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Abstract: Colorectal cancer (CRC) arises from chromosomal instability, resulting from aberrant
hypermethylation in tumor suppressor genes. This study identified hypermethylated genes in
CRC and investigated how they affect clinical outcomes. Methylation levels of specific genes were
analyzed from The Cancer Genome Atlas dataset and 20 breast cancer, 16 esophageal cancer, 33 lung
cancer, 15 uterine cancer, 504 CRC, and 9 colon polyp tissues and 102 CRC plasma samples from a
Taiwanese cohort. In the Asian cohort, Eps15 homology domain-containing protein 3 (EHD3) had twofold
higher methylation in 44.4% of patients with colonic polyps, 37.3% of plasma from CRC patients, and
72.6% of CRC tissues, which was connected to vascular invasion and high microsatellite instability.
Furthermore, EHD3 hypermethylation was detected in other gastrointestinal cancers. In the Asian
CRC cohort, low EHD3 mRNA expression was found in 45.1% of patients and was connected to
lymph node metastasis. Multivariate Cox proportional-hazards survival analysis revealed that
hypermethylation in women and low mRNA expression were associated with overall survival. In
the Western CRC cohort, EHD3 hypermethylation was also connected to overall survival and lower
chemotherapy and antimetabolite response rates. In conclusion, EHD3 hypermethylation contributes
to the development of CRC in both Asian and Western populations.

Keywords: EHD3; colorectal cancer (CRC); DNA methylation; early detection; prognostic marker;
circulating cell-free DNA (ccfDNA)

1. Introduction

Colorectal cancer (CRC) is the fourth most prevalent cancer and the second leading
cause of cancer death worldwide [1]. In Taiwan, cancer is the leading cause of death, and
CRC is the third most commonly diagnosed cancer [2]. Detection of early-stage CRC is
crucial for maximizing the benefits of medical intervention [3]. Multiple genetic and epige-
netic modifications result in the silencing of tumor suppressor genes (TSGs) and activation
of oncogenes, which transform normal colonic epithelial cells into adenocarcinoma cells in
CRC [4,5]. DNA methylation is the most common and vital epigenetic mechanism [6]. In
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gene promoter regions, aberrant DNA methylation can inactivate TSGs, contributing to
tumorigenesis [7–9]. DNA methylation often occurs in multiple independent CpG islands,
meaning that universal DNA methylation occurs in different cancers [10,11]. A global anal-
ysis of 98 primary human tumors revealed an average of 600 CpG islands with abnormal
methylation among a total of 45,000 in the genome [12]. Accordingly, the recognition of
methylation patterns can explain the expression of various CRC subtypes [9]. Moreover,
the development of new biomarkers and new therapeutic interventions is indispensable
for the improved diagnosis and prognosis of CRC.

Analysis of circulating cell-free DNA (ccfDNA) can provide genetic and epigenetic
information related to CRC [13]. With advantages of minimal invasion and cost effective-
ness, ccfDNA methylation assessment might be a vital diagnosis and prognosis tool in
precision oncology. For instance, detection of Septin 9 hypermethylation DNA in plasma
has been approved by the US Food and Drug Administration for CRC screening. Although
a cancer constantly evolves, treatment often remains based on the first tumor biopsy result.
Therefore, real-time therapy response monitoring through ccfDNA analysis should be
considered for personalized and precision medicine [13]. Together, these findings encour-
aged us to investigate novel DNA methylation biomarkers for CRC, aiming to provide
information for future CRC diagnostic and treatment decisions.

The Illumina Infinium HumanMethylation450 BeadChip (450K) array is a high-
resolution, genome-wide approach for detecting DNA methylation pattern abnormalities
in cancer [14,15]. With this panel, we found different loci in hypermethylated promoter
and exon 1 regions of the Eps15 homology domain-containing protein 3 (EHD3) gene
after comparing 26 paired normal colorectal tissues and CRC tissues. EHD3 includes
35,300 nucleotides and its sequence, which encodes a predicted protein of 535 amino acids,
is located on chromosome 2p23.1. The alignment of EHD3 sequences from UniProtKB
(Q9NZN3) disclosed one EH domain within the EHD3 protein sequence. The EH domain
(for the Eps15 homology domain) was found in the tyrosine kinase substrate Eps15 and
endocytosis, vesicle transport, and signal transduction proteins [16,17]. The EHD3 protein
regulates the endosome-to-Golgi transport and downstream lysosomal biosynthetic trans-
port pathways [18,19]. Protein expression of EHD3 was reported to be low in glioma [20].
Aberrant DNA methylation was previously found in esophageal squamous cell carci-
noma [21]. To date, how the DNA methylation of EHD3 affects CRC remains unknown. We
assumed responsibility for discovering the exact relationship between alteration of EHD3
and colorectal tumorigenesis.

2. Materials and Methods
2.1. Tissue Specimens

A total of 20 frozen human breast cancer tissue samples, 16 frozen human esophageal
cancer tissue samples, 33 frozen human lung cancer tissue samples, 15 frozen human uter-
ine cancer tissue samples, 504 frozen human CRC tissue samples, 102 CRC plasma samples,
and 9 polyp tissues were retrieved from Taipei Veterans General Hospital Biobank and
Taipei Medical University (TMU) Joint Biobank for methylation array analysis (Figure 1D).
All specimens and clinical data were collected from patients who underwent surgery at
TMU and Taipei Veterans General Hospital, and they provided written informed consent.

