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Abstract

Understanding the dynamics of ungulate populations is critical given their ecological and

economic importance. In particular, the ability to evaluate the evidence for potential drivers

of variation in population trajectories is important for informed management. However, the

use of age ratio data (e.g., juveniles:adult females) as an index of variation in population

dynamics is hindered by a lack of statistical power and difficult interpretation. Here, we show

that the use of a population model based on count, classification and harvest data can dra-

matically improve the understanding of ungulate population dynamics by: 1) providing esti-

mates of vital rates (e.g., per capita recruitment and population growth) that are easier to

interpret and more useful to managers than age ratios and 2) increasing the power to assess

potential sources of variation in key vital rates. We used a time series of elk (Cervus cana-

densis) spring count and classification data (2004 to 2016) and fall harvest data from hunting

districts in western Montana to construct a population model to estimate vital rates and

assess evidence for an association between a series of environmental covariates and indi-

ces of predator abundance on per capita recruitment rates of elk calves. Our results suggest

that per capita recruitment rates were negatively associated with cold and wet springs, and

severe winters, and positively associated with summer precipitation. In contrast, an analysis

of the raw age ratio data failed to detect these relationships. Our approach based on a popu-

lation model provided estimates of the region-wide mean per capita recruitment rate (mean

= 0.25, 90% CI = 0.21, 0.29), temporal variation in hunting-district-specific recruitment rates

(minimum = 0.09; 90% CI = [0.07, 0.11], maximum = 0.43; 90% CI = [0.38, 0.48]), and

annual population growth rates (minimum = 0.83; 90% CI = [0.78, 0.87], maximum = 1.20;

90% CI = [1.11, 1.29]). We recommend using routinely collected population count and clas-

sification data and a population modeling approach rather than interpreting estimated age

ratios as a substantial improvement in understanding population dynamics.
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Introduction

The population dynamics of ungulates reflect complicated interactions between abiotic and

biotic factors such as environmental variation, predation and harvest [1–3]. Understanding

the relative influence of each of these factors on population dynamics is critical given the piv-

otal role of ungulates in ecosystems [4] and concerns about declines in multiple ungulate pop-

ulations [5–7]. Populations of ungulates face challenges due to broad-scale habitat changes [8],

climate change and asynchrony of phenological patterns [5], over-harvest [9], and the restora-

tion of predator communities [10]. The management of ungulate populations takes place in

the midst of considerable uncertainty as to the relative influence of these factors on popula-

tions, compounded by uncertainty over the degree to which management actions can affect

them [11,12].

The trajectories of populations through time are the integrated result of a group of co-vary-

ing vital rates (e.g., survival, reproduction, recruitment), and effective management requires

the identification of those rates responsible for demographic performance [13]. Although vari-

ation in adult female survival rates has the highest proportional impact on population growth

rate, theoretical and empirical work strongly suggest that adult survival rates are buffered

against high variation [14–17]. In contrast, juvenile survival can have a large impact on popula-

tion growth rates when interannual variation is large [18–20]. Thus, juvenile survival is com-

monly monitored and used as an index of population performance. However, juvenile survival

varies annually, and causes of mortality differ widely across ecosystems [19,21], making it diffi-

cult to understand and generalize conclusions about sources of variation in juvenile survival.

Given the practical challenges of studies on individually marked animals, many ungulate

populations are routinely monitored and managed using observed age ratios (e.g., juveniles

per 100 adult females) as a proxy for juvenile survival [19,22]. In contrast to data on individu-

ally marked individuals, data on age ratios are comparatively easy to acquire and widely appli-

cable to management of multiple species, which has led to routine collection of age ratio data

and the development of long time series of ratios [22–24]. However, population management

decisions informed by age ratios are challenged because they conflate variation in two age clas-

ses and distill complicated population dynamics into a single summary statistic [23–26]. More-

over, the interpretation of age ratios from harvested populations of ungulates can be further

complicated by the timing of surveys relative to harvest. For age ratio data collected in the

spring, the numerator (juveniles) is driven by rates of pregnancy and calf survival from birth

to the time of the count, whereas the denominator (counts of adult females) is driven by adult

survival and harvest. Thus, the harvest the previous fall can drive variation in age ratios by

reducing the counts of adult females.

In addition to the challenges of using age ratios as indices of demographic performance, a

separate challenge is posed by their use as a response variable in the log-linear or linear models

that are typically used to evaluate sources of variation in population dynamics [27,28]. Per-

fectly observed age ratios should reflect process variance, or variation that is the result of sto-

chasticity in the underlying time series of biological processes such as conception rates,

juvenile survival, adult survival and harvest. However, imperfect observation of individuals

during surveys introduces an additional source of error such that observed age ratio data com-

bine both process variance and observation error. Consequently, they are a noisy signal into

underlying population dynamics [27,29]. This conflation of errors significantly reduces the

power of linear or log-linear models to detect sources of variation in vital rates [30,31].

An alternative modeling approach uses a state-space approach to connect the counts of ani-

mals through time using a population model that explicitly incorporates key biological pro-

cesses while separately modeling the observation process, rather than distilling the counts to a

Better understanding from population models

PLOS ONE | https://doi.org/10.1371/journal.pone.0226492 December 23, 2019 2 / 26

https://doi.org/10.1371/journal.pone.0226492


single ratio [27,30,32]. The state-space approach, wherein the latent states are the unobserved

population abundances driven by reproduction, survival and harvest, has been shown to dra-

matically improve biological inference into sources of variation in vital rates even if the popu-

lation model is mis-specified [30,31,33,34]. Moreover, these models allow inference about

population trajectories and growth rates when the observed abundance is biased due to imper-

fect detection, provided that the observed population is a reliable index to the larger popula-

tion [35]. Additionally, a Bayesian formulation of the state-space approach can accommodate

situations where data are missing and/or classification errors exist for some age/sex classes

[35,36]. Importantly, this modeling approach uses data that are already routinely collected by

wildlife managers, i.e., the numbers of individuals observed in each class, to make inference

about the key vital rate for which age ratios are a proxy: the per capita recruitment rate.

The per capita recruitment rate can drive the population dynamics of ungulates and is the

result of a series of processes that are potentially affected by environmental conditions and

predator pressure (Fig 1). Maternal body condition from the summer prior to conception

(year t-1) through parturition has been shown to be related to pregnancy rates [37,38], parturi-

tion mass [39] and neonatal survival during the maternal care period following birth [2].

