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Autism spectrum disorder (ASD) is a clinical spectrum of neurodevelopment disorder characterized by deficits in social
communication and social interaction along with repetitive/stereotyped behaviors. The current diagnosis for autism relies
entirely on clinical evaluation and has many limitations. In this study, we aim to elucidate the potential mechanism behind
autism and establish a series of potential biomarkers for diagnosis. Here, we established an ultra-high-performance liquid
chromatography-quadrupole time-of-flight mass spectrometry- (UHPLC-QTOF/MS-) based metabonomic approach to
discriminate the metabolic modifications between the cohort of autism patients and the healthy subjects. UHPLC-QTOF/MS
analysis revealed that 24 of the identified potential biomarkers were primarily involved in amino acid or lipid metabolism and
the tryptophan kynurenine pathway. The combination of nicotinamide, anthranilic acid, D-neopterin, and 7,8-dihydroneopterin
allows for discrimination between ASD patients and controls, which were validated in an independent autism case-control
cohort. The results indicated that UHPLC-QTOF/MS-based metabolomics is capable of rapidly profiling autism metabolites and
is a promising technique for the discovery of potential biomarkers related to autism.

1. Introduction

Metabolomics, or metabonomics, is one of the developing
“-omics” technologies. As a part of the rapidly growing field
of postgenomics, which also includes transcriptomics and
proteomics, much of the research in metabolomics is aimed
at simultaneously characterizing the large numbers of metab-
olites in biological systems to a pathophysiological interven-
tion or genetic modification. The main methods of
metabonomic research are high-throughput chemical analy-
sis and multivariate data analysis. Nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS) fall under the
category of high-throughput metabolite profile analysis
methods and are the most efficient and widely used [1, 2].
NMR technology allows for simplicity in sample preparation,

which enables maintenance of the original nature of the sam-
ple. However, there are some drawbacks; until now, NMR
has been more suitable for situations that require repeated
testing and often results in images with relatively low resolu-
tion and sensitivity. On the other hand, MS technology is
more sensitive than NMR, enabling metabolites to be
detected at picomolar (pmol) concentration levels. Multi-
stage mass spectrometry can be used to accurately obtain
the molecular weight of compounds and has been recently
combined with ultra-high-performance liquid chromatogra-
phy (UHPLC), which results in a high level of resolution
and sensitivity, and with the development of combined tech-
nologies, scientists have combined UHPLC with quadrupole
time-of-flight (QTOF) mass spectrometry. This combina-
tion, called the UHPLC-QTOF/MS analysis technology, has
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evolved into the development of sensitive, accurately, and
highly reproducible analytical platforms that allow for the
determination of hundreds of metabolites in parallel [3–5].
UHPLC-QTOF/MS can be used to analyze lower concentra-
tions of differential metabolites in samples more quickly and
comprehensively, making it easier to find potential
biomarkers.

The field of metabolomics can also be further divided
based on different research purposes into untargeted and tar-
geted metabolomics [6]. Targeted metabolomics focuses on
the analysis of specific clusters of metabolites related to cer-
tain metabolic pathways, whereas untargeted metabolomics,
also known as discovery metabolomics, is a global analysis
of different metabolomics between the control group and
the experimental group. Metabolomic-based technologies
can be used to identify specific biomarkers or conduct meta-
bolic profiling of complex diseases at development and prog-
nosis. Metabolomics has become a promising tool for the
research of etiology, biomarker discovery, early diagnosis,
and treatment response biomarkers for neuropsychiatric dis-
orders [7]. Previously, metabolomic strategies have been
widely used to characterize human metabolic status in the
field of central nervous system disorders such as Parkinson’s,
Alzheimer’s, and Huntington’s diseases, as well as various
neuroinflammatory disorders [8–10]. Metabolomics has also
gradually been applied towards the research area of neurode-
velopmental disorders including bipolar disorder, autism
spectrum disorder (ASD), Rett syndrome (RTT), and schizo-
phrenia [11–14].

Autism spectrum disorders are some of the most com-
mon human neuropsychiatric diseases, causing behavioral
difficulties and impairment in social interaction. It is esti-
mated that autism affects 1–1.5% of the world population
[15]. Diagnosis of autism generally relies on symptom check-
lists that primarily focus on the person’s thoughts and behav-
iors, thus lacking in precision and repetition. Due to the
neurodiversity and heterogeneity of their phenotypic effects,
the underlying molecular mechanisms and pathways are still
ambiguous. Identification of metabolic biomarkers would
assist in their early detection and diagnosis and be beneficial
to mechanism studies. To date, numerous studies have uti-
lized metabolomics to profile autism spectrum disorder but
have not generated applicable genetic biomarkers for clinical
use [16, 17].

