CETFs) was more than
twice that of the ratio of co-regulation-depleted TFs
(CDTFs). A CETF (CDTF) is defined as a TF with a
z-score such that the sum of weights is more (less) than
0. As shown in Figure 1C, the number of co-regulatory
interactions was significantly enriched in some TFs,
including TCF7L2, CTNNB1, NFKB1, STAT1, SP1,
RXRA and BRCA1, but was significantly depleted in
other TFs, including HNF1A and TP53 (P< 0.01). The
enrichment of co-regulatory interaction in the GRN of
Escherichia coli obtained from RegulonDB (22), one of
the simplest organisms, was examined for comparison,
and the results showed that the ratio of CETFs (36.7%)
was almost half of the ratio of CDTFs (63.3%) in the
E. coli GRN (Supplementary Figure S1 and Supplemen-
tary Table S3). Consistent with the previous result (3), this
implies that the co-regulation mechanism is evolutionarily
conserved in multicellular eukaryotes (human), whereas it
is evolutionarily depleted in prokaryotes (E. coli).
If co-regulation is enhanced during the evolution of

multicellular eukaryotes, then there should be contrasting
evolutionary features between the CETFs and CDTFs in
the human GRN. To clarify this, 190 significant CETFs
(red nodes in Figure 1B and red bars in Figure 1C) and 22

significant CDTFs (blue nodes in Figure 1B and blue bars
in Figure 1C) were identified with the criterion of P< 0.01.
Second, 430 exclusive TGs in the significant CETF group
and 170 exclusive TGs in the significant CDTF group were
identified. The evolutionary rates between the two exclu-
sive TG sets (see ‘Materials and Methods’ section) were
then compared. From the comparison, we found that the
TGs of the significant CETFs had significantly higher evo-
lutionary rates than those of the significant CDTFs
(P=4.42E�5; Supplementary Figure S2A), implying
that the genes controlled by the CDTFs are evolutionarily
conserved. Moreover, we explored the tissue variability of
the two gene groups under the hypothesis that the
co-regulation mechanism is related to multicellularity
and found that the TGs of the significant CETFs
showed a considerably greater degree of tissue variability
than those of the significant CDTFs (P=2.85E�4;
Supplementary Figure S2B). This result implies that the
genes transcribed by CETFs are expressed with a larger
variation in different tissues and related to multicellular
processes. In summary, this result suggests that the
co-regulation mechanism is enriched for the regulation
of tissue-specific gene expression which is an essential
feature of multicellular organisms (4,11). In other words,
our result suggests that multicellular organisms might
have evolved their GRNs toward having more

Figure 1. Enrichment of co-regulations of human TFs. (A) Schematic diagram showing network transformation from a GRN to a TF co-regulation
network. Green nodes denote TFs and cyan nodes denote TGs. (B) A human TF co-regulation network (418 nodes and 4124 links). (C) Enrichment
of co-regulations of the 418 human TFs. Red nodes in Panel B or red bars in Panel C denote TFs with significantly enriched co-regulation and blue
nodes in Panel B or blue bars in Panel C denote TFs with significantly depleted co-regulation (P< 0.01).
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co-regulations to increase the variability of gene expres-
sions, which is required for multicellular functioning.

We can classify TF co-regulations into two types:
co-regulation by TFs separately binding to DNA
(non-complex-type co-regulations) and co-regulation by
complexes of TFs (complex-type co-regulations). How dif-
ferent are these two types of co-regulations in view from
molecular evolution? To answer this question, we first
identified 293 non-complex-type TFs (i.e. TFs that do
not form any complex) and 125 complex-type TFs (i.e.
TFs that form a complex) (Supplementary Table S2)
based on the information on TF complexes from
TRANSFAC (21) and BIND (23) and then compared
the numbers of CETFs and CDTFs in the two types of
TFs. As a result, we found that the numbers of CETFs in
both types of TFs were much larger than those of CDTFs
(Supplementary Figure S3), which means that both types
of co-regulation are evolutionarily conserved in the
human GRN. Second, we compared the evolutionary
rate and tissue variability of the TGs of non-complex-type
CETFs and CDTFs and then also compared those of
complex-type CETFs and CDTFs. As a result, we
revealed the following: (i) the TGs of non-complex-type
CETFs have significantly higher evolutionary rates
(P=2.48E�3; Supplementary Figure S4A) and tissue
variability (P=1.19E�3; Supplementary Figure S4B)
than those of non-complex-type CDTFs; (ii) the evolu-
tionary rates of the TGs of complex-type CETFs and
CDTFs do not significantly differ (P=3.43E�1;
Supplementary Figure S5A) and (iii) the TGs of
complex-type CETFs have significantly higher tissue vari-
ability than those of complex-type CDTFs (P=2.36E�4;
Supplementary Figure S5B). These results imply that the
non-complex-type co-regulation mechanism might have
been evolved toward enhancing both evolutionary rate
and tissue variability of TGs, whereas the complex-type
co-regulation mechanism might have been evolved toward
enhancing only tissue variability of TGs.