Therefore, we expected per capita recruitment rates to be positively associated with indices of

nutrition, negatively associated with winter severity (year t-1), and potentially demonstrate an

interaction between nutrition indices and winter severity such that poor summer conditions

and severe winter conditions combine to further reduce recruitment [40]. Environmental con-

ditions experienced after parturition (year t) are thought to be related to juvenile survival in its

first year, either through its direct impact on juvenile nutrition through foraging [41] or as

mediated through maternal provisioning during the maternal care period [38]. There is an

evolving debate as to whether spring conditions or late summer conditions are more impor-

tant to juvenile survival [42], and we split indices of the nutritional environment into spring

and summer periods to assess the relative importance of these two periods. We expected per

capita recruitment rates to be positively associated with indices of nutrition (year t). Juvenile

survival to recruitment has been shown to be related to winter conditions [43] and we expected

per capita recruitment rates to be negatively associated with winter severity (year t), and

Fig 1. Concept diagram illustrating the progression of events and rates underlying recruitment for spring surveys. The probability

that each calf is available to be surveyed during the late spring surveys is the product of pregnancy rates, in-utero survival to parturition,

then summer and winter survival, the product of which is the per capita recruitment rate. Each rate is hypothesized to be associated with

multiple drivers related to the timing of events.

https://doi.org/10.1371/journal.pone.0226492.g001

Better understanding from population models

PLOS ONE | https://doi.org/10.1371/journal.pone.0226492 December 23, 2019 3 / 26

https://doi.org/10.1371/journal.pone.0226492.g001
https://doi.org/10.1371/journal.pone.0226492


interact with nutritional conditions such that the impact of poor nutritional conditions is

made worse in severe winters. Predators can have a large impact on juvenile survival

[3,10,21,44], and we expected per capita recruitment rates to be negatively associated with

indices of predator abundance. Similar to nutritional conditions, empirical work has suggested

that the impact of predation on ungulate populations can be affected by winter conditions

[45,46], highlighting the need to investigate interactions between indices of predator abun-

dance and winter severity.

Here, our goals were two-fold. First, we analyzed a time-series of data on harvested elk (Cer-
vus canadensis) herds in western Montana that contained spring count and fall harvest data to

assess the strength of evidence for a variety of potential sources of variation in recruitment

rates using (1) a state-space approach (hereafter, the “population model”) and (2) a standard

age ratio approach (“age ratio model”). Second, we compared results from the two models to

evaluate and understand important differences in what could be learned from each analytical

approach. We predicted the population model would provide more information on population

growth rates and trajectories that can inform management (e.g., estimates of λ) as well as the

observation processes.

Methods

Ethics statement

This was an observational study that relied on aerial count data and estimated harvest statistics

from the Montana Department of Fish, Wildlife and Parks. No animals were handled and no

private lands accessed in the course of this study.

Study area

Our 27,318 km2 study area contained 28 elk hunting districts in western Montana (46.0216˚

N, 114.1731˚ W) that were defined by the state wildlife agency (Montana Department of Fish,

Wildlife and Parks) based on biological and logistical boundaries (Fig 2). The hunting districts

vary in size from 44 km2 to 1,991 km2 (mean = 976 km2, sd = 516 km2) and are distributed

across a series of physiographic gradients. Elevation ranges across the study area from 767 m

to 3,200 m, with a mean within-district range of 976 m (sd = 516 m). The terrain ranges from

flat (minimum 100m slope variance = 0) to rugged (maximum 100m slope variance = 0.25).

Over the 13-years of our study (2004 to 2016) precipitation in late spring (May to June) ranged

from 40 mm to 568 mm (mean within-district range = 257.43 mm, sd = 100 mm), whereas

winter precipitation from December to March ranged from 33 mm to 1,650 mm (mean

within-district range = 677.2 mm, sd = 370 mm).

Count data

We used annual spring elk count and age/sex classification data collected from fixed wing air-

craft (March-April). Surveys were conducted annually on the winter range for each district in

the late spring prior to the migration to summer range and the birth pulse. All surveys were

conducted to minimize the potential for double counting, and most surveys were completed

within a single day. Due to logistical limitations, not every district had count and age/sex clas-

sification data for each of the 13 years (2004 to 2016), which generated a discontinuous time

series for most districts (median number of years = 7, minimum = 6, maximum = 13). Age

ratios were derived from the total counts from the surveys. In our analysis, we included all

hunting districts that had a minimum of 6 years of count data collected during 2004 to 2016

(17 management districts, S1 Fig). For a small number of district-years a total count was
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available, but no age/sex classification was reported (n = 5). For the population modeling

approach, we were able to treat the age/sex classifications in these years as missing data, which

was not possible in the age ratio approach. This resulted in two different-sized data sets: 1) the

age ratio model had 135 district-years of observed age ratios, and 2) the population model

approach had 140 district-years of count data. Moreover, in each district-year not all of the

animals that were counted were subsequently classified according to age/sex class, i.e., the

number of animals in each age and sex classification represented a sample of the total number

of animals that were counted.

Model descriptions

Population model. The population model approach linked two separate processes: 1) a

model for the biological processes of elk survival, recruitment and harvest, and 2) the observa-

tion process that gave rise to data.

Fig 2. Study area in western Montana. The study area was comprised of 28 hunting districts within the administrative

Region 2 management area. Data were used from 17 of the hunting districts.

https://doi.org/10.1371/journal.pone.0226492.g002

Better understanding from population models

PLOS ONE | https://doi.org/10.1371/journal.pone.0226492 December 23, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0226492.g002
https://doi.org/10.1371/journal.pone.0226492


Similar to previous work in this system [20], we defined the annual population cycle from

the birth pulse (in May-June) to the following spring (March-April) when calves recruit to the

population as 1-year-olds. The population cycle can be represented as a stage-structured

model, where the expected number (E) of calves (Nc), adult females (the combination of year-

lings and older females, Naf) and adult males (the combination of yearlings and older males,

Nam) in year t and district u is given as:

E
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where the vital rates that connect the population size across years are apparent adult survival

(ϕa), the proportion of calves that were female (δ, here assumed to be equal to 0.5), and the per

capita recruitment rate (τ), and hc, haf, and ham are age/sex specific harvest. The timing of the

surveys (late spring) did not match the model anniversary (June 1), therefore the survival

terms for calves represented an approximate 10-month survival probability. Individuals that

were harvested in year t were subtracted from the population total in year t-1, i.e., treated as if

harvest occurred instantaneously after surveys in late spring. Adult survival terms therefore

represented survival after accounting for harvest. We assumed the survival of all age/sex classes

other than calves was the same through time, a simplification given the evidence for age-

related changes in adult survival in ungulates[47]. However, in managed populations variation

in adult survival is thought to be driven by harvest rates [3,48] that are explicitly accounted for

in our model, rendering the simplification plausible. Per capita recruitment is the product of a

series of vital rates, including the probability of conception, in-utero survival to birth, and calf

survival from birth to census the next spring. By construction, these vital rates were not sepa-

rately identifiable.