2.2. DNA, ccfDNA, and RNA Extraction

This study used the RNeasy Plus Mini Kit (Qiagen, Bonn, Germany; Cat. No. 74134)
for mRNA isolation and the QIAamp DNA Mini Kit (Qiagen; Cat. No. 51306) to retrieve
genomic DNA from individual patients’ matched pairs of tumors and adjacent normal
tissue. ccfDNA was prepared from 200 µL of plasma using a MagMAX Cell-Free DNA
Isolation Kit (Thermo Scientific, Austin, TX, USA; Cat. No. A29319), and cDNA was
prepared using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Shanghai, China;
Cat. No. 170-8891). Finally, DNA, ccfDNA, and RNA were quantified using Thermo
Scientific NanoDrop 2000 c spectrophotometers to measure the A260/A280 ratios.
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Figure 1. Gene selection and experimental design. (A) Stepwise gene selection flowchart. (B) Gene screening performed
using http://www.interactivenn.net/ (accessed on 4 November 2020) [22]. (C) Methylation heatmap of EHD3 in paired
colon cancer, liver cancer, pancreatic cancer, esophageal cancer, rectal cancer, and gastric cancer tissues. (D) The experimental
design is shown in the flowchart, and sample types and sizes are indicated. BC, breast cancer; EC, esophageal cancer; LC,
lung cancer; UC, uterine cancer; CC, colon cancer; RC, rectal cancer; LiC, livesr cancer; GC, gastric cancer; PC, pancreatic
cancer; CRC, colorectal cancer; AN, adjacent normal; ccfDNA, circulating cell-free DNA; QMSP, quantitative methylation-
specific PCR; qRT-PCR, quantitative reverse-transcription PCR; IHC, immunohistochemistry; 450K, Illumina Infinium
HumanMethylation450 BeadChip array.

2.3. Assessment of Genome-Wide Methylation Level

After sodium bisulfite conversion of 26 paired CRC tissues and corresponding non-
cancerous colon tissues by EpiTect Fast Bisulfite Conversion Kits (Qiagen, Bonn, Germany;
Cat. No. 59826) was completed, we used 450K (Illumina, San Diego, CA, USA) to perform

http://www.interactivenn.net/
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genome-wide methylation analysis. Hypermethylation or hypomethylation was detected
in approximately 450,000 CpG sites in this array through the use of designed target-specific
probes. The methylation level was represented as β values ranging from 0 (no methylation)
to 1 (full methylation) because it was calculated as the number of methylated signal outputs
divided by total outputs.

2.4. Real-Time Reverse-Transcription Polymerase Chain Reaction

The LightCycler 480 Probe Master kit (Roche Applied Science, Mannheim, Germany)
was used to conduct real-time reverse-transcription (RT) polymerase chain reaction (PCR) to
measure the mRNA expression levels. Real-time PCR with specific primers and probe was
achieved and detected using the LightCycler 480 Probe Master kit (Roche Applied Science,
Indianapolis, IN, USA; Cat. No. 04707494001). The reference gene was glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

The mRNA expression values normalized with GAPDH were calculated using Light-
Cycler Relative Quantification software (Version 2.0, Roche Applied Science). If the mRNA
expression level relative to GAPDH in CRC tumor tissue was 1.5-fold higher than that in
paired normal colorectal tissue, the mRNA expression was considered high. If the mRNA
expression level relative to the control group was 0.5-fold lower, the mRNA expression
was considered low. Table S3 and Figure S3A present the primers.

2.5. TaqMan Quantitative Methylation-Specific PCR

The EpiTect Fast DNA Bisulfite Conversion Kit (Qiagen; Cat. No. 59826) was used in
the bisulfite conversion of genomic DNA. The level of DNA methylation was measured
using a TaqMan quantitative methylation-specific PCR (QMSP). Our lab performed QMSP
with specific primers and a methyl-TaqMan probe using the SensiFASTTM Probe No-ROX
Kit (Bioline, London, UK; Cat. No. BIO-86020). The reference gene was beta-actin (ACTB).
Table S3 presents the primers.

2.6. TCGA Data Analysis and Candidate Gene Selection

All Western cohort results, including gene expression, methylation condition, and clin-
ical information, were based on data generated by the TCGA Research Network (available
online: http://cancergenome.nih.gov/ (accessed on 27 July 2020)). Gene expression was
considered high (low) when the mRNA value of the tumor tissue was ≥1.5 (≤0.5) times
that of the paired adjacent normal tissues.

2.7. Statistical Analyses

All statistical results were conducted using SPSS (IBM Corp. Released 2017. IBM SPSS
Statistics for Macintosh, Version 25.0. Armonk, NY, USA: IBM Corp.). Pearson’s chi-square
test was used to characterize EHD3 methylation, mRNA expression, and protein expression
level in patients with CRC with respect to clinical data, including age, sex, tumor type,
and TNM tumor stage. Calculated overall survival curves were constructed using the
Kaplan–Meier method and multivariate Cox proportional-hazards survival analysis. The
significance criterion for survival analysis was log-rank p < 0.05.

3. Results
3.1. EHD3 Is a Common Target in Alimentary Canal Cancer

To identify a new drug-designed target for gastrointestinal cancer, this study analyzed
the methylation patterns of patients with esophageal, gastric, and colon cancer from TCGA.
First, we excluded CpG sites with average β values of >0.05 for noncancerous tissues
and <0.30 for tumor tissues (Figure 1A). Accordingly, 919 CpG sites from colon cancer,
442 from rectal cancer, and 291 from gastric cancer were identified. Second, 43 CpG sites
were identified at the intersection of the 3 aforementioned categories. Finally, to determine
a common gene target for both Western and Asian cohorts, 450K was used to analyze the
paired noncancerous colon tissues and CRC tissues of 26 patients (Table S1), and 8 CpG sites

http://cancergenome.nih.gov/
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from 6 genes (MSC, ZNF132, PDGFD, BEND5, EHD3, and SOX5) were among the 100 most
common ∆Avg_β (βTumor–βNormal) CpG sites of colon cancer in Taiwan (Figure 1B).
Few reports on EHD3 hypermethylation in cancer have been published; therefore, EHD3
was selected for further analysis.

