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Cerebral amyloid angiopathy (CAA), a common comorbidity of Alzheimer’s disease (AD),
is a cerebral small vessel disease (CSVD) characterized by deposition of fibrillar amyloid
β (Aβ) in blood vessels of the brain and promotes neuroinflammation and vascular
cognitive impairment and dementia (VCID). Hypertension, a prominent non-amyloidal
CSVD, has been found to increase risk of dementia, but clinical data regarding its effects
in CAA patients is controversial. To understand the effects of hypertension on CAA,
we bred rTg-DI transgenic rats, a model of CAA, with spontaneously hypertensive,
stroke prone (SHR-SP) rats producing bigenic rTg-DI/SHR-SP and non-transgenic
SHR-SP littermates. At 7 months (M) of age, cohorts of both rTg-DI/SHR-SP and SHR-
SP littermates exhibit elevated systolic blood pressures. However, transgene human
amyloid β-protein (Aβ) precursor and Aβ peptide levels, as well as behavioral testing
showed no changes between bigenic rTg-DI/SHR-SP and rTg-DI rats. Subsequent
cohorts of rats were aged further to 10 M where bigenic rTg-DI/SHR-SP and SHR-SP
littermates exhibit elevated systolic and diastolic blood pressures. Vascular amyloid load
in hippocampus and thalamus was significantly decreased, whereas pial surface vessel
amyloid increased, in bigenic rTg-DI/SHR-SP rats compared to rTg-DI rats suggesting
a redistribution of vascular amyloid in bigenic animals. There was activation of both
astrocytes and microglia in rTg-DI rats and bigenic rTg-DI/SHR-SP rats not observed
in SHR-SP rats indicating that glial activation was likely in response to the presence of
vascular amyloid. Thalamic microbleeds were present in both rTg-DI rats and bigenic
rTg-DI/SHR-SP rats. Although the number of thalamic small vessel occlusions were
not different between rTg-DI and bigenic rTg-DI/SHR-SP rats, a significant difference
in occlusion size and distribution in the thalamus was found. Proteomic analysis of
cortical tissue indicated that bigenic rTg-DI/SHR-SP rats largely adopt features of the
rTg-DI rats with enhancement of certain changes. Our findings indicate that at 10
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M of age non-pharmacological hypertension in rTg-DI rats causes a redistribution of
vascular amyloid and significantly alters the size and distribution of thalamic occluded
vessels. In addition, our findings indicate that bigenic rTg-DI/SHR-SP rats provide a
non-pharmacological model to further study hypertension and CAA as co-morbidities
for CSVD and VCID.

Keywords: cerebral amyloid angiopathy, hypertension, comorbidity, transgenic rat, cerebral microbleeds

INTRODUCTION

Cerebral small vessel diseases (CSVD) occur in many elderly
patients, cause vascular cognitive impairment and dementia
(VCID) and are contributors to ischemic and hemorrhagic
strokes (Shi and Wardlaw, 2016; Mustapha et al., 2019; Pasi
and Cordonnier, 2020). CSVD and VCID are growing concerns
as the elderly population increases. Two general classes of
CSVD are non-amyloidal CSVD and amyloidal CSVD. Non-
amyloidal CSVD include lifestyle induced diseases such as
hypertension (Cuadrado-Godia et al., 2018) and arteriolosclerosis
(Li et al., 2018), but also hereditary diseases such as cerebral
autosomal dominant arteriopathy with sub-cortical infarcts
and leukoencephalopathy (CADASIL) (Mancuso et al., 2020).
Cerebral amyloid angiopathy (CAA), an example of amyloidal
CSVD, is a prevalent condition in the elderly and is a common
comorbidity of Alzheimer’s disease (AD) (Gilbert and Vinters,
1983; Thal et al., 2002; Viswanathan and Greenberg, 2011;
Mehndiratta et al., 2012). CAA is characterized by deposition
of fibrillar amyloid β-protein (Aβ) in blood vessels of the brain,
including capillaries, arterioles and small arteries of the cortex
and meninges (Auriel and Greenberg, 2012; Denver et al., 2019).
Patients present with a decline in cognition as CAA contributes
to development of VCID (Helman, 2018). CAA affects ≈80%
of individuals over the age of 65 years (Boyle et al., 2015) and
is present to some extent in nearly all AD patients (Ellis et al.,
1996). Though the elderly are mainly affected by sporadic forms
(Biffi and Greenberg, 2011), familial forms causing early onset
of the disease also exist. Familial forms arise from mutations in
the amyloid precursor protein (AβPP) gene that change the Aβ

peptide sequence (Levy et al., 1990; Van Broeckhoven et al., 1990;
Tagliavini et al., 1999; Grabowski et al., 2001; Biffi and Greenberg,
2011). These changes in the Aβ peptides appear to alter their
biophysical properties and enhance fibrillogenesis (Van Nostrand
et al., 2001; Melchor et al., 2008).

CAA exists in two types: 1 and 2. CAA type-2 is defined by
amyloid deposits within the vessel wall and typically does not
elicit a robust perivascular inflammatory response in the absence
of amyloid infiltrating the surrounding brain parenchyma (Thal
et al., 2002; Attems et al., 2011; Davis et al., 2018). In contrast,
CAA type-1 amyloid is found along capillary vessel walls,
allowing for interaction with the surrounding parenchymal tissue
and induces a strong perivascular neuroinflammatory response
(Thal et al., 2002; Attems et al., 2011).