A mathematical model of an artificial regulatory
network combining interactions related to signal
transduction and genetic regulation

The previous section showed that co-regulatory inter-
actions were enriched in the human GRN and that
CETFs were evolutionarily conserved. However, the role
of the co-regulation mechanism, and the reason for the
conservation of this mechanism in the human GRN,
remains unclear. To investigate this, an ODE model of
an artificial regulatory network composed of 61 nodes
(12 signaling proteins, 8 TFs and 41 TGs) and 86 links
(32 signal transductions and 54 genetic regulations) was
constructed (see Figure 2A and ‘Materials and Methods’
section). In this ODE model, the random noise effect
(24,25) for the non-complex-type co-regulation was con-
sidered. We first simulated the ODE system for 100 time
steps with zero initial values (no stimulation provided).
Next, the ODE system was stimulated for 10 time steps
with initial values set to the last values of the previous
simulation, where the stimulus was given by a sustained
type. This ODE model was used to calculate the RCI of

each TF for nine stimulus levels (x-axis in Figure 2B) and
100 randomly generated parameter sets (each colored line
in Figure 2B). The RCI of a TF is defined as follows:

RCI ¼
2

nðn� 1Þ

X
i<j

corr Xgi ,Xgj

� ��� ��;
where n denotes the number of TGs of the TF, Xgi

denotes
the temporal expression profile of the TG gi and
corr Xgi ,Xgj

� �
denotes the Pearson correlation coefficient

of the two expression profiles Xgi
and Xgj

. The RCI was
measured for each TF because this index represents the
activity or influence of the TF. The simulation revealed
that the RCI patterns for TF1, TF5, TF6 and TF8 were
monotonic and increasing for all parameter sets, whereas
those for the other TFs (TF2, TF3, TF4 and TF7) were
biphasic for most parameter sets (Figure 2B). Next, the
biphasic index (BI) was defined to quantify these biphasic
patterns as described in Figure 2C. Figure 2D shows that
the average in-degree of TGs is highly related to the
average BI of TFs. This result suggests that the
co-regulation mechanism of TFs induces the dose-
dependent biphasic regulation coherency among them.
We obtained the same result from a mathematical model
of the complex-type co-regulations (see Supplementary
Methods and Figure S6).