Cancers originating outside the alimentary canal exhibited minimal EHD3 hyperme-
thylation in both Western and Asian populations. From the TCGA dataset, only small
portions of breast cancers (1.1%, 1/87), lung adenocarcinomas (6.9%, 2/29), and squamous
cell lung cancers (0.0%, 0/40) had EHD3 hypermethylation (Figure S1). Similar results
were found in the Asian cohort. EHD3 hypermethylation was at least twofold higher in
tumors than in matched normal tissues in only 15.2% (5/33) of patients with lung cancer,
40.0% (8/20) of those with breast cancer, and 13.3% (2/15) of those with uterine cancer
(Figure S2).

EHD3 hypermethylation was observed in most Western alimentary canal cancers
compared with paired adjacent normal tissues (Figure 1C), such as colon cancer (68.4%,
26/38), esophageal cancer (60.0%, 9/15), liver cancer (33.3%, 4/12), gastric cancer (2/2,
100%), pancreatic cancer (10.0%, 1/10), and rectal cancer (42.9%, 3/7). In the Taiwanese
cohort, EHD3 hypermethylation was detected in 73.1% (19/26) of patients with CRC
and 18.8% (3/16) of patients with esophageal cancer compared with matched normal
tissues (Figure 2A and Figure S2). In both the Western and Asian cohorts, because EHD3
hypermethylation was only steadily performed in patients with CRC, the biological role of
EHD3 in CRC was the next target to understand in the present study.

3.2. EHD3 Promoter Hypermethylation and Low Expression of mRNA and Protein in Asian
Patients with CRC

We used 450K to analyze 26 patients’ paired noncancerous colon tissues and CRC
tissues. The promoter and exon 1 regions of EHD3 in CRC tumor tissues exhibited 21 highly
methylated sites (Figure 2A). Probes 4–16 were identified using a paired t test, and signifi-
cantly more hypermethylation occurred in tumors than in normal tissues. Additionally, the
average β values of probes 7, 9, and 12 were at least 0.4 times higher in tumor tissues. EHD3
methylation patterns were confirmed using TaqMan QMSP assays in 504 patients with
CRC. Because the promoter and exon 1 regions were the most hypermethylated areas in
the EHD3 gene of patients with CRC, primers and probes were designed between promoter
and exon 1 regions (Figure 2, Table S3). The data revealed that in 72.6% (366/504) of
patients with CRC, EHD3 hypermethylation was at least twofold higher in tumors than in
matched normal tissues. In addition, 64.7% and 55.4% of patients with CRC had threefold
and fivefold higher EHD3 hypermethylation in tumor tissues, respectively (Table 1 and
Figure S2).

EHD3 hypermethylation plays a role in vascular invasion and high microsatellite
instability in patients with CRC (Table 1, p = 0.005 and p = 0.047). Four out of nine
patients (44.4%) with a benign tubular adenoma had EHD3 hypermethylation (Figure 3A).
A significant difference was detected in the Mann–Whitney U test between adjacent normal
colon tissues and tubular adenomas (p = 0.042) and between tubular adenomas and CRC
tumors (p = 0.017). Furthermore, 37.3% (38/102) of patients with CRC had EHD3 promoter
hypermethylation in plasma ccfDNA.

Whether EHD3 hypermethylation affects mRNA expression remains unknown. There-
fore, we analyzed EHD3 mRNA expression in 102 paired CRC tissues. EHD3 mRNA
expression was at least 2-fold lower in tumor tissues than in normal tissues in 45.1%
(46/102) of the paired tissues (Figure S4A). The low expression also contributed to tu-
mor metastasis to regional lymph nodes (Table 1, p = 0.016). In contrast to the normal
tissues, 100 times higher hypermethylation in tumor tissues exhibited a statistically sig-
nificant Spearman correlation with 20 times lower mRNA expression in colorectal tumors
(Figure 3B, Spearman’s ρ = 0.307, p = 0.020). EHD3 mRNA expression in CRC cell lines was
also lower than that in normal tissues and breast and lung cancer cell lines (Figure S4C).
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Figure 2. Different methylation at EHD3 CpG islands in patients with CRC. Methylation levels (average β values) at the
differentially methylated loci were identified using an Illumina Methylation 450K array-based assay in (A) 26 patients with
CRC in Taiwan and (B) 38 patients with CRC from the TCGA dataset. The scale shows the relative methylation status from
0.00 to 1.00 (yellow: hypomethylation, blue: hypermethylation). Twenty-one CpG sites on EHD3 were detected in 26 paired
normal (upper) and CRC (lower) tissues, and array probes 1–21 were sites cg13149833, cg12045528, cg00648955, cg25202298,
cg06773122, cg00981472, cg18444347, cg05882522, cg27230038, cg25428398, cg15355118, cg25840208, cg24743639, cg13795465,
cg01163837, cg08251399, cg11957382, cg07185119, cg20203365, cg14018959, and cg14613979, respectively.
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Table 1. EHD3 promoter hypermethylation and mRNA expression in relation to the clinical parameters of CRC in a
Taiwanese cohort 1.

Characteristics Total n 2
EHD3 Methylation 3

Total n
EHD3 mRNA 4

Low n (%) High n (%) Low n (%) High n (%)

CRC 504 225 (44.6) 279 (55.4) 102 72 (70.6) 30 (29.4)

Age
<65 226 104 (46.0) 122 (54.0)0.479 27 12 (44.4) 15 (55.6)0.210

>65 273 117 (42.9) 156 (57.9) 40 16 (40.0) 24 (60.0)

Sex
Male 300 133 (44.3) 167 (55.7)0.960 39 21 (53.8) 18 (46.2)0.960

Female 195 86 (44.1) 109 (55.9) 28 15 (53.6) 13 (46.4)

Tumor Type
Adeno 461 203 (44.0) 258 (56.0)0.779 65 35 (53.8) 30 (46.2)0.439

Others 30 14 (46.7) 16 (53.3) 1 1 (0.00) 0 (100.0)

Tumor Stage
I 42 18 (42.9) 24 (57.1)0.826 5 3 (60.0) 2 (40.0)0.388

II 187 90 (48.1) 97 (51.9) 28 14 (50.0) 14 (50.0)
III 140 60 (42.9) 80 (57.1) 12 9 (75.0) 3 (25.0)
IV 96 40 (41.7) 56 (58.3) 22 10 (40.0) 12 (60.0)