Similar to previous work in this system [20], we used a Poisson distribution to incorporate

demographic stochasticity, e.g., the number of adult females in year t and district u is a realiza-

tion from a Poisson process with mean equal to the expected number from the matrix model

above:

Naf
t;u � Poissonð�aðdN

c
t� 1;u þ N

af
t� 1;u � h

af
t;uÞÞ ð2Þ

and the number of calves in year t and district u is:

Nc
t;u � PoissonðtNaf

t� 1;u � h
c
t;uÞ: ð3Þ

The observation process needed to accommodate cases wherein a total number of animals

was counted, but only a sample of that total was then classified according to age and sex. To

accommodate this data structure, we first modeled the total count of all elk as an overdispersed

Poisson random variable with the mean equal to the unknown (latent) true population size:

Counttotalt;u � PoissonðN total
t;u gt;uÞ ð4Þ

where Ntotal
t;u ¼ N

am
t;u þ N

af
t;u þ N

calves
t;u , and γt,u is an observation-level random effect at the unit-

year level to accommodate potential overdispersion that would otherwise handicap the use of a

Poisson [49]: gt;u � Normalð0; s2
countÞ, where the variance term is estimated by the model. An

alternative approach would have been to model the counts using a negative binomial distribu-

tion. In our case, the biological inference was virtually identical to that from the Poisson

model, and we have retained its use below. Notably, we have combined an observation process
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(aerial surveys) that is thought to typically be an underestimate of the true population size with

an unbiased population model incorporating harvest [50]. The relationship between aerial

counts and the true population size (sightability) is typically unknown, and in the presence of

imperfect detection, population models estimate an “abundance” that is an index to the larger,

true population. However, inference on vital rates remains robust in the presence of imperfect

detection when variation in the probability of detection is random [35]. Furthermore, recent

work indicates that inference on vital rates based on these models is robust even when combin-

ing biased counts with an unbiased population model. Estimates of population growth rates

and fecundity are minimally biased when the probability of detection is less than 1, although

there is likely a lower limit to the probability of detection where counts are a poor reflection of

population dynamics [51].

Next, we used a multinomial distribution to connect the total number of animals classified

(Classifiedt,u) to the classified number of calves, adult females and adult males:

½Countc;Countaf ;Countam�t;u � Multinomialðπt;u;Classif iedt;uÞ ð5Þ

We further assume that the number of enumerated calves, adult females and adult males

are proportional to their representation in the underlying population:

πt;u ¼
Nc

Ntotal
;
Naf

Ntotal
;
Nam

Ntotal

� �

t;u

ð6Þ

The goal of the population model was to partition available data into a structure that con-

nected observations to underlying biological processes, which facilitated the expression of the

vital rate of interest, τ, or per capita recruitment. Our fundamental goal was to then under-

stand sources of variation in this key rate, and we incorporated covariates by using a logit link

(which assumed the rate of offspring production at the population level was between 0 and 1):

logitðtt;uÞ ¼ aþ zt þ xt;uβ ð7Þ

where α is a common intercept (and corresponds to mean recruitment on the logit scale), zt

are mean-zero random effects for year, xt,u is the vector of covariates and β the regression coef-

ficients (S1 File). This model structure constrains vital rates to be the same across all the herds

for a given set of covariate values in the same year and assumes that the response of each herd

to variation in covariate values is the same, i.e., differences in recruitment rates between herds

arise only from differing covariate values. We considered this a reasonable model structure

given that this management region was defined based on similar ranges of habitat conditions

and we had no a priori reason to suspect that herds would respond differently to external

drivers.

Age ratio model. To mimic traditional analyses of age ratio data, we modeled the

observed calves:100 adult females for year t in district u using a linear model with a Gaussian

error structure:

Calves
100 Cowst;u

� Normal mt;u; s
2

age ratio

� �
ð8Þ

where the expected value was modeled using an identity link and a similar structure to the

population model:

mt;u ¼ aþ zt þ xt;uβþ b
harvesthaft;u ð9Þ

where, unlike in the population model, b
harvesthaft;u is included to account for the relationship
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between the harvest of adult females and the age ratio [7] (S1 File). This model was a standard

linear regression approach that used the index of recruitment (calves:100 adult females) as the

response to estimate regression parameters and the error term (s2
age ratio).

Covariates

Our primary goal was to assess the strength of evidence for a series of potential sources of vari-

ation in the recruitment of elk calves as mediated through maternal body condition, calf body

condition and predation risk (Fig 1). We developed covariates to index environmental condi-

tions during the growing season, primary productivity, winter severity, and predator

abundances.

We extracted precipitation values for the study area through time from the parameter-ele-

vation regression on independent slopes model (PRISM Climate Group, Oregon State Univer-

sity, http://prism.oregonstate.edu, accessed 11 September 2018) [52]. To evaluate the support

for the relative importance of late spring/early summer precipitation versus summer/late sum-

mer precipitation we created two covariates by first summing (at the pixel level) precipitation

values over the two periods (late spring/early summer (neonatal period): May 1 to June 30,

and late summer/early fall (juvenile independence period): July 1 to September 30). We then

took the mean of all the summed pixels over the summer range for each hunting district to rep-

resent average cumulative precipitation in a hunting district for both periods. We assumed

that values of the normalized difference vegetation index (NDVI) derived from the moderate

resolution imaging spectroradiometer (MODIS) Terra satellite represented primary produc-

tion on the landscape, and served as a proxy for annual forage productivity [53]. We used the

8-day surface reflectance images with 250m resolution (MODIS product MOD09Q1) to calcu-

late NDVI values on a per-pixel basis across the study area and through time (courtesy of the

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources

Observation and Science (EROS) Center, Sioux Falls, South Dakota) [54]. We smoothed the

annual time series of NDVI values for each pixel by first applying a running mean, then

applied an iterative interpolation algorithm that adjusted values to the upper threshold [55],

i.e., errant NDVI values were assumed to be biased low. The beginning and end of each annual

growing season was defined using the pre-defined threshold method (start: when NDVI values

first reached 50% of the annual maximum, end: when NDVI values then fell to 50% of the

annual maximum), and restricted to be from March to October in each year [56]. NDVI values

in forested areas are thought to be contaminated by the signal from the canopy, therefore we

used time-integrated NDVI (or the cumulative sum of the differences between NDVI values

and the value at the start of the growing season) to represent the net primary production dur-

ing the growing season [57,58]. Similar to precipitation, we then calculated time-integrated

values for two periods: from the start of the growing season through June, and from July to the

end of the growing season. Finally, we took the mean values of each metric for all of the pixels

in each summer range in each hunting district to represent primary production in a hunting

district in a given year. Snow-water equivalent (swe) is a metric of snowpack density on winter

ranges for ungulates, and we used swe values estimated from the Snow Data Assimilation Sys-

tem [59]. We calculated the cumulative daily swe values for each pixel on winter range in each

hunting district from December 1 to April 31 of each year, then used the mean value for the

winter range as an index of winter severity in each hunting district[40,60].