Biphasic dose–response pattern of TFs in the human GRN

In the previous section, we showed that the biphasic dose–
response pattern was caused by the co-regulation mecha-
nism. To verify this, we first investigated changes in gene
expression in HepG2 cells at three different doses (0.1, 1
and 10 nM) of the toxicant, TCDD. Temporal variations
(0, 2, 8, 12, 16, 24, 36 and 52 h) were also examined using
microarray experiments (see ‘Materials and Methods’
section). The three different doses and the temporal vari-
ations were selected according to the previous study (26).
Figure 3A shows changes in the expression of 183 DEGs,
along with doses and temporal variations. Second, the
RCIs of 111 TFs that have no less than five TGs in the
human GRN were calculated, along with the level of
stimulation provided by the three different doses, using
gene expression (log2 ratios) profiles and network infor-
mation. The large, diamond-shaped nodes in Figure 3B
denote the 111 TFs; the RCI for each TF is colored.
The results of this analysis showed that, in most cases,
the RCI displayed a biphasic pattern according to the
stimulus level. In contrast, the overall expression
changes of 183 DEGs increased with the stimulus level
(Figure 3C). In other words, the RCIs of 91 TFs increased
from the low dose (0.1 nM) to the middle dose (1 nM) and
those of 94 TFs decreased from the middle dose to the
high dose (10 nM) (Figure 3D). The dose-dependent
biphasic RCI from the low dose to the middle dose was
statistically significant (P=3.3E�14) and from the middle
dose to the high dose (P=6.7E�11) (Figure 3E). Third,
the TFs were classified into two groups, BTFs, showing a
biphasic behavior and MTFs, showing a monotonically
increasing behavior. The human GRN was then trans-
formed into a TF co-regulation network comprising only
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Figure 2. Mathematical model of an artificial regulatory network and the simulation results. (A) A diagram of an artificial regulatory network. Red
nodes denote input signals, blue nodes denote signaling proteins, green nodes denote TFs and cyan nodes denote TGs. Blue (red) arrows and blue
(red) blunt arrows denote the activation and inhibition of signal transduction (genetic regulation), respectively. (B) RCI profiles of the eight TFs
along with the stimulus level. Each line denotes the RCI profile for a random parameter set. (C) Schematic illustration of the measurement of BI. N
denotes the number of random parameter sets. (D) Scatter plot of average BI versus average in-degree of the TGs for the eight TFs.
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Figure 3. Biphasic dose–response of TFs in the human GRN. (A) Heat map of t-statistics for 183 DEGs along with three different doses of a
toxicant (TCDD) and eight temporal variations (see ‘microarray experiment and data analysis’ in ‘Materials and Methods’ section). Each row
represents a DEG. (B) The human GRN (1100 nodes and 2532 links). Diamond-shaped nodes denote 111 TFs with no less than five TGs and circle
nodes denote the rest of the TFs. The color of each diamond-shaped node represents the RCI of each TF. The subfigures represent data for each
dose (0.1 nM for left, 1 nM for center and 10 nM for right). (C) Average RCI of the 111 TFs and the average of the mean absolute t-statistics over
the 183 DEGs, eight temporal variations and three doses. Note that the average RCI shows a biphasic dose–response pattern, while the average
absolute t-statistics show a monophasically increasing dose–response pattern. (D) 3D scatter plot of the RCI of the 111 TFs with projections onto a
0.1–1 nM 2D plane and a 10–1 nM 2D plane. (E) Box plot of the RCI and the three doses. (F) TF co-regulation network composed of 79 BTFs and
15 MTFs and links with co-regulation weights >4. The thickness of each link denotes the co-regulation weight between the two different TFs.
(G) Enrichment of the co-regulation weight of BTFs and MTFs.
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BTFs, MTFs and links with co-regulation weights >4
(Figure 3F). Figure 3F shows that BTFs have more
links than MTFs and that each group is well-clustered
within the TF co-regulation network. Furthermore, the
percentage of BTFs that were also CETFs (86.1%) was
higher than the percentage of total TFs that were also
CETFs (67.2%; Figure 1C), whereas that of the MTFs
(60.0%) was lower than that of the total TFs
(Figure 3G). These results indicate that the dose-
dependent biphasic pattern in the human GRN is posi-
tively related with co-regulation and is in agreement
with the simulation results reported in the previous
section.

Biphasic versus monophasic TFs

Because each type of TF was well-clustered within the
human TF co-regulation network, we speculated that
these two types of TFs might be topologically different.
To clarify this, the average in-degrees of the TGs of the 79
BTFs and the 15 MTFs of the human GRN were
compared using a statistical test (see ‘Materials and
Methods’ section). As expected, the average in-degrees

of the TGs of the BTFs were significantly higher than
those of the MTFs (P=4.50E�4; the first bar plot in
Figure 4A). Not only that, but the degrees for the GRN,
the degrees for the human protein–protein interaction
(PPI) network and the in-degrees for the human signal
transduction network (STN) of the BTFs were signifi-
cantly higher than those of the MTFs, indicating that a
BTF is more likely to be a hub gene or protein than an
MTF in many biomolecular interaction networks
(P=5.59E�5 for the GRN, P=1.72E�3 for the PPI
and P=0.0116 for the STN; see the last three bar plots
in Figure 4A). These contrasting topological features
imply that BTFs respond to a greater variety of signals
and control a greater variety of TGs than MTFs
(Figure 4B and C).