Tumor Size
T0-T1 34 17 (50.0) 17 (50.0)0.494 5 2 (40.0) 3 (60.0)0.770

T2-T4 455 200 (44.0) 255 (56.0) 62 29 (46.8) 33 (53.2)

Regional lymph nodes metastasis
N = 0 255 120 (47.1) 135 (52.9)0.208 37 15 (40.5) 22 (59.5)0.016 *
N > 1 232 96 (41.4) 136 (58.6) 30 21 (70.0) 9 (30.0)

Distant metastasis
M = 0 372 171 (46.0) 201 (54.0)0.404 41 23 (56.1) 18 (43.9)0.332

M > 1 97 40 (41.2) 57 (58.8) 23 10 (43.5) 13 (56.5)

Differentiation grade
Well/Moderate 450 201 (44.7) 249 (55.3)0.627 63 28 (44.4) 35 (55.6)0.876

Poor 37 15 (40.5) 22 (59.5) 2 1 (50.0) 1 (50.0)

Location
Ascending Colon 121 61 (50.4) 60 (49.6)0.337 15 10 (66.7) 5 (33.3)0.242

Transverse Colon 37 15 (40.5) 22 (59.5) 8 2 (25.0) 6 (75.0)
Descending Colon 44 15 (34.1) 29 (65.9) 7 3 (42.9) 4 (57.1)

Sigmoid Colon 152 66 (43.4) 86 (56.6) 18 7 (38.9) 11 (61.1)
Rectal 121 58 (47.9) 63 (52.1) 13 7 (53.8) 6 (46.2)

Vascular invasion
No invasion 333 162 (48.6) 171 (51.4)0.005 ** 4 2 (50.0) 2 (50.0)0.919

invasion 144 50 (34.7) 94 (65.3) 57 30 (52.6) 27 (47.4)

MSI
MSS/MSI-L

MSI-H
53 20 (37.7) 33 (62.3)0.047 * 32 16 (50.0) 16 (50.0)0.677

7 0 (0.0) 7 (100.0) 5 2 (40.0) 3 (60.0)

* p < 0.05; ** p < 0.01. 1 These results were analyzed with the Pearson χ2 test. p values indicating significance are shown using superscripts.
2 For some categories, the number of samples (n) was less than the overall number of analyzed samples because clinical data were
unavailable for them. 3 An EHD3 promoter methylation level in CRC tumors fivefold higher than that in adjacent normal colorectal tissues
was defined as hypermethylation. 4 An EHD3 mRNA expression level in CRC tumors 0.01 times less than that of adjacent normal colorectal
tissues was defined as low expression.
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Figure 3. DNA methylation and mRNA expression analysis of EHD3 from an Asian cohort. * p < 0.05. (A) EHD3 methylation
level in nine adjacent normal colon tissues, nine polyps of tubular adenoma, and nine CRC tumors. The Mann–Whitney U
test was used to compare adjacent normal colon tissues and tubular adenoma and to compare tubular adenomas and CRC
tumors. (B) Spearman’s rank-order correlation was used to estimate the correlation between EHD3 promoter methylation
and mRNA expression in the matched normal and tumor tissues. (C) The Kaplan–Meier estimate was used to compute
the overall survival of women with and without EHD3 hypermethylation. An EHD3 promoter methylation level in CRC
tumors 200-fold higher (90th percentile) than that in adjacent normal colorectal tissues was defined as hypermethylation.

Female patients with EHD3 hypermethylation had poor prognosis results (Figure 3C,
p = 0.046). Multivariate Cox proportional-hazards survival analysis revealed that EHD3
hypermethylation in women was independently and significantly associated with poor
overall survival and recurrence-free survival, even after adjustment for age, location, tumor
differentiation, and cancer stage (Table 2, p = 0.020 and p = 0.020). Another Cox regression
analysis adjusted for sex, age, location, differentiation, and stage revealed that low EHD3
mRNA expression was significantly associated with recurrence-free survival (Table 2,
p = 0.029).

3.3. Promoter Hypermethylation, Low mRNA, and Protein Expression of EHD3 in Western
Patients with CRC and Poor Prognoses

We investigated whether the EHD3 methylation pattern was different in a CRC cohort
outside Asia. Probes 4–16 were identified using a paired t test and indicated significantly
higher hypermethylation in tumors than in normal tissues. Additionally, the average β

value of probe 12 was at least 0.4 times higher in tumor tissues.
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Table 2. Cox proportional-hazards survival analysis in Taiwanese patients with CRC.

Variable
Multivariate Analysis 1

HR 95% CI p-Value

Overall survival
Age 5.003 0.065–385.851 0.468

Differentiation 1.157 0.020–66.973 0.944
Tumor stage 445.234 4.525–43,808.867 0.009 **

Location 2.538 0.271–23.731 0.414
Female EHD3 DNA methylation 2 40.350 1.799–904.977 0.020 *

EHD3 RNA expression 0.21 0.001–0.454 0.014 *

Recurrence-free survival
Age 7.074 0.253–197.642 0.250

Differentiation 1.589 0.171–14.755 0.684
Tumor stage 174.281 5.824–5214.941 0.003 **

Location 1.774 0.307–10.250 0.522
Female EHD3 DNA methylation 21.966 1.630–296.011 0.020 *

EHD3 RNA expression 0.17 0.01–3.09 0.006 **

Recurrence-free survival
Age 1.457 0.371–5.717 0.589
Sex 0.821 0.222–3.037 0.767

Differentiation 1.355 0.234–7.833 0.734
Tumor stage 11.622 3.505–38.543 <0.000 ***

Location 1.482 0.443–4.957 0.523
EHD3 DNA methylation 1.878 0.567–6.217 0.302
EHD3 RNA expression 0.283 0.091–0.881 0.029 *

* p < 0.05; ** p < 0.01; *** p < 0.001. 1 For multivariate Cox proportional-hazards survival analysis, the data were
adjusted for age, differentiation, sex, tumor stage, and location. 2 EHD3 methylation levels were derived from
CRC tumors of 504 patients using QMSP.