Information on carnivores was available from harvest records (mountain lion and black

bears) and annual surveys (wolves). State regulations require that all harvested mountain lions

(Puma concolor) and black bears (Ursus americanus) be presented to FWP staff, and these har-

vest data were available through all years and for all districts in our study. End-of-the-year
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minimum wolf (Canis lupus) counts (number observed by December 31 of each year) were

available as part of the state of Montana’s wolf monitoring program and management plan.

We relied on area biologists’ expertise to assign minimum wolf numbers to each elk hunting

district. We used the number of mountain lion and black bears harvested and wolf counts

directly as a covariate in the models, hypothesizing that they were an index to the underlying

populations.

We aggregated data on the fall elk harvest (calves, adult females and adult males) as esti-

mated by the state wildlife agency using annual random telephone surveys of deer and elk

license holders. For the analysis of age ratio data, the number of harvested adult females was

included as a covariate to attempt to account for the effect of harvest on the age ratio (e.g., high

harvest reducing the denominator). For the population model, we included the number of

calves, adult females and adult males harvested directly, rather than estimating a relationship

between harvest and the age ratio.

All covariates were standardized by centering with the mean and dividing by one standard

deviation (S1 Table, see S2 Fig unscaled covariates). Collinearity of the covariates was assessed,

and no pairwise comparison exceeded a collinearity threshold of 0.50. For both modeling

approaches we fit a single richly parameterized model that included all covariates and their

interactions, which allowed for a series of relationships between metrics for precipitation,

NDVI, predator abundance and winter severity (S1 File).

Bayesian analysis

We estimated the parameters of the population model and the age ratio model using a Bayes-

ian framework, which was required for the expression of the multi-step observation process

component of the population model. To complete the model statement, we assigned priors to

each parameter. Specific to the population model, we assigned a Beta(1,1) prior to adult sur-

vival, ϕa, and we used a Normal(0,1) prior for the intercept α on the logit scale. Initial popula-

tion sizes for each district in each year were assigned a uniform distribution that was left-

truncated at the number of animals harvested in the next year, e.g., number of calves in year 1:

Nc
1;u � Uniformðhc

2;u; 10; 000Þ ð10Þ

Specific to the age ratio model, the intercept (α) was assigned a diffuse normal prior (Nor-

mal(0,100)). Common to both models, the random effects of year (zt,u) were given a mean-

zero normal prior:

zt;u � Normalð0; s2

z
Þ ð11Þ

with the variance term (s2
z
) given a uniform prior (Uniform(0,10)).

We fit a single model for each approach rather than relying on model-selection techniques

to select a single model out of a model suite. This single model was a richly-parameterized

combination of covariates that required 20 (population model) or 21 covariates (age ratio

model). The diversity of covariates included interactions between winter severity and environ-

mental conditions during the growing season, primary production, and predator abundance

so as to assess the evidence for a relationship between these covariates and winter severity, e.g.,

low primary production having a stronger effect in severe winters. Thus, we ran the risk of

overfitting models to our data if we used independent priors for each regression coefficient. To

express an a priori belief in parsimony we used a regularization approach to penalize the esti-

mation of regression coefficients. In the Bayesian framework, regularization has the natural

expression as setting a common hierarchical prior for all regression coefficients [61]. In our
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case, we used a normal distribution for all regression coefficients in each model:

B ¼

bspring precip

bsummer precip

bspring NDVI

. . .

2

6
6
6
6
4

3

7
7
7
7
5
� Normalð0; s2

b
Þ ð12Þ

with a common variance term for all coefficients, s2
b
.

We estimated the approximate marginal posteriors of all model parameters using JAGS

4.3.0 program [62] with the runjags package [63] as an interface to the R programming envi-

ronment [64]. We used random initial values and ran four chains in parallel for both models.

Model convergence was graphically assessed using traceplots. The population model required

longer MCMC chains, and we used a total of 100,000 iterations with the first 20,000 discarded

from each chain, thinning the result for memory issues to keep every fifth sample, resulting in

16,000 samples per chain, or 64,000 total samples. We used 20,000 iterations with the first

5,000 discarded as burnin from each chain for the age ratio model, or 60,000 total samples.

We summarized the approximate posterior distribution of every estimated quantity using

the median, and the highest posterior density interval (HPD) to summarize uncertainty. The

HPD finds the shortest interval of values for a given density (e.g., a 90% credible interval (CI)

therefore corresponds to the shortest range of values that contains 90% of the samples). The

estimated regression coefficients apply to covariates that were standardized using the mean

and standard deviation and were on the logit scale for the population model, which made

direct interpretation difficult. Therefore, in addition to reporting the mean and 90% CI for

each standardized coefficient for which we have strong evidence of a relationship with the

underlying vital rates, we also included a predicted relationship using the unscaled version of

the covariate.

Goodness-of-fit

Our biological inference was conditional on how well our two modeling approaches can

approximate reality. For both approaches, we used posterior predictive checks to compare

how well replicated data sets compared to observed data using a discrepancy measure, D [65].

For the linear modeling approach we used an omnibus sum-of-squared residuals metric,

where the residual was calculated as the difference between the expected value and either the

replicated or observed value:

D ¼
PN

i¼1
ðyi � EðyijyÞÞ

2
ð13Þ

where the sum is from i = 1 to N total data points, yi is the observed or replicated value, and E
(yi|θ) is the expected value given the parameter values. The population modeling approach was

a more-complicated hierarchical model, and two parts of the observation process were of criti-

cal interest: the total count for each district-year and (reflecting population size), and the num-

ber of calves that ended up in the classified sample (reflecting recruitment). We were

particularly interested in evaluating if the model could replicate this significant variation seen

in the count data, i.e. accounting for overdispersion in the counts. To evaluate the fit of our

model to the total count, we used the Freeman-Tukey statistic as a discrepancy measure to

evaluate deviation of observed or replicated counts from expected values:

D ¼
PN

i¼1
ð
ffiffiffiffi
yi
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðyijyÞ

p
Þ

2
ð14Þ
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Our data displayed large variation in the number of calves seen in each hunting district and

in each year, therefore we used the variance in the number of calves as our final discrepancy

measure and compared how well replicated data could reproduce the observed variance. In all

of the above cases, one-sided Bayesian p values were calculated as the proportion of MCMC

samples where the discrepancy measure for the replicated data was greater than that for the

observed data.