In this study, UHPLC-QTOF/MS technology was used to
optimize the detection process, chromatography, and mass
spectrometry conditions for high-throughput untargeted
metabolomic profiling of autism spectrum disorder. A total
of 40 autism patients and 40 normal healthy subjects as con-
trols were enrolled, and urine samples were analyzed using
the UHPLC-QTOF/MS platform to identify potential metab-
olite markers associated with autism.

2. Methods

2.1. Participant Recruitment and Study Design. Clinical
autism samples were collected from hospitalized patients in
Shenzhen Kangning Hospital, which approved of the study.
Urine samples from a total of 40 autism patients and 40

healthy controls were included for UHPLC-QTOF/MS anal-
ysis. They were split into two sets: a training set of 60 samples
(30 autism and 30 controls) and an independent validation
set of 10 ASD and 10 controls.

The selection criteria for autistic participants were set as
follows: (i) ASD diagnostic criteria according to the Ameri-
can Psychiatric Association’s Diagnostic and Statistical Man-
ual of Mental Disorders (DSM-IV-TR [7]), (ii) children 3-12
years of age, and (iii) exclusion of children with hearing
impairments and other neurodevelopmental disorders.

We also excluded individuals with other neurodevelop-
mental disorders: Rett syndrome, Asperger’s syndrome,
Fragile X syndrome, disintegrating psychosis (CDD), and
other extensive developmental disorders (PDD-NOS). Indi-
viduals with major metabolic or genetic diseases were also
excluded. Standardized scales, including the Autism Diag-
nostic Observation Schedule (ADOS), Autism Diagnostic
Interview-Revised (ADI-R) and Childhood Autism Rating
Scale (CARS), and Autism Behavior Checklist (ABC), were
used to assess the severity of each symptom. We also record
the clinical symptoms of autistic patients in detail.

The selection criteria for children in the healthy control
group were set as follows: (i) children 3-12 years of age and
(ii) healthy children with typical development, with exclusion
of participants with mental retardation, language impair-
ment, and mental development disorder. Normal healthy
controls were confirmed using the normal control criteria
of the SCID (Structured Clinical Interview for DSM
Diagnosis).

2.2. Sample Collection. Each participant was given a stan-
dardized dietary recipe, and no other drugs were taken within
2 weeks before collection of samples, which were obtained
from each individual at around 8 am after overnight fasting.
Immediately after centrifugation, each resulting urine super-
natant was aliquoted in a 1.5mL sterile Eppendorf tube and
frozen for storage at -80°C before use.

2.3. Chemicals and Reagents. LC-MS grade water, methanol,
and acetonitrile were purchased from CNW Technologies
(GmbH, Dusseldorf, Germany). High-performance liquid
chromatography- (HPLC-) grade ethanol and acetone were
obtained from Merck & Co. (Kenilworth, NJ, USA). Ammo-
nium acetate and ammonium hydroxide of LC-MS reagent
grade were bought from Sigma-Aldrich (Saint Louis, MO,
USA). 2-Chloro-L-phenylalanine was purchased from
Shanghai Hengbai Biotech (Shanghai, China).

2.4. Metabolite Extraction.Urine samples were thawed on ice
at 4°C. 100μL of sample was taken and placed in 1.5mL cen-
trifuge tubes before being reconstituted in 300μL of metha-
nol containing 10μL internal standard substances. After
being vortexed for 3min and ultrasound treated for 10min
(incubated in ice water), the mixed solution was incubated
for 1 h at -20°C to precipitate proteins and then centrifuged
at 14,000 rpm at 4°C for 15min. The supernatant was trans-
ferred to a fresh 2mL LC/MS glass vial, and 20μL of liquid
was taken from each sample to be pooled as QC samples,
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with 200μL of supernatant taken for UHPLC-QTOF-MS
analysis.