Analysis of RNA and protein data indicated that EHD3 RNA and protein expression
was significantly reduced in CRC tumor tissues compared with matched normal tissues
(p = 0.029 and p < 0.001) [23]. The Pearson correlation test revealed that for probes 1–15 in
promotor and exon 1, EHD3 mRNA expression and EHD3 hypermethylation were signifi-
cantly, and at least modestly, negatively correlated. Moreover, the test indicated a moder-
ately negative correlation in probe 16, which was in exon 1 (Pearson correlation = −0.416,
p < 0.001, Figure 4A, n = 289 tumors). By contrast, the correlation was positive in the
EHD3 gene body region and three-prime untranslated region (array probes 18–21, p < 0.05).
Prognoses were poorer in patients exhibiting hypermethylation than in those exhibiting
low methylation of EHD3 promoter probe 4 (Figure 4B, p = 0.046). Multivariate Cox
proportional-hazards survival analysis indicated that EHD3 hypermethylation was in-
dependently and significantly associated with overall survival after adjustment for age,
location, tumor size, lymph invasion, and metastasis (Table S2, p = 0.039). Patients with
late-stage cancer and female patients with late-stage and low EHD3 protein expression
consistently had poorer prognoses than did those with high EHD3 protein expression
(Figure 4C,D, p = 0.045 and p = 0.012) [24].

3.4. Promoter Hypermethylation of EHD3 Reduces Drug Sensitivity in Patients with CRC from
Western Countries

To further determine EHD3 hypermethylation in CRC from the TCGA dataset, this
study analyzed the correlation of the treatment outcomes of antimetabolites, DNA alkylat-
ing drugs, and topoisomerase inhibitors with the methylation level of the EHD3 promoter
region. As a result, EHD3 promoter (cg01163837) hypermethylation was significantly
associated with poor treatment response to chemotherapy and antimetabolites (p = 0.017
and p = 0.039, Table 3).
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Figure 4. EHD3 DNA methylation, mRNA, and protein expression analysis from TCGA dataset. (A) The Pearson correlation
test was used to estimate the correlation between EHD3 DNA methylation and RNA sequencing in 262 patients with CRC
in the TCGA dataset. (B) The Kaplan–Meier estimate was used to compute the overall survival of patients with CRC
with low and high EHD3 methylation levels. EHD3 was considered hypermethylated at an average β value of >0.445
(75th percentile). (C) The Kaplan–Meier estimate was used to compute the overall survival of patients with late-stage
CRC with high and low EHD3 protein expression levels. Image credit: Human Protein Atlas. Image available from
https://www.proteinatlas.org/ENSG00000013016-EHD3/pathology/colorectal+cancer#imid_15773055 (accessed on 27
July 2020). (D) The Kaplan–Meier estimate was used to compute the overall survival of female patients with late-stage
CRC with high and low EHD3 protein expression levels. Image credit: Human Protein Atlas. Image available from
https://www.proteinatlas.org/ENSG00000013016-EHD3/pathology/colorectal+cancer#imid_15773055 (accessed on 27
July 2020).

Table 3. EHD3 promoter (cg01163837) hypermethylation in relation to drug treatment response in the TCGA cohort.

Characteristics Total Complete Response
n (%)

Progressive Disease
n (%) p Value 1

Chemotherapy 2 25 13 (52.0) 12 (48.0)
Low methylation 13 10 (76.9) 3 (23.1)

0.017 *High methylation 12 3 (25.0) 9 (75.0)

Antimetabolites
Low methylation 12 9 (75.0) 3 (25.0)

0.039 *High methylation 12 3 (25.0) 9 (75.0)

DNA Alkylating drugs
Low methylation 6 5 (83.3) 1 (16.7)

0.545High methylation 6 3 (50.0) 3 (50.0)

Topoisomerase inhibitors
Low methylation 4 2 (50.0) 2 (50.0)

0.491High methylation 7 1 (14.3) 6 (85.7)

https://www.proteinatlas.org/ENSG00000013016-EHD3/pathology/colorectal+cancer#imid_15773055
https://www.proteinatlas.org/ENSG00000013016-EHD3/pathology/colorectal+cancer#imid_15773055
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Table 3. Cont.

Characteristics Total Complete Response
n (%)

Progressive Disease
n (%) p Value 1

Targeted Molecular therapy 3

Low methylation 4 3 (75.0) 1 (25.0)
0.524High methylation 6 2 (33.3) 4 (66.7)

Antimetabolites
5-fluorouracil

Low methylation 8 5 (62.5) 3 (37.5)
0.074High methylation 11 2 (18.2) 9 (81.8)

Capecitabine
Low methylation 5 5 (100.0) 0 (0.00)

0.375High methylation 3 2 (66.7) 1(33.3)

Folinic acid
Low methylation 6 3 (50.0) 3 (50.0)

0.600High methylation 11 3 (27.3) 8 (72.7)

* p < 0.05. 1 These results were analyzed with Fisher’s exact test. 2 Antimetabolite drugs: 5-fluorouracil, capecitabine, and folinic acid;
alkylating drugs: oxaliplatin and mitomycin; topoisomerase inhibitor: irinotecan. 3 Targeted molecular therapy: bevacizumab, regorafenib,
and cetuximab.

4. Discussion

The silencing of TSGs could be caused by hypermethylation of CpG islands, resulting
in tumorigenesis. We used 450K and discovered that the promoter and exon 1 regions of
EHD3 had multiple highly methylated CpG sites in CRC tissues but not in corresponding
normal tissues. Furthermore, QMSP confirmed EHD3 hypermethylation in CRC tissues
compared with normal tissues.