Results

The number of elk counted, observed age ratios, and harvested elk varied considerably among

years and hunting districts (Fig 3). Of the 17 hunting districts used for these analyses, counts

per hunt district per year ranged annually from a minimum of 147 (HD 214, in 2011) to the

maximum of 4,461 (HD 270, in 2006). The average within-hunting-district standard deviation

in counts across years was 219.6 (range: 26.9, 513.5). Observed age ratios (mean = 25.3,

sd = 8.3, range = 8, 57.1) displayed a similar amount of variation among years with an average

within-hunting-district standard deviation of 7.7 (range: 2.4, 11.5). Antlerless and antler har-

vest varied across years and hunting districts in response to changing regulations over the time

period of the study. Notably, high harvest in some districts from 2004 to 2007 was followed by

reduced harvest. Our covariate values showed substantial among-year and among-hunting dis-

trict variation, reflecting a diversity of environmental conditions and indices of predators (S2

Fig).

Goodness of fit

Our goodness-of-fit metrics did not indicate any obvious lack of fit for the population model

or the linear model. The Bayesian p-values for the population model indicated that replicated

data sets adequately reproduced the variation observed in both the total counts (p-value =

0.51) and the number of observed calves (p-value = 0.31) (S3 Fig). Similarly, the linear model

was an adequate fit to the data (p-value = 0.51) (S4 Fig).

Sources of variation in recruitment

There was a marked difference in the biological inference regarding the effects of covariates on

recruitment available from each modeling approach (Fig 4). For the age ratio model, we found

very weak evidence for an association between our covariates and recruitment. Though the

point estimates of several covariates (e.g., summerPrecip) are suggestive of an underlying rela-

tionship, the very broad 50% and 90% highest posterior density intervals all overlap zero,

which prevented strong inference in each case.

In contrast, we found very strong evidence for a series of relationships between covariates

and recruitment using the population model (S2 Table). For an average year and with all

covariates held to their average value (zero for standardized covariates), our model predicted

an overall mean recruitment rate of 0.25 (90% CI = [0.21, 0.29], hereafter all similar credible

intervals denoted as [low, high]). For each covariate below, we report the estimated effect on

the logit scale and then a prediction of how recruitment changed from this overall mean as

that covariate increased/decreased one standard deviation from the average value. We found a

weak negative association between mountain lion harvest and per capita recruitment rates

(b̂ lions ¼ � 0:04½� 0:07; 0�), which corresponded to a decline in per capita recruitment from the

overall mean of 0.25 [0.21, 0.29] at the average lion harvest (4.12 harvested per hunting dis-

trict) to 0.24 [0.19, 0.27] at one standard deviation above the average lion harvest (7.88 har-

vested) (S5 Fig). Similarly, we found a weak association between black bear harvest and per
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capita recruitment rates (b̂bears ¼ � 0:05½� 0:09; 0�), declining from the overall mean (0.25

[0.21, 0.29]) at the average black bear harvest (21.31 harvested per hunting district) to 0.24

Fig 3. Summary of observed elk count and classification data and estimated antlerless and antlered harvest for the 17 hunting districts included in the elk

population model. Both observed counts and age ratios (sample size in parentheses) demonstrated large variation among years and hunting districts. Similarly, antler and

antlerless harvest varied through time and district. In panel (a), the observations have been jittered along the x-axis to improve visibility. In panel (b), the y-axis includes a

rug that highlights the distribution of the data.

https://doi.org/10.1371/journal.pone.0226492.g003

Better understanding from population models

PLOS ONE | https://doi.org/10.1371/journal.pone.0226492 December 23, 2019 12 / 26

https://doi.org/10.1371/journal.pone.0226492.g003
https://doi.org/10.1371/journal.pone.0226492


[0.21, 0.28] at one standard deviation above the average black bear harvest (39.17 harvested).

However, we found strong evidence for an interaction with cumulative snow water equivalent

(swe) (b̂bears�swe ¼ � 0:11½� 0:16; � 0:05�) that became different from zero only at higher bear

harvests and more severe winters. At the average black bear harvest, per capita recruitment

rates in a mild winter (hereafter defined as the 5th percentile of standardized swe values, swe =

-0.95), average winter (swe = 0), or severe winter (hereafter defined by the 95th percentile of

swe values, swe = 2.22) showed no meaningful difference. At one standard deviation above the

average black bear harvest recruitment in a mild winter was higher than in a mean winter (dif-

ference = 0.02 [0.01, 0.04]), and even higher than in a severe winter (difference = 0.07 [0.03,

0.12]) (S6 Fig). In contrast, we found a weak positive association between wolf counts and

recruitment (b̂wolves ¼ 0:05½0; 0:09�), increasing from the overall mean (0.25 [0.21, 0.29]) at the

average wolf count (15.99 wolves) to 0.26 [0.22, 0.30] at one standard deviation above the aver-

age wolf count (30.49 wolves). However, we also found strong evidence for a negative

Fig 4. Estimated regression coefficients for standardized covariates. The black dot denotes the median of the

approximate posterior distribution, the heavy black line the 50% highest posterior density interval (HPD) and the light

black line the 90% HPD interval. The left panel is for the population model, where regression coefficients apply to the

per capita recruitment rate and use the logit link. The right panel is for the age ratio model that uses the identity link.

The vertical line (0) corresponds to no association with a covariate.

https://doi.org/10.1371/journal.pone.0226492.g004
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interaction with cumulative snow water equivalent (b̂wolves�swe ¼ � 0:06½� 0:11; � 0:02�) such

that recruitment declined with high wolf counts at a faster rate as winter severity increased

increasing winter severity. At one standard deviation above the average wolf count recruitment

in a mild winter was higher than in a mean winter (difference = 0.02 [0.01, 0.03]), and even

higher than in a severe winter (difference = 0.06 [0.03, 0.09]) (S7 Fig).