2.5. LC-MS/MS Analysis.MS files acquired from the UHPLC
system were performed using Agilent 1290 Infinity II with a
UPLC BEH Amide column (1.7μm, 2:1 ∗ 100mm, Waters)
coupled to TripleTOF 5600 (QTOF, AB Sciex). The mobile
phase consisted of 25mM NH4OAc (ammonium acetate)
and 25mM NH4OH (ammonium hydroxide) in water
(pH = 9:75) (A), and acetonitrile (B) was carried with an elu-
tion gradient as follows: 0min, 95% B; 7min, 65% B; 9min,
40% B; 9.1min, 95% B; and 12min, 95% B, which was deliv-
ered at 0.5mL/min. The injection volume included 5μL of
POS (positive polarity) and 2μL of NEG (negative polarity).
A TripleTOF mass spectrometer was used for its ability to
acquire MS/MS spectra on an information-dependent basis
(IDA) during an LC/MS experiment. In this mode, the acqui-
sition software (Analyst TF 1.7, AB Sciex) continuously eval-
uates the full-scan survey MS data as it collects and triggers
the acquisition of MS/MS spectra depending on preselected
criteria. In each cycle, 12 precursor ions with an intensity
greater than 100 were chosen for fragmentation at a collision
energy (CE) of 30V (15 MS/MS events with product ion
accumulation time of 50ms each). ESI source conditions
were set as follows: ion source gas 1 as 60 psi, ion source
gas 2 as 60 psi, curtain gas as 35 psi, source temperature
650°C, and Ion Spray Voltage Floating (ISVF) 5000V or
-4000V in electrospray ionization in positive (ESI+) ion
modes.

2.6. Data Processing. ProteoWizard software was used to con-
vert the mass spectrum into mzXML. The preprocessing
results generated a data matrix that consisted of the retention
time (RT), mass-to-charge ratio (m/z) values, peak intensity,
peak identification, peak extraction, peak integration, and
peak alignment. The minfrac was set to 0.5 with a cutoff of
0.6. Additionally, the self-written R package and in-house
self-built secondary mass spectrometry database were
applied in metabolite identification.

2.7. Multivariate Data Analysis. Clustering of QCs was
assessed by principal component analysis (PCA) according
to total peak area data in order to compare analytical var-
iability with biological variability. The preprocessed data
sets were used as input to SIMCA P+ version 14.0 (Ume-
trics, Umea, Sweden). The training sets of these data sets
were tested individually in order to find the best orthogo-
nal partial least squares discriminant analysis (OPLS-DA)
model. Model development was performed in order to
select a minimum set of predictive metabolites (VIP > 1:5
) that were the most implicated in the difference between
the ASD and control samples. Logistic analysis with a
receiver operating characteristic (ROC) curve was
employed for analysis and validation of each biomarker.
A combined ROC analysis was performed for panel
diagnosis [18, 19]. All tests were considered statistically
significant at P < 0:05.

3. Results

3.1. Demographic and Clinical Characteristics of Participants.
80 subjects (40 autism and 40 healthy controls) were
recruited. Information was collected on each participant,
including age, sex, medication, and age at sampling. Diagno-
sis of ASD was performed using the Autism Behavior Check-
list (ABC) and Childhood Autism Rating Scale (CARS).
CARS scores were used to measure the behavior characteris-
tic of autism, which consists of 15 domains: listening
response, visual response, smell and touch response, nonver-
bal communication, relating to people, emotional response,
imitation, body use, object use, fear or nervousness, verbal
communication, activity level, level and reliability of intellec-
tual response, adaptation to change, taste, and general
impressions. An individual with a CARS score above 30 is
considered to have autism. The enrolled subjects were sepa-
rated into a training set for discovery biomarkers and an
independent test set for validation. The characteristics and
group separation of study participants are summarized in
Table 1.

3.2. Quality Control. Chromatography-mass spectrometry is
a very complicated and precise system. During the sample
detection process, the results may be affected by objective fac-
tors such as humidity, temperature, vibration, and aging of
the circuit board, which may lead to signal floating and vary-
ing degrees of response. Thus, there is a need for a series of
quality control methods for data processing. In theory, qual-
ity control (QC) samples are all the same, but there will be
errors in the process of substance extraction, detection, and
analysis, resulting in some differences between QC samples.
Thus, we injected ten QCs to equilibrate the chromato-
graphic system before each analytical batch. The QCs and
autism or control samples were analyzed in order to compare
the analytical and biological variabilities for each batch. As
reflected in the PCA scatter plots, QC samples were densely
distributed. From Figures 1(a) and 1(b), we can observe the
clustering of QC samples closed to the origin of the PCA scat-
ter plot, which indicates that biological variability exceeds
analytical variability, pointing to a very high quality of exper-
imental data. This QC step validates all batch series.