In the Asian cohort, female patients with CRC and EHD3 promoter hypermethylation
had poor prognoses (Figure 3C). Cox regression analysis indicated that low EHD3 mRNA
expression in Asian patients with CRC was also associated with poor recurrence-free
survival (Table 2, p = 0.029). Caucasian patients with CRC and high EHD3 promoter methy-
lation (Figure 4B) or low EHD3 protein expression (Figure 4C) also had poor prognosis.
Vascular invasion and lymphatic invasion, both poor prognostic factors for CRC [25,26],
were observed in patients with CRC with high EHD3 methylation and low EHD3 mRNA
expression (Table 1). These two factors may explain why EHD3 was involved in clinical
prognosis. A previous study suggested that EHD3 polymorphism explains why women
are more prone to major depressive disorder than men are [27]. Therefore, another expla-
nation for correlation between EHD3 hypermethylation and poor prognoses is that women
with CRC and EHD3 hypermethylation may present signs of mental illness, leading to a
poor prognosis.

The epigenetic pattern of promoter hypermethylation and gene body demethylation in
EHD3 sequences was generally similar between the CRC tissues of the Asian and Caucasian
cohorts (Figure 2). Naturally, the correlation between EHD3 promoter hypermethylation
and reduced EHD3 transcript level was significant in both cohorts (Figures 3B and 4A).
Because EHD3 promoter hypermethylation was found in 72.6% of Taiwanese CRC tissues,
which was higher than SEPT9 hypermethylation found in 60.92% of Taiwanese CRC
tissues [28] and in 44.4% of patients with tubular polyp adenomas, EHD3 hypermethylation
can serve as an early indicator of CRC or as a viable auxiliary to the pathological diagnosis
of malignant polyps.

EHD3 belongs to the Eps15 homology domain family, which has a module implicated
in protein–protein interaction [17]; this family is involved in endocytic transport [29]. EHD3
influences the coordination of ciliary membrane and axoneme growth [30], the stabilization
of tubular recycling endosomes to help endocytic recycling [18], and the regulation of
endosome-to-Golgi transport to affect lysosome transport [18]. It also functions as a TSG
and induces a G0/G1 growth arrest and apoptotic cell death in glioma cells [20]. Therefore,
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we speculated that the loss of EHD3 expression in colon cells occurs through the same
mechanism and increases cell growth and tumorigenesis.

EHD3 promoter hypermethylation likely plays a vital role in gastrointestinal cancers,
such as esophageal and gastric cancer, in Western populations (Figure 1C). It was also
identified using 450K in Chinese patients with esophageal carcinoma [21]. However,
QMSP analysis of Taiwanese patients with esophageal and breast cancer revealed a lower
aberrant frequency of the EHD3 promoter methylation level. Analysis of the EHD3 mRNA
expression in gastrointestinal cancers might help elucidate the relationship between the
EHD3 anomaly and cancer development. To summarize, gastrointestinal cancers are often
accompanied by EHD3 promoter hypermethylation, especially in regions involved in food
transport, including the esophagus, stomach, colon, and rectum. Unhealthy personal
dietary habits may cause EHD3 hypermethylation and should be studied further.

Adjuvant chemotherapy, including antimetabolites, alkylating agents, and topoiso-
merase inhibitors, is often used after CRC surgery. The chemotherapy response rate was
significantly higher in patients with low EHD3 methylation levels (p = 0.017, Table 3).
Antimetabolites are recommended for patients without EHD3 promoter hypermethylation
(p = 0.039, Table 3) for postoperative chemotherapy. In our study, 37.3% (38/102) of patients
with CRC exhibited EHD3 promoter hypermethylation in plasma ccfDNA; hence, targeted
therapy and immunotherapy drugs may be treatment options. Regular monitoring of EHD3
methylation level and adjusting CRC treatment accordingly are also highly recommended.

MSI (microsatellite instability) status was associated with EHD3 methylation level in
Taiwanese patients with CRC (Table 1, p = 0.047). Patients with MSI-H (high microsatel-
lite instability) CRC have better overall survival but are resistant to 5-fluorouracil-based
chemotherapy [21]. Similarly, patients with EHD3 hypermethylation have poor overall
survival and response to chemotherapy. Future studies should investigate the relationship
between MSI status and EHD3 methylation levels. For instance, a prospective analysis
of the influence of EHD3 hypermethylation and MSI-H on CRC drug response with an
adequate sample size may help in combining EHD3 methylation level with MSI status to
develop a strong indicator for CRC treatment. Therefore, EHD3 can not only be developed
as a prognostic marker but also as a tumor biological factor for chemotherapy response.

5. Conclusions

EHD3 hypermethylation promotes the development of CRC and other gastrointestinal
cancers in both Asian and Western populations and can be developed as a prognostic
marker or a target for precision medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9050453/s1, Figure S1: Methylation heatmap of EHD3 in paired breast cancer,
lung adenocarcinoma, and squamous cell lung cancer tissues. Figure S2: Bar graph of the promoter
hypermethylation of the EHD3 pattern in paired esophageal, uterine, breast, and lung cancer tissues
compared with matched normal tissue in the Taiwanese cohort. Figure S3: Hypermethylation of the
EHD3 promoter gene was analyzed in patients with CRC. Figure S4. EHD3 mRNA expression levels
were analyzed in CRC tumors and paired normal colorectal tissues. Table S1: Clinical parameters of
26 paired patients with CRC whose tissues were analyzed with Illumina Infinium HumanMethy-
lation450 BeadChip array assays. Table S2: Cox proportional-hazards survival analysis in Western
patients with CRC. Table S3: List of primer sequences and reaction conditions used in the study.