We also found strong evidence for an association between several environmental covariates

that corresponded to conditions during the first year the calf is on the ground and per capita

recruitment. Cumulative spring precipitation had a negative association with per capita

recruitment rates (b̂springPrecip ¼ � 0:2½� 0:26; � 0:14�), declining from the overall mean at the

average spring precipitation (0.17 m) to 0.21 [0.18, 0.25] at one standard deviation above the

average spring precipitation (0.22 m) (S8 Fig). In comparison, cumulative summer precipita-

tion had a weaker positive association with recruitment (b̂summerPrecip ¼ 0:08½0:03; 0:13�),

increasing from the overall mean at the average summer precipitation (0.15 m) to 0.27 [0.23,

0.31] at one standard deviation above the average summer precipitation (0.19 m), and strong

evidence for an interaction with winter severity (b̂summerPrecip�swe ¼ 0:04½0; 0:07�) such that low

values of summer precipitation combined with winter severity to reduce per capita recruit-

ment. At one standard deviation below the average summer precipitation (0.11 m), recruit-

ment was higher in a mild winter than in an average one (difference = 0.02, [0.01, 0.03]), and

even higher than in a severe winter (difference = 0.04, [0.01, 0.07]) (S9 Fig). Although we

found no evidence for a main effect of spring NDVI, we found evidence for an interaction

with winter severity (b̂springNDVI�swe ¼ 0:05½0:01; 0:1�). Low values of spring NDVI combined

with severe winters were associated with reduced recruitment. At one standard deviation

below the average spring NDVI (0.81), recruitment was again higher in a mild winter than an

average winter (difference = 0.02 [0, 0.03]) and a severe winter (difference = 0.05 [0.01, 0.08])

(S10 Fig).

Finally, we also found strong evidence for an association between environmental variation

during the year in which the calf is in-utero and recruitment. We found strong evidence for a

negative association with lagged winter severity and per capita recruitment rates (b̂swe½t� 1� ¼

� 0:06½� 0:1; � 0:01�), declining from the overall mean at the average swe (8.15 m) to 0.23

[0.20, 0.28] at one standard deviation above the average swe (14.45 m). Although we did not

find evidence for a main effect of summer NDVI, we found strong evidence for an interaction

with winter severity (b̂summerNDVI�swe½t� 1� ¼ 0:08½0:05; 0:12�) such that recruitment at low sum-

mer NDVI (1 standard deviation below the mean) was higher in a mild winter than a mean

winter (difference = 0.03 [0.02, 0.04]), and considerably higher than in a severe winter (differ-

ence = 0.08 [0.05, 0.12]) (S11 Fig).

Evidence for variation in vital rates: Differences between the two

approaches

In contrast to the population model, the variance term for the age ratio model incorporated

process variance and observation error (s2
age ratio ¼ 7:19½6:4; 8:03�), and translated into large

uncertainty in estimated average age ratios (Fig 5). In contrast, the population model had a

separate error term to account for variation in the observation process conditional on the

underlying population size (s2
count ¼ 6:7½6:67; 6:78�), and the partitioning of these errors sig-

nificantly reduced undcertainty in the estimated underlying average yearly per capita recruit-

ment rate (Fig 5). Similarly, we found very weak evidence to support a random effect of year

for the age ratio model (s2
z
¼ 2:52½0:17; 4:49�) and strong evidence for among-year variation
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otherwise unaccounted for by covariates using the population model (s2
z
¼ 0:37½0:23; 0:55�).

With all other covariate values held to their mean the predicted values from the age ratio

model highlight the lack of evidence for a yearly effect in ratios. However, the population

model strongly suggested a decline in per capita recruitment from 2004–2009, followed by sta-

bility (2010–2016) (Fig 6).

Understanding population dynamics

In addition to an improved understanding of the sources of variation in vital rates (Figs 4, 5

and 6), the population model also allowed deeper insights into population dynamics. By link-

ing the numbers in each age/sex class through time via biological processes (i.e., survival and

reproduction), derived quantities can be calculated that are of direct interest for wildlife man-

agement (Fig 7). For example, the estimated sum of all age/sex classes, the total Ntotal, provided

a qualitative ability to assess the quality of the observation process. If observed counts are

markedly different that the predicted number of animals in a population, it indicates a lack of

model fit to the observation process, which can arise from a diversity of factors, including dou-

ble-counting (in the case of an overestimate), or partial counting (in the case of an underesti-

mate). It can also indicate a lack of fit due to a violation of the closure assumption from

immigration/emigration, which can inform how populations are defined in the management

process. Moreover, estimated sizes (N total
t ) through time also provide insight into population

growth rates, lt ¼
Ntotalt
Ntotalt� 1

, provided they are a consistent index of the true, unknown population

size (Fig 7). Where populations are managed using harvest as the primary tool, a comparison

Fig 5. Estimated average values among years for (a) age ratios, and (b) per capita recruitment rates. These values were calculated by

generating an approximate posterior distribution for the average value (age ratio or rate) across hunting districts within a year. The black

dot denotes the median of the approximate posterior distribution, the heavy black line the 50% highest posterior density interval (HPD)

and the light black line the 90% HPD interval.

https://doi.org/10.1371/journal.pone.0226492.g005
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of harvest numbers to estimated values of λ through time provides insight into the efficacy of

harvest regulations on management objectives indexed by population growth rates.

Discussion

Our results demonstrate how using a population model to treat monitoring data as a time-

series of observations connected by biological processes can improve biological inference into

sources of variation in vital rates, as well as provide information on population dynamics,

resulting in useful information to aid management. A population model developed from rou-

tinely collected elk count, classification and harvest data provides information regarding not

only recruitment, but also, estimates of population growth rate. The population modeling

approach provided insights regarding factors affecting recruitment that may also inform man-

agement decisions. We found that per capita recruitment rates are most strongly associated

with spring and summer precipitation, and to a lesser extent associated with indices of winter

severity, predator populations, and primary production.

Our results strongly support prior conclusions that using a population model to analyze

time series of data yields higher statistical power and richer insight into biological processes

compared to a linear model [27,30]. We attribute the improvement to the separation of obser-

vation error from variance in the underlying biological processes, as well as using demographic

rates to connect observations through time. Although prior work has suggested that ignoring

observation error can have minimal impact on evaluating the strength of support for covari-

ates, observation error is likely to have an important impact where it is large or varies among

data points [30]. This is particularly relevant for managers, given that long-term monitoring

Fig 6. Estimated yearly random effects for (a) age ratios, and (b) per capita recruitment rates. These values were calculated by

holding all other covariates to their mean (zero) and represent predicted values for average conditions. The black dot denotes the

median of the approximate posterior distribution, the heavy black line the 50% highest posterior density interval (HPD) and the light

black line the 90% HPD interval.

https://doi.org/10.1371/journal.pone.0226492.g006
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data are often the result of varying degrees of effort and survey conditions, different survey

protocols, resulting in variability in the observation process and associated sightability. Biolog-

ical inference from this approach is thought to be robust to deviations from the true demo-

graphic model [27,30]. This is a critical observation for managers, as the integration of data

from different sources can require pooling of some age/sex classes in the model. For example,

the count of adult females in our work in the late spring is contaminated by the presence of

yearling females that have a lower and much more variable probability of conception [66].