3.3. Urine Metabolic Profile. The score plot of orthogonal
projection to latent structures (OPLS) discriminates urine
profiles of autism patients and normal controls. In
Figure 2(a), the t½1�P represents the predicted principal com-
ponent score of the first principal component, and the t½1�O
represents the orthogonal principal component obtained.
Blue dots and green circles represent the autism and control
groups, respectively, thus distinguishing the two groups from
one another with all samples above a 95% confidence interval
(Hotelling’s T-squared).

We then validated the OPLS-DA model through permu-
tation tests (number of times n = 200) to obtain the R2 and
Q2 values of the random model. The results of the permuta-
tion test on the OPLS-DAmodel are shown in Figure 2(b). In
the figure, the abscissa represents the substitution retention
of the substitution test, the ordinate represents the value of
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Table 1: Descriptive and clinical characteristics of children with autism and healthy control children (TD).

Training set Validation set
Participants Autism (N = 30) Control (N = 30) Autism (N = 10) Control (N = 10)
Gender (male : female) 19 : 11 16 : 14 6 : 4 7 : 3

Age (mean ± SD) 6:5 ± 3:68 6:28 ± 3:25 6:6 ± 2:31 7:08 ± 2:85
ABC total score (mean ± SD) 67:35 ± 14:3 — 56:89 ± 10:6 —

CARS total score (mean ± SD) 34:5 ± 3:9 — 32:1 ± 2:2 —

ABC: Autism Behavior Checklist; CARS: Childhood Autism Rating Scale; SD: standard deviation.
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Figure 1: PCA scatter plot of quality controls (QCs) and controls injected during each batch analysis. (a) Scatter plot for autism patients and
QCs are, respectively, colored with blue dots and red triangles. (b) Scatter plot for controls and QCs are, respectively, colored with green
circles and red triangles.
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Figure 2: (a) OPLS score plot models of autism patients vs. normal controls. R2X = 0:393, R2Y = 0:894. (b) Plot of R2Y and Q2 from
permutation tests in OPLS-DA models.
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R2 or Q2, and the green dot represents the R2 value obtained
from the replacement test. The blue square dots represent the
Q2 value obtained from the replacement test. As shown in the
figure, the original model R2 is close to 1, indicating that the
model established is consistent with the real situation of the
sample data. The Q2 is close to 1, indicating that if new sam-
ples are added to the model, an approximate distribution will
be obtained. Permuted R2 values to the left of the intercept
were lower than the original point to the right, and all Q2

values on the permuted data set to the left are lower than
the Q2 value to the right, indicating that the original model
was robust without overfitting.

3.4. Predictive Potential of Biomarkers. Differential metabo-
lites that participate in discrimination of the children with
autism and healthy controls were selected based on the vari-
able importance in projection (VIP) values and a statistical
test for difference (P < 0:05) between patients with autism
and controls. The 24 metabolites were identified with VIP
> 1:5 (Table 2). In order to define the top potential metabo-
lite biomarkers for diagnosis, multiple logistic regression
analysis and receiver operating characteristic (ROC) curves
were drawn for the training and test sets (Figure 3). Logistic

analysis results supported the role of urinary levels of nico-
tinamide, D-neopterin, anthranilic acid, and 7,8-dihydro-
neopterin as potential biomarkers that indicate a significant
discrimination of autism (Figure 3(a)). We then assessed
the diagnostic efficiency of the potential biomarkers using
ROC analysis. The areas under the receiver operating charac-
teristic (ROC) curve (AUCs) were 0.912 for nicotinamide,
0.822 for anthranilic acid, 0.840 for D-neopterin, and 0.813
for 7,8-dihydroneopterin, respectively (Figure 3(a)). Further-
more, the diagnostic potential of the 4-metabolite panel was
also evaluated. AUCs were 0.891 in the training set and
0.822 in the test set for distinguishing patients with autism
from healthy individuals, indicating an excellent clinical
diagnosis efficiency for this set of metabolite biomarkers.