Author Contributions: Conceptualization, R.-K.L.; methodology, Y.-H.W. and M.A.; formal analysis,
Y.-H.W. and M.A.; resources, S.-C.C. and C.-S.H.; data curation, Y.-H.W. and M.A.; writing—original
draft preparation, Y.-H.W.; writing—review and editing, R.-K.L. and Y.-H.W.; supervision, R.-K.L.
and S.-C.C.; project administration, R.-K.L., S.-C.C., and C.-S.H.; funding acquisition, R.-K.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by grants MOST104-2320-B-038-051-MY3 and MOST108-
2320-B-038-020 from the Ministry of Science and Technology (Republic of China) and grant 108-5804-
001-400 from the Ministry of Education (China).

https://www.mdpi.com/article/10.3390/biomedicines9050453/s1
https://www.mdpi.com/article/10.3390/biomedicines9050453/s1


Biomedicines 2021, 9, 453 13 of 14

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Taipei Medical University Joint Institutional Review
Board and the Institutional Review Board, Taipei Veterans General Hospital (the project identification
codes are 201305002 and 2017-12-011CC, respectively).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The results published here are in part based upon data generated by
the TCGA Research Network: https://www.cancer.gov/tcga (accessed on 6 June 2016).

Acknowledgments: The authors are grateful for the support of the Core Facility Center of Taipei
Medical University and this manuscript was edited by Wallace Academic Editing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
2. Ministry of Health and Welfare. Statistical Results of Deaths of Taiwanese People in the 107th Year of the Republic Era; Ministry of

Health and Welfare: Taiwan, China, 2019.
3. Maida, M.; Macaluso, F.S.; Ianiro, G.; Mangiola, F.; Sinagra, E.; Hold, G.; Maida, C.; Cammarota, G.; Gasbarrini, A.; Scarpulla, G.

Screening of colorectal cancer: Present and future. Expert Rev. Anticancer Ther. 2017, 17, 1131–1146. [CrossRef]
4. Vymetalkova, V.; Vodicka, P.; Vodenkova, S.; Alonso, S.; Schneider-Stock, R. DNA methylation and chromatin modifiers in

colorectal cancer. Mol. Asp. Med. 2019, 69, 73–92. [CrossRef]
5. Muller, M.; Hansmannel, F.; Arnone, D.; Choukour, M.; Ndiaye, N.C.; Kokten, T.; Houlgatte, R.; Peyrin-Biroulet, L. Genomic

and molecular alterations in human inflammatory bowel disease-associated colorectal cancer. United Eur. Gastroenterol. J. 2020,
8, 675–684. [CrossRef]

6. Sakai, E.; Nakajima, A.; Kaneda, A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J.
Gastroenterol. 2014, 20, 978–987. [CrossRef]

7. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012,
487, 330–337. [CrossRef]

8. Jung, M.; Pfeifer, G.P. Aging and DNA methylation. BMC Biol. 2015, 13, 1–8. [CrossRef] [PubMed]
9. Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [CrossRef] [PubMed]
10. Zhang, Y.; Wilson, R.; Heiss, J.; Breitling, L.P.; Saum, K.-U.; Schöttker, B.; Holleczek, B.; Waldenberger, M.; Peters, A.; Brenner, H.

DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat. Commun. 2017, 8, 14617. [CrossRef]
[PubMed]

11. Okugawa, Y.; Grady, W.M.; Goel, A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015,
149, 1204–1225.e12. [CrossRef] [PubMed]

12. Costello, J.F.; Frühwald, M.C.; Smiraglia, D.J.; Rush, L.J.; Robertson, G.P.; Gao, X.; Wright, F.A.; Feramisco, J.D.; Peltomäki,
P.; Lang, J.C.; et al. Aberrant CpG-island methylation has non-random and tumour-type–specific patterns. Nat. Genet. 2000,
24, 132–138. [CrossRef] [PubMed]

13. Vymetalkova, V.; Cervena, K.; Bartu, L.; Vodicka, P. Circulating Cell-Free DNA and Colorectal Cancer: A Systematic Review. Int.
J. Mol. Sci. 2018, 19, 3356. [CrossRef] [PubMed]

14. Lin, P.-C.; Lin, J.-K.; Lin, C.-H.; Lin, H.-H.; Yang, S.-H.; Jiang, J.-K.; Chen, W.-S.; Chou, C.-C.; Tsai, S.-F.; Chang, S.-C. Clinical
Relevance of Plasma DNA Methylation in Colorectal Cancer Patients Identified by Using a Genome-Wide High-Resolution Array.
Ann. Surg. Oncol. 2014, 22, 1419–1427. [CrossRef]

15. Zong, L.; Hattori, N.; Yoda, Y.; Yamashita, S.; Takeshima, H.; Takahashi, T.; Maeda, M.; Katai, H.; Nanjo, S.; Ando, T.; et al.
Establishment of a DNA methylation marker to evaluate cancer cell fraction in gastric cancer. Gastric Cancer 2016, 19, 361–369.
[CrossRef]

16. Wong, W.T.; Schumacher, C.; Salcini, A.E.; Romano, A.; Castagnino, P.; Pelicci, P.G.; Di Fiore, P. A protein-binding domain,
EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proc. Natl. Acad. Sci. USA 1995,
92, 9530–9534. [CrossRef]

17. Confalonieri, S.; Di Fiore, P.P. The eps15 homology (eh) domain. FEBS Lett. 2002, 513, 24–29. [CrossRef]
18. Naslavsky, N.; McKenzie, J.; Altan-Bonnet, N.; Sheff, D.; Caplan, S. EHD3 regulates early-endosome-to-Golgi transport and

preserves Golgi morphology. J. Cell Sci. 2009, 122, 389–400. [CrossRef] [PubMed]
19. Naslavsky, N.; Caplan, S. EHD proteins: Key conductors of endocytic transport. Trends Cell Biol. 2011, 21, 122–131. [CrossRef]

[PubMed]
20. Chukkapalli, S.; Amessou, M.; Dekhil, H.; Dilly, A.K.; Liu, Q.; Bandyopadhyay, S.; Thomas, R.D.; Bejna, A.; Batist, G.; Kandouz,