As a result of higher statistical power, the population model provided insights into factors

affecting recruitment that were not detected using the age ratio approach. We found that envi-

ronmental conditions experienced by the calf on the ground (year t, related to calf survival)

and the female prior to conception and when the calf is in-utero (year t-1) were strongly con-

nected to per capita recruitment rates. Contrary to our expectations, cumulative spring precip-

itation in year t was negatively associated with recruitment. A post-hoc analysis of the

precipitation signal strongly suggested that these high values of spring precipitation were the

Fig 7. Demographic summary of an example hunting district (HD 240), including population growth rate, per

capita recruitment rate, observed harvest, and predicted/observed size. The black dot denotes the median of the

approximate posterior distribution, the heavy black line the 50% highest posterior density interval (HPD) and the light

black line the 90% HPD interval.

https://doi.org/10.1371/journal.pone.0226492.g007
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result of heavy snow on the summer range, an observation consistent with previous work on

elk in this system [7]. Cold and wet springs are thought to be a risk factor for elevated neonatal

mortality, as environmental conditions interact to predispose neonates to illness, delay green-

up and increase risk of predation [67,68]. Summer precipitation during year t and year t -1

was strongly, positively associated with recruitment. We also found evidence to support an

interaction between summer precipitation values and winter severity in year t such that dry

summers interacted with particularly severe winters to diminish calf survival in year t. Precipi-

tation is known to be related to the rate of forage senescence, digestible energy and relative

protein content [69–71], key factors in determining the body condition of ungulates headed

into winter [38,72,73]. Our results are consistent with previous work concluding that fall body

condition affects pregnancy rates, overwinter calf survival, and neonate survival in the follow-

ing year [38]. In contrast to previous work that found the relationship between precipitation

and recruitment to be relatively minor [7], we found spring and summer precipitation to be

major contributors to variation in recruitment supporting the importance of summer forage

conditions to calf production, maternal provisioning, and survival. We also attribute our abil-

ity to detect these relationships to our separation of precipitation into the two phases of spring

(an index of early growing/environmental conditions) and summer (as an index of forage

quality headed into winter). The use of a season-long precipitation metric could conflate varia-

tion in these two periods such that only the most extreme combination would be associated

with variation in recruitment.

We found mixed evidence for a relationship between primary production (NDVI) and per

capita recruitment rates. Although we found no evidence for a direct relationship between

NDVI in either in the spring or summer during the year the calf is on the ground and recruit-

ment, we did find evidence for an interaction between spring NDVI and winter severity such

that years with combined low spring NDVI and severe winters were associated with lower

recruitment. Moreover, we found an interaction between summer NDVI and winter severity

during the year the calf is in-utero (year t-1) that suggested that high values of summer NDVI

and severe winters reduced recruitment. NDVI is frequently interpreted as an index of forage

quality [53], though the link between the two is uncertain and can depend on the NDVI metric

used [74–76]. Spring green-up as indexed by increasing NDVI values has been positively asso-

ciated with body condition [77], as the greening vegetation has high digestible energy and pro-

tein content, and the relative value of this phase of forage quality has been suggested as a driver

of spring migrations [78]. We used a time-integrated NDVI metric where low values likely cor-

responded to a delayed start of season and found they only become meaningful when followed

by a severe winter, consistent with other work highlighting the interactive effects of nutrition

and winter severity [40,79], and broadly suggesting that calves can otherwise make up for a

poor start in mild winter conditions. We also found strong evidence that summer NDVI and

winter severity in year t-1 were related to recruitment through an interaction such that high

values of summer NDVI in a severe winter were negatively associated with recruitment. This is

not the first study to document a surprising relationship between NDVI and the demographic

performance of ungulates [7], and highlights the care that must be taken in assuming NDVI

represents the same biological process across a growing season. The relationship between

NDVI and forage quality may be fundamentally different in late summer when the high NDVI

corresponds to diminished digestible energy [75]. Alternatively, we speculate that summer

NDVI values might be correlated to large scale, long-term weather patterns such that they are

serving as a proxy for environmental conditions in the approaching winter. Further work is

required to detail the link between NDVI and forage quality as it relates to ungulate nutrition

and body condition, and we caution against the assumption that high NDVI values area a

proxy for high-quality ungulate forage.
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In addition to the important influences of environmental conditions on calf recruitment,

predation has been shown to be a major factor influencing juvenile elk survival in individ-

ual-based studies that allow for the estimation of cause-specific mortality [10,44]. It is con-

siderably more challenging to assess the effects of predators on vital rates when working at

the population level, given accurate predator population estimates are difficult to attain and

the effects of predation can be complicated by interacting effects with weather and resource

limitation. In particular, studies need to be carefully designed when trying to assess how the

harvest of predators is related to variation in the vital rates of prey [80]. The connection

between predator harvest, predator population dynamics and predation risk to ungulates is

unclear and has rarely been evaluated [81]. This lack of clarity is worsened where predator

harvest regulations are set in response to a combination of social, biological, and political

factors or where harvest can fluctuate in response to any factors unrelated to population

vital rates. In such cases, harvest numbers are a poor reflection of underlying predator pop-

ulation dynamics [82–84]. Given this uncertainty, results from models that include predator

harvest as covariates should be interpreted with care as the relationship may be spurious.

Furthermore, they should not be interpreted as indicative of predation pressure, merely

suggestive of a potential relationship that requires further investigation. With that in mind,

the negative relationship between black bear harvest and recruitment found here is consis-

tent with harvest numbers being an index to population size. For black bears, predation is

thought to occur primarily during the neonate phase in late spring/early summer [44], and

high harvest the following fall and spring may serve as a reasonable proxy for the population

size of black bears during the birth pulse, although we stress that further work is needed to

clarify the relationship between harvest and predation pressure. On the other hand, we

found a weak positive association between minimum wolf counts, a more direct index of

population size, and recruitment that we interpret as a spatial arrangement of predators on

the landscape to take advantage of more productive areas [85]. That signal was swamped,

however, by the interaction between wolf counts and winter severity that suggested high

wolf counts interacted with severe winters to reduce recruitment. This result is consistent

with prior work in the region [3] (but see [86]), and we speculate that it may reflect an addi-

tive effect of predation to nutritional and environmental stress during severe winters, when

elk likely become more vulnerable to wolf predation. We stress that more work is needed to

understand the relationship between minimum wolf counts, wolf abundance and vital rates.

More generally, we echo the caution that adequately understanding the connections

between predator indices (harvest or counts), predator population dynamics and ungulate

vital rates requires carefully designed experiments [80].

Using derived recruitment estimates from population models, rather than estimated age

ratios, is a practical alternative for managers and uses routinely collected survey data. How-

ever, the results are subject to a series of potential biases and need to be carefully interpreted. It

is unknown how the detection process is related to the actual (latent) abundance of elk. If a

fraction of the population is persistently unavailable during surveys estimates of the population

size from a count-based model are biased low. Yet, provided that the observed population is a

consistent index of the size of the total population, estimated population growth rates and

trends and underlying vital rates should be unbiased [35]. Count data are also subject to mis-

classification errors of juvenile and adult females that can bias resulting estimates of vital rates.