4. Discussion

Autism usually initiates early in childhood and persists
throughout the rest of an individual’s life. Autism affects an
estimated 13.1 to 29.3 per 1,000 children and is the fastest-
growing developmental disability worldwide, rendering it a
major public health challenge [20]. Currently, diagnosis of
autism is mainly based on clinical interviewing and behavior
assessment of characteristics such as impairments in social

Table 2: Differential metabolites for autism and their metabolic pathways.

Metabolite Ion (m/z) Rt VIP
P

value
Fold change

(autism/control)
Pathway

Nicotinamide 164.0780128 314.4465 2.04 0.03 1.84
Nicotinate and nicotinamide

metabolism

Phosphorylcholine 184.0770546 491.186 2.01 0.02 2.34 Phosphorylcholine metabolism

Gly-Glu 205.0852678 401.053 1.74 0.03 1.47 Amino acid metabolism

Acetylcarnitine 226.1098247 202.887 1.85 0.04 2.60 Acetyl-CoA synthase

Ala-Thr 235.0684618 234.5185 2.20 0.02 1.42 Amino acid metabolism

Thr-Asp 235.0948054 405.1215 1.59 0.03 1.39 Amino acid metabolism

His-Pro 235.1210422 143.171 1.58 0.05 1.78 Amino acid metabolism

Bethanechol cation 238.0473387 384.975 2.39 0.01 1.91 Unknown

Pro-Ser 241.0583313 314.282 1.24 0.04 0.66 Amino acid metabolism

D-Neopterin 254.08997 324.551 1.60 0.05 1.71 Tryptophan kynurenine pathway

7,8-Dihydroneopterin 256.1055818 332.338 1.58 0.04 1.84 Tryptophan kynurenine pathway

5-Aminopentanoic acid 257.1511912 194.7525 1.27 0.05 2.94 Catabolism of lysine

Lys-Pro 261.1903229 222.931 1.84 0.02 1.54 Amino acid metabolism

Anthranilic acid (vitamin L1) 275.1038159 282.982 1.68 0.02 2.18 Tryptophan kynurenine pathway

1-Methyladenosine 282.120322 132.113 1.93 0.03 1.50 Modified nucleosides

3′-O-Methylinosine 283.0969971 35.517 1.79 0.02 1.55 Modified nucleosides

Val-Met 290.1604362 308.2965 2.30 0.00 1.81 Amino acid metabolism

S-Methyl-5′-thioadenosine 298.0970956 100.968 1.35 0.04 1.66 Unknown

N-Acetylaspartylglutamate
(NAAG)

305.097723 412.4945 1.70 0.02 1.42 Neurotransmitter

1-Naphthol 306.1546719 392.709 1.96 0.00 1.86 Naphthalene metabolites

N-Acetylneuraminic acid 310.1131559 359.178 2.01 0.02 1.83 Sialic acid pathway

Deoxyinosine 313.1065711 35.563 2.11 0.01 1.74 Purine metabolism

Met-Gln 319.1497604 390.399 1.95 0.01 1.39 Amino acid metabolism

Behenic acid 358.365623 38.136 1.56 0.04 1.48 Lipid metabolism
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communication and social interaction, restricted interests,
and repetitive behaviors. The lack of objective diagnostic
indicators severely restricts the ability to conduct early and
rapid diagnosis [21]. Obtaining specific biomarkers through
metabolomic research is an important avenue for establish-
ing early screening and diagnostic methods. In recent years,
a large number of metabolomic studies have found that
autism is accompanied by disturbances in multiple metabolic
pathways such as intestinal microbial metabolism, energy
metabolism, and oxidative stress [22–24]; thus, metabo-
nomic profiling may be a promising and effective means of
identifying variations in metabolite with clinical significance.
Additionally, urine from living individuals is a preferable and
more accessible biofluid for such screening owing to its non-
invasive method of collection and availability in large
quantities.

Despite the advancement of ongoing research in the field
of metabolomic modeling of autism disorders, there are still
many limitations to keep in mind, with the most prominent
limitation being detection sensitivity. The most commonly
used method of 1H NMR spectrometry has a relatively low
sensitivity and a limited detection dynamic range, making
1H NMR not particularly suitable for analyzing a large num-
ber of samples with low metabolite concentrations. With the
relatively recent development of time-of-flight (TOF) mass
spectrometry and ultra-fast liquid chromatography (UFLC),
which have high selectivity and sensitivity, we can now per-
form quantitative and qualitative analysis of multiple metab-
olites on samples at the same time [25, 26]. These methods

are currently being used as the preferred technology for all
aspects of metabolomic research, but to date, there has not
been a comprehensive global evaluation of small-molecule
metabolites using UHPLC-QTOF/MS in the context of
ASD [27].