If BTFs and MTFs are structurally different, the TGs of
these two types of TF may also be structurally different.
To explore this possibility, four topological characteristics
(in-degree and clustering coefficient for the human GRN
and in-degree and clustering coefficient for the human
STN) were compared between the 533 TGs exclusive
with the BTFs and the 45 TGs exclusive with the MTFs.

Figure 4. Two types of TFs. (A) Topological properties of the two types of TFs. Error bars denote standard errors. (B) An example of a
BTF-centered network. (C) An example of an MTF-centered network. In the example networks of (B) and (C), red nodes denote BTFs or
MTFs; cyan nodes denote the TGs of the red nodes; green nodes denote other TFs targeting the cyan nodes; blue nodes denote upstream signaling
proteins of the red nodes; blue lines denote signal transduction and red lines denote genetic regulation.
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The results showed that the in-degrees and clustering co-
efficients of the TGs exclusive to the BTFs were signifi-
cantly greater than those exclusive to the MTFs in the
human GRN, whereas the in-degrees and clustering coef-
ficients of the TGs exclusive to the BTFs were significantly
smaller than those of the TGs exclusive to the MTFs in the
human STN (Figure 5A). This indicates that, in the GRN,
the TGs of the BTFs are controlled by more TFs and
show more complex neighbor structures than those of
the MTFs, whereas in the STN, the TGs of the BTFs
are less controlled by signaling proteins and show a

sparser neighbor structure than the TGs of the MTFs.
To clarify the meaning of this result, we compared
protein types between TGs of the BTFs and those of the
MTFs (see ‘Materials and Methods’ section). The results
showed that the TGs of the BTFs included more ligands
or extracellular proteins than those of the MTFs, whereas
the TGs of the MTFs included more receptors or
membrane proteins than those of the BTFs (Figure 5B).
These results imply that most of the TGs of the BTFs are
ligands controlled mainly at the level of expression, i.e.
they are controlled by genetic regulation rather than

Figure 5. TGs of the two types of TFs. (A) Topological properties of the TGs of the two types of TFs. Error bars denote standard errors.
(B) Protein types for the TGs of the two types of TFs. (C) An example of a BTF-target-centered network. (D) An example of an
MTF-target-centered network. In the networks in (C) and (D), the cyan node denotes an example of a TG of a BTF or an MTF; the blue node
denotes a signaling protein that regulates the cyan node; the green node denotes a TF that targets the cyan node; the blue line denotes signal
transduction and the red line denotes genetic regulation.
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signal transduction. On the other hand, most of the TGs
of the MTFs were receptors controlled mainly at the level
of protein activity, i.e. they are controlled by signal trans-
duction rather than genetic regulation (Figure 5C and D).
Taken together, the results suggest that when a cell
receives a middle-dose signal (normal environment),
BTFs are mainly activated and regulate their TGs
(mostly ligands), and then the transcriptionally controlled
ligands change the cellular state by controlling their target
receptors (TGs of MTFs) at the protein activity level. On
the other hand, when a cell receives a high-dose signal
(extreme environment), MTFs are mainly activated and
regulate their TGs (mostly receptors), and then the

transcriptionally controlled receptors change the cellular
state by altering the ligand sensitivity. These results imply
that the human GRN responds to extracellular signals in
two different ways depending on signal strength through
two different types of TFs (BTF and MTF) and the en-
richment of TF co-regulation might be responsible for the
origination of such a response strategy.

Furthermore, gene ontology (GO) analysis revealed that
significantly enriched functions related to BTFs include
development, differentiation and signal transduction
(Table 1), and that those related to the TGs of BTFs
include signal transduction and the regulation of biolo-
gical processes (Table 2). In contrast, those related to
the TGs of MTFs involve metabolic processes and tran-
scription (Table 3). This implies that regulatory systems
that include BTFs are related to biological processes ex-
clusive to multicellular organisms, whereas regulatory
systems that include MTFs are related to biological
processes that take place in both single-celled and multi-
cellular organisms.