M. Ehd3, a regulator of vesicular trafficking, is silenced in gliomas and functions as a tumor suppressor by controlling cell cycle
arrest and apoptosis. Carcinogenesis 2013, 35, 877–885. [CrossRef]

https://www.cancer.gov/tcga
http://doi.org/10.3322/caac.21492
http://doi.org/10.1080/14737140.2017.1392243
http://doi.org/10.1016/j.mam.2019.04.002
http://doi.org/10.1177/2050640620919254
http://doi.org/10.3748/wjg.v20.i4.978
http://doi.org/10.1038/nature11252
http://doi.org/10.1186/s12915-015-0118-4
http://www.ncbi.nlm.nih.gov/pubmed/25637097
http://doi.org/10.1038/nature14192
http://www.ncbi.nlm.nih.gov/pubmed/25592537
http://doi.org/10.1038/ncomms14617
http://www.ncbi.nlm.nih.gov/pubmed/28303888
http://doi.org/10.1053/j.gastro.2015.07.011
http://www.ncbi.nlm.nih.gov/pubmed/26216839
http://doi.org/10.1038/72785
http://www.ncbi.nlm.nih.gov/pubmed/10655057
http://doi.org/10.3390/ijms19113356
http://www.ncbi.nlm.nih.gov/pubmed/30373199
http://doi.org/10.1245/s10434-014-4277-2
http://doi.org/10.1007/s10120-015-0475-2
http://doi.org/10.1073/pnas.92.21.9530
http://doi.org/10.1016/S0014-5793(01)03241-0
http://doi.org/10.1242/jcs.037051
http://www.ncbi.nlm.nih.gov/pubmed/19139087
http://doi.org/10.1016/j.tcb.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21067929
http://doi.org/10.1093/carcin/bgt399


Biomedicines 2021, 9, 453 14 of 14

21. Chen, Y.; Liao, L.-D.; Wu, Z.-Y.; Yang, Q.; Guo, J.-C.; He, J.-Z.; Wang, S.-H.; Xu, X.-E.; Wu, J.-Y.; Pan, F.; et al. Identification of key
genes by integrating DNA methylation and next-generation transcriptome sequencing for esophageal squamous cell carcinoma.
Aging 2020, 12, 1332–1365. [CrossRef] [PubMed]

22. Heberle, H.; Meirelles, G.V.; Da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets
through Venn diagrams. BMC Bioinform. 2015, 16, 1–7. [CrossRef]

23. Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.; Varambally,
S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658.
[CrossRef] [PubMed]

24. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.;
Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [CrossRef]

25. Yuan, H.; Dong, Q.; Zheng, B.; Hu, X.; Xu, J.-B.; Tu, S. Lymphovascular invasion is a high risk factor for stage I/II colorectal
cancer: A systematic review and meta-analysis. Oncotarget 2017, 8, 46565–46579. [CrossRef] [PubMed]

26. Knijn, N.; van Exsel, U.E.M.; de Noo, M.E.; Nagtegaal, I.D. The value of intramural vascular invasion in colorectal cancer—A
systematic review and meta-analysis. Histopathology 2017, 72, 721–728. [CrossRef] [PubMed]

27. Wang, L.; Shi, C.; Zhang, K.; Xu, Q. The gender-specific association of EHD3 polymorphisms with major depressive disorder.
Neurosci. Lett. 2014, 567, 11–14. [CrossRef]

28. Chang, S.-C.; Liew, P.-L.; Ansar, M.; Lin, S.-Y.; Wang, S.-C.; Hung, C.-S.; Chen, J.-Y.; Jain, S.; Lin, R.-K. Hypermethylation and
decreased expression of TMEM240 are potential early-onset biomarkers for colorectal cancer detection, poor prognosis, and early
recurrence prediction. Clin. Epigenetics 2020, 12, 1–17. [CrossRef]

29. Cai, B.; Giridharan, S.S.P.; Zhang, J.; Saxena, S.; Bahl, K.; Schmidt, J.A.; Sorgen, P.L.; Guo, W.; Naslavsky, N.; Caplan, S. Differential
Roles of C-terminal Eps15 Homology Domain Proteins as Vesiculators and Tubulators of Recycling Endosomes. J. Biol. Chem.
2013, 288, 30172–30180. [CrossRef] [PubMed]

30. Lu, Q.; Insinna, C.; Ott, C.; Stauffer, J.; Pintado, P.A.; Rahajeng, J.; Baxa, U.; Walia, V.; Cuenca, A.; Hwang, Y.-S.; et al. Early steps in
primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 2015, 17, 228–240. [CrossRef]

http://doi.org/10.18632/aging.102686
http://www.ncbi.nlm.nih.gov/pubmed/31962291
http://doi.org/10.1186/s12859-015-0611-3
http://doi.org/10.1016/j.neo.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28732212
http://doi.org/10.1126/science.1260419
http://doi.org/10.18632/oncotarget.15425
http://www.ncbi.nlm.nih.gov/pubmed/28430621
http://doi.org/10.1111/his.13404
http://www.ncbi.nlm.nih.gov/pubmed/28960400
http://doi.org/10.1016/j.neulet.2014.02.055
http://doi.org/10.1186/s13148-020-00855-z
http://doi.org/10.1074/jbc.M113.488627
http://www.ncbi.nlm.nih.gov/pubmed/24019528
http://doi.org/10.1038/ncb3109

	Introduction 
	Materials and Methods 
	Tissue Specimens 
	DNA, ccfDNA, and RNA Extraction 
	Assessment of Genome-Wide Methylation Level 
	Real-Time Reverse-Transcription Polymerase Chain Reaction 
	TaqMan Quantitative Methylation-Specific PCR 
	TCGA Data Analysis and Candidate Gene Selection 
	Statistical Analyses 

	Results 
	EHD3 Is a Common Target in Alimentary Canal Cancer 
	EHD3 Promoter Hypermethylation and Low Expression of mRNA and Protein in Asian Patients with CRC 
	Promoter Hypermethylation, Low mRNA, and Protein Expression of EHD3 in Western Patients with CRC and Poor Prognoses 
	Promoter Hypermethylation of EHD3 Reduces Drug Sensitivity in Patients with CRC from Western Countries 

	Discussion 
	Conclusions 
	References