The first set called the training set was used for a metabo-
lomic discovery analysis of urine to identify metabolites that
could be used in discrimination of autism cases and controls.
The newly identified metabolites were further validated in an
independent validation set of autism cases and controls. In
line with this design, we identified four metabolites that allow
for good discrimination between the autistic and control sub-
jects, suggesting that these four metabolites could yield the
highest predictive power for further diagnostic applications.
Each of the potential biomarkers, nicotinamide, anthranilic
acid (vitamin L1), D-neopterin, and 7,8-dihydroneopterin,
performed well in regard to the area under the curve in anal-
ysis (>0.75), and we found that combining a panel of the four
parameters can improve diagnostic performance and shows
more sensitivity and specificity for discrimination of autism
patients from controls. The specificity of the combination
of these biochemical biomarkers also helps distinguish pro-
bands with autism from the external test set, suggesting that
our model has a good predictive ability. However, the speci-
ficity of the combination of these biochemical biomarkers
regarding other neurodevelopmental disorders should still
be evaluated in future studies.

Disruption of the tryptophan kynurenine pathway has
been observed in previous research, suggesting that the
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Figure 3: Diagnostic performances of the urinary metabolite parameters in ASD. (a) ROC curve analysis: nicotinamide, anthranilic acid
(vitamin L1), D-neopterin, and 7,8-dihydroneopterin as biomarkers of ASD. (b) ROC curve cross-validation based on the combined
metabolic biomarker panel could significantly discriminate autism from a healthy individual. AUC: area under the ROC curve; ROC:
receiver operating characteristic.
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kynurenine (KYN) pathway is activated in various neuroin-
flammatory states of ASD [28]. Altered kynurenine pathway
metabolites serve as a new potential biological diagnostic
marker in a Ptchd1 KO mouse model of human autism spec-
trum disorders [29]. In our research, we have identified three
metabolites, anthranilic acid, 8-dihydroneopterin, and neop-
terin, which are associated with the tryptophan kynurenine
pathway. 8-Dihydroneopterin has been used as an indicator
of immune system activation and was the most dazzling
inflammatory marker over other traditional biomarkers
[30–32]. On the other hand, neopterin is an oxidized form
of 7,8-dihydroneopterin, a product of γ-interferon-mediated
upregulation of GTP cyclohydrolase I (GTPCH1) [33].
Neopterin has been extensively used as a clinical marker of
immune activation during inflammation in a wide range of
conditions and stressors [34, 35]. Increased inflammation
and oxidative stress have been reported in autistic children
[36], and it is hypothesized that increased production of
inflammatory markers 8-dihydroneopterin and neopterin
could play a role in the pathophysiology of autism. Anthrani-
lic acid acts as an intermediate in the biosynthesis of trypto-
phan, serving as a potential biomarker for other
neurodevelopment disorders and as a target for treatment
of schizophrenia [37, 38]. Thus, anthranilic acid metabolites
are potential diagnostic biomarkers for neurodevelopmental
disorders, and the involvement of pathways related to the
tryptophan kynurenine pathway suggests that metabolites
play an important role in the effects of psychostimulants.
The translational perspective, which integrates the study of
metabolomics, can shed light on the possible molecular and
biological sources of autism.

Recently, a large number of metabolomic studies have
revealed that ASD is accompanied with intestinal microbial
metabolism, energy metabolism, oxidative stress, and other
metabolic pathway disorders, but the fluctuations of some
metabolic products involving these pathways have shown
controversial results. The unified standardization of the soft-
ware and databases and different instruments need to be
established. Our method could achieve higher resolution,
greater sensitivity, and rapid separation, and the UHPLC-
QTOF/MS system provides a better opportunity to reveal
the most discriminant metabolites for identification of ASD
children.

5. Conclusion

Our exploratory study has identified several of the metabo-
lites that may be involved in associated biological processes
relating to autism spectrum disorder. Our findings serve to
shed light on the biomarkers and metabolic mechanism
involved in neurodevelopmental disorders such as autism
through untargeted UHPLC-QTOF/MS-based urinary meta-
bolomic analysis.
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