Evolutionary design principles underlying the co-regulation
mechanism

The two previous sections show that the co-regulation
mechanism of a TF can induce dose-dependent biphasic
behavior in the TF, and that this dynamic behavior is
related to multicellular organismal processes. How, then,
is this biphasic behavior helpful to multicellular organis-
mal processes? What is the evolutionary design principle
of this co-regulation mechanism? To answer these ques-
tions, we investigated the robustness and adaptability of
the transcriptional regulation systems using mathematical
models and simulations, since the biphasic behavior of a
transcriptional regulation system can increase the robust-
ness of a system (27,28), and trade-offs between adaptabil-
ity and robustness are related to the evolutionary
dynamics (29–31). Two contrasting ODE models were
constructed, each comprising two TFs and two TGs: a
little co-regulated network (LCN; the left subfigure in

Table 1. GO terms significantly related to BTFs

GO terms P-value

BTF MTF

Cell differentiation 0.0029 1.0000
Cellular developmental process 0.0029 1.0000
Organ development 0.0042 0.9997
Cell surface receptor-linked signal transduction 0.0306 1.0000
Anatomical structure development 0.0322 0.9933
System development 0.0391 0.9914
Multicellular organismal process 0.0444 0.9891

Table 2. GO terms significantly related to TGs of BTFs

GO terms P-value

TGs of
BTFs

TGs of
MTFs

Cell surface receptor-linked signal transduction 0.0166 0.9958
Negative regulation of cellular process 0.0354 0.9867
Positive regulation of cellular process 0.0375 0.9844
Positive regulation of biological process 0.0477 0.9788
Negative regulation of biological process 0.0498 0.9793

Table 3. GO terms significantly related to TGs of MTFs

GO terms P-value

TGs of BTFs TGs of MTFs

Regulation of transcription, DNA-dependent 0.9987 0.0040
Regulation of RNA metabolic process 0.9987 0.0040
Transcription 0.9988 0.0049
Regulation of transcription 0.9960 0.0107
Regulation of nitrogen compound metabolic process 0.9925 0.0183
Gene expression 0.9938 0.0193
Regulation of macromolecule biosynthetic process 0.9894 0.0247
Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic processes 0.9878 0.0284
Cellular biosynthetic process 0.9875 0.0285
Cellular macromolecule biosynthetic process 0.9873 0.0338
Regulation of gene expression 0.9817 0.0404
Cellular biopolymer biosynthetic process 0.9833 0.0442
Biopolymer biosynthetic process 0.9833 0.0442
Regulation of biosynthetic process 0.9787 0.0455
Macromolecule biosynthetic process 0.9807 0.0480
Biosynthetic process 0.9771 0.0485
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Figure 6A) and a highly co-regulated network (HCN; the
right subfigure in Figure 6A). We considered the
non-complex-type co-regulation for the second model
(see Supplementary Methods). These ODE models
incorporated 100 randomly selected parameter sets,
which were used to measure adaptability and robustness.
The results show that the adaptability of the LCN is
greater than that of the HCN (Figure 6B), whereas the
robustness of the LCN is lower than that of the HCN
(Figure 6C). To verify that this contrasting feature
between LCNs and HCNs can be selected by evolution,
we evolved artificial networks with non-complex-type
co-regulation based on the 10-node ODE model with the
preference for adaptability or robustness. These networks
comprised five TFs and five TGs. When the artificial
networks were selected to enhance adaptability, the
number of links decreased. In contrast, the number of
links increased when the networks were selected to
enhance robustness (Figure 6D). The same result was
obtained using a 20-node ODE model comprising 10
TFs and 10 TGs (Figure 6E). This result implies that the
co-regulation mechanism is beneficial for robustness, but
disadvantageous for adaptability. Hence, GRNs might
evolve to increase the degree of co-regulation in order to
enhance robustness in multicellular organisms, but in
single-celled organisms, they might evolve to decrease
the degree of co-regulation in order to enhance adaptabil-
ity. In other words, single-celled organisms might have
evolved their GRNs with high adaptability to cope with
rapidly changing external environment (18), whereas

multicellular organisms might have evolved their GRNs
with high robustness for differentiation into various cell
types in an exact time and space irrespective of intrinsic
variations (18,32–34). So, the co-regulation mechanism
might have been evolutionarily depleted in the GRNs of
single-celled organisms but conserved in the GRNs of
multicellular organisms. This is concordant with our
finding that the co-regulation mechanism is enriched in
the human GRN (Figure 1B and C), but depleted in the
E. coli GRN (Supplementary Figure S1).
To investigate the evolutionary design principle of the