More work is needed to evaluate the consequences of the mis-specification of the underlying

biological processes and the parameterization of the observation process to understanding

population dynamics [31,35]
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Management implications

We recommend managers consider using routinely collected time-series of observed count

data and harvest data in a population model. This approach, as compared to the age ratio

modeling approach or monitoring of trends in observed count and age ratios over time pro-

vides improved biological inference into sources of variation in vital rates, as well as critical

information on population dynamics, resulting in useful information to aid management deci-

sions. The population model approach allows managers to estimate population growth rates

and use model predictions and goodness-of-fit metrics to inform the survey methodology.

Furthermore, we suggest that any lack of fit between the model and the observations can be

highly informative for managers. Poor fit can indicate where the closure assumptions are vio-

lated due to emigration or immigration and challenge ideas about the delineation of popula-

tions by informing managers about the quality of the observation process. This framework is

also flexible enough to accommodate data that are missing due to either logistical limitations

that prevented a yearly survey or to an age/class structure that is partly unobservable, such that

managers can estimate temporal trends in populations with discontinuous or incomplete data.

Combined, the practical benefits of the population model approach render it an attractive

option for the informed management of populations using routinely collected survey data.

Supporting information

S1 Fig. Hunting districts used in the analysis. We restricted our analysis to those hunting dis-

tricts with at least 6 years of data over the duration of the study (2004 to 2016). The resulting

subset of elk hunting districts used for analysis is depicted as the shaded gray hunting districts.

(TIF)

S2 Fig. Unscaled covariate values as a function of time.

(TIF)

S3 Fig. Goodness-of-fit metrics for the population model. We used posterior predictive

checks: 1) to compare variation in the observed total counts of animals to replicated total

counts using the Freeman-Tukey statistic as a discrepancy measure (left panel), and, 2) to com-

pare variance in the observed number of calves to the variance in the observed number of

calves (right panel, red line indicates the observed value).

(TIF)

S4 Fig. Goodness-of-fit metrics for the linear model. We used a posterior predictive check to

compare variation in the observed age ratios (calves:100 adult females) to replicated age ratios

using the sum-of-squared-residuals as a discrepancy measure.

(TIF)

S5 Fig. Predicted relationship between per capita recruitment rates and mountain lion

harvest. Mountain lion harvest was on a standardized scale, with 0 corresponding to the aver-

age mountain lion harvest (4.0 harvested) and 1 corresponding to one standard deviation of

harvest above the average (8.9 harvested) (top panel). The second panel shows the predicted

difference in recruitment rates between a mild winter (swe = 5th percentile of observed values)

and a mean winter (swe = 0) as a function of mountain lion harvest, and the bottom panel

shows the difference in recruitment rates between a mild winter and a severe winter

(swe = 95th percentile of observed values).

(TIF)

S6 Fig. Predicted relationship between per capita recruitment rates and black bear harvest.

Black bear harvest was on a standardized scale, with 0 corresponding to the average black bear
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harvest (20.7 harvested) and 1 corresponding to one standard deviation of harvest above the

average (38 harvested) (top panel). The second panel shows the predicted difference in recruit-

ment rates between a mild winter (swe = 5th percentile of observed values) and a mean winter

(swe = 0) as a function of black bear harvest, and the bottom panel shows the difference in

recruitment rates between a mild winter and a severe winter (swe = 95th percentile of observed

values).

(TIF)

S7 Fig. Predicted relationship between per capita recruitment rates and wolf counts. Wolf

counts were on a standardized scale, with 0 corresponding to the average (15.8 wolves) and 1

corresponding to one standard deviation above the average (30.4 wolves) (top panel). The sec-

ond panel shows the predicted difference in recruitment rates between a mild winter

(swe = 5th percentile of observed values) and a mean winter (swe = 0) as a function of wolf

numbers, and the bottom panel shows the difference in recruitment rates between a mild win-

ter and a severe winter (swe = 95th percentile of observed values).

(TIF)

S8 Fig. Predicted relationship between per capita recruitment rates and cumulative spring

precipitation on summer range. Spring precipitation was on a standardized scale, with 0 cor-

responding to the average (0.18 m) and 1 corresponding to one standard deviation above the

average (0.22 m) (top panel). The second panel shows the predicted difference in recruitment

rates between a mild winter (swe = 5th percentile of observed values) and a mean winter

(swe = 0) as a function of spring precipitation, and the bottom panel shows the difference in

recruitment rates between a mild winter and a severe winter (swe = 95th percentile of observed

values).

(TIF)

S9 Fig. Predicted relationship between per capita recruitment rates and cumulative sum-

mer precipitation on summer range. Summer precipitation was on a standardized scale, with

0 corresponding to the average (0.15 m) and 1 corresponding to one standard deviation above

the average (0.19 m) (top panel). The second panel shows the predicted difference in recruit-

ment rates between a mild winter (swe = 5th percentile of observed values) and a mean winter

(swe = 0) as a function of summer precipitation, and the bottom panel shows the difference in

recruitment rates between a mild winter and a severe winter (swe = 95th percentile of observed

values).

(TIF)

S10 Fig. Predicted relationship between per capita recruitment rates and spring time-inte-

grated NDVI on summer range. Spring NDVI was on a standardized scale, with 0 corre-

sponding to the average (1.06) and 1 corresponding to one standard deviation above the

average (1.40) (top panel). The second panel shows the predicted difference in recruitment

rates between a mild winter (swe = 5th percentile of observed values) and a mean winter

(swe = 0) as a function of spring NDVI, and the bottom panel shows the difference in recruit-

ment rates between a mild winter and a severe winter (swe = 95th percentile of observed val-

ues).

(TIF)

S11 Fig. Predicted relationship between per capita recruitment rates and summer time-

integrated NDVI on summer range, lagged one year. Summer NDVI was on a standardized

scale, with 0 corresponding to the average (4.10) and 1 corresponding to one standard devia-

tion above the average (4.85) (top panel). The second panel shows the predicted difference in
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recruitment rates between a mild winter (swe = 5th percentile of observed values) and a mean

winter (swe = 0) as a function of lagged summer NDVI, and the bottom panel shows the differ-

ence in recruitment rates between a mild winter and a severe winter (swe = 95th percentile of

observed values).

(TIF)

S1 Table. Summary statistics for covariates across all hunting districts and years.

(DOCX)

S2 Table. Summaries of the approximate posterior distributions for regression coeffi-

cients.

(DOCX)

S1 File. Detailed model statement.

(DOCX)
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