complex-type co-regulation, we have artificially evolved
networks of 10-nodes and 20-nodes with the preference
of adaptability or robustness of the responses, respect-
ively. When the networks were evolved toward enhancing
adaptability, the number of links varied little in the 10-
node network (Supplementary Figure S7A), but increased
in the 20-node network (Supplementary Figure S7B). The
number of links also increased when the networks were
evolved toward enhancing robustness in both 10-node
(Supplementary Figure S7C) and 20-node networks
(Supplementary Figure S7D). These results imply that
the complex-type co-regulation is beneficial for both ro-
bustness and adaptability in large networks. Then, why
are there only 3.32% of complex-type co-regulating TFs
in the human GRN (Supplementary Tables S4 and S5)?
To answer this question, we evolved networks with the
preference of response diversity. When networks were
evolved toward enhancing diversity, the number of links
increased for the non-complex-type co-regulation, but

Figure 6. LCN and HCN models. (A) Example networks for LCN (Example 1) and HCN (Example 2). (B) Adaptability and (C) robustness of
Examples 1 and 2. The average number of links during the artificial evolution of 10-node (D) and 20-node (E) networks with the preference for
adaptability or robustness. We used 100 random parameter sets and 100 chromosomes for the artificial evolution. Each network in each subfigure
represents the network with the best fitness for each evolution. Green nodes denote TFs, cyan nodes denote TGs, red arrows denote activation and
blue blunt end arrows denote inhibition in each network. In B and C, error bars denote standard errors.
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decreased for the complex-type co-regulation in both
10-node (Supplementary Figure S7E) and 20-node
networks (Supplementary Figure S7F). This result
implies that the non-complex-type co-regulation is benefi-
cial for diversity whereas the complex-type co-regulation
is not. Together, we infer that the complex-type
co-regulation is not a major co-regulation type since it is
not beneficial for diversity although it is advantageous for
adaptability and robustness.

DISCUSSION

In this study, we used mathematical modeling to show
that the co-regulation mechanism of TFs induces dose-
dependent biphasic behavior in the TFs. Furthermore,
the relationship between the co-regulation mechanism
and biphasic behavior was confirmed by microarray ex-
periments. Previous studies of this biphasic behavior only
focused on network motifs such as incoherent feed-
forward loops (35,36). Here, we undertook a genome-scale
analysis of the co-regulation mechanism and the biphasic
behavior of TFs in the human GRN using whole-genome
expression data. Furthermore, we also showed that
the TFs in the human GRN can be classified into two
types (BTF and MTF) according to the presence or
absence of biphasic behavior, that these two types of
TFs control different groups of TGs and that BTFs
are related to multicellular organismal processes. These
results imply that the biphasic behavior of TFs induced
by the co-regulation mechanism might play a pivotal role
in phylogeny building of the two sets of genes.
The classification of TFs into two types (BTF and

MTF) might also be useful for developmental studies in
view of the attractor landscape. Several studies suggested
that the co-regulation mechanism is related to democratic
dynamics, hence causing attractors in the transcriptional
state space (2,3). Each attractor represents a cell type in a
developmental lineage. In this regard, the BTFs and the
TGs of the BTFs could be candidate key factors
determining attractor landscapes and the corresponding
cellular development patterns.
Several studies reported that the co-regulation mechan-

ism tends to be enhanced in the GRNs of more complex
organisms (1,3) and that this is also related to multicellu-
lar organismal processes such as developmental processes
(7) and immune processes (37,38). In this regard, we
suggested that the co-regulation mechanism and dose-
dependent biphasic behavior in a GRN may enhance
robustness, but may also undermine adaptability in terms
of evolutionary dynamics. Although previous research
results (1,3) on the co-regulation mechanism were also
based on genome-scale analysis, all these studies con-
sidered the GRN as a static topology. In contrast, we
studied the co-regulation mechanism while considering
evolutionary changes in the GRN. Hence, this study
regarding the relationship between dynamic properties
and the co-regulation mechanism provides new insights
that may help to unravel the evolutionary design principles
underlying the co-regulation mechanism.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5, Supplementary Figures 1–7
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