Although CAA is recognized as a cause of intracerebral
hemorrhagic strokes (ICH) in normotensive elderly patients
(Auriel and Greenberg, 2012), hypertension (HTN), a non-
amyloidal form of CSVD, is the most common cause of ICH

(Broderick et al., 2020). Nearly 70% of individuals over the age
of 65 in the United States are diagnosed with HTN (Mozaffarian
et al., 2015), which is a common risk factor for dementia
(Welsh et al., 2014). Despite their separate risks for ICH, it
remains unclear how CAA and HTN potentially interact to
impact ICH and VCID. For example, in a comparison of CAA
patients and HTN patients that had ICH it was found that some
differences between these two CSVDs exist, but it is still difficult
to distinguish the two (Zhan et al., 2004).

Previously, we described the generation and characterization
of a new transgenic rat model of CAA type-1, rTg-DI, that
faithfully recapitulates many pathological features of the disease
in humans (Davis et al., 2018). The rTg-DI model utilizes the
expression of human AβPP in brain harboring two familial
CAA mutations of Aβ, the Dutch (E22Q) and Iowa (D23N)
mutations. rTg-DI rats develop early onset and progressive
accumulation of CAA type-1 pathologies. Vascular amyloid first
appears at ≈3 months with a subsequent emergence of behavioral
deficits, perivascular neuroinflammation, microbleeds, small
vessel occlusions and progressive loss of white matter (Zhu
et al., 2020; Lee et al., 2021). These findings indicate that rTg-
DI rats provide a useful preclinical platform to investigate the
pathogenesis of CAA and microbleeds.

On the other hand, the spontaneously hypertensive stroke-
prone (SHR-SP) rat is commonly used to investigate HTN and
ICH. This particular model was derived by selective in-breeding
of animals that present elevated blood pressure and HTN. SHR-
SP rats also present with spontaneous strokes (Kimura et al.,
2000). The HTN phenotype resulting from this breeding is due
to multiple genetic factors that remain undefined; phenotyping
rather than genotyping is therefore required. The SHR-SP rat
provides a model that spontaneously develops HTN, is a more
clinically relevant model and eliminates any undesired and
potentially confounding side effects that could be introduced
using pharmacological-induced HTN. In the present study, we
bred rTg-DI rats with SHR-SP rats to generate a model of
emerging CAA on a hypertensive background to investigate how
the two distinct CSVDs interact to affect CAA progression and
thrombotic vascular events.

MATERIALS AND METHODS

Animals
The goal of our study was to evaluate the impacts of chronic,
non-pharmacological HTN on the development of CAA and
related pathologies in experimental rats. To accomplish this, we
used the CAA transgenic rat line (rTg-DI), which is a model
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of early onset and robust cerebral microvascular amyloid as
previously described (Davis et al., 2018). rTg-DI rats, generated
on a Sprague-Dawley background, express low levels of human
Swedish/Dutch/Iowa mutant AβPP under the control of the
neuronal-specific Thy1.2 promoter and results in production of
chimeric Dutch/Iowa CAA mutant Aβ peptides in the brain. Aβ

accumulation and perivascular inflammation begin at ≈3 months
of age and increase in a time dependent manner. Microbleeds and
small vessel occlusions emerge at ≈6 months of age and become
more numerous with advancing age.

For a model of chronic, non-pharmacological HTN, we
used Spontaneously Hypertensive—Stroke Prone (SHR-SP) rats
that were obtained from Charles River Laboratories (Kingston,
NY). The SHR-SP model was derived from the spontaneously
hypertensive (SHR) rat by inbreeding (Okamoto and Aoki,
1963). Phenotypes have been found to be autosomal dominant
(Gratton et al., 1998) and can be identified by phenotyping rather
than genotyping.

In the present study, rTg-DI rats and rTg-DI negative
(WT) littermates served as CAA and controls. To obtain HTN
CAA rats, SHR-SP rats were bred with heterozygous rTg-DI
rats to produce bigenic rTg-DI/SHR-SP and rTg-DI transgene
negative SHR-SP offspring. The rTg-DI/SHR-SP rats used in
this study were backcrossed for 5 generational breedings with
SHR-SP rats resulting in bigenic rats that possessed the human
AβPP transgene and were > 95% on the hypertensive SHR-SP
background. rTg-DI negative SHR-SP littermates served as HTN
controls. Cohorts of each group of rats were aged to 7 or 10 M.

All rats were housed in a controlled room (22 ± 2◦C and 40–
60% humidity) on a standard 12 h light cycle. Rat chow and water
were available ad libitum. All work with animals was approved
by the University of Rhode Island Institutional Animal Care and
Use Committee and in accordance with the United States Public
Health Service’s Policy on Humane Care and Use of Laboratory
Animals and was and in compliance with the ARRIVE guidelines.

Blood Pressure Measurements
Arterial blood pressures were measured using the CODA Non-
invasive Blood Pressure System (Kent Scientific, Torrington, CT,
United States). Rats were handled and acclimatized to the system
for 15 min per day for 5 days before baseline measurements.
Before starting, the infrared warming platform was warmed to
a constant temperature between 33 and 38◦C and maintained
for all measurements. Rats were assigned appropriately sized
restrainers with nose cones in which excess movement was
limited and comfortable respiration was possible. The animals
were encouraged to enter the restrainer with minimal guidance.
While animals were in the restrainers and placed on the warming
platform, tail occlusion cuffs were placed around the caudal
region of the tails. The occlusion cuff size was determined based
on tail thickness and ability to freely move up and down on
the tail. The Volume Pressure Recording Sensor was placed
on the tail about 2 mm distal to the occlusion cuff. This
sensor was placed so that it could move freely along the tail
and inflate enough to impede tail blood flow. Animal body
temperatures were measured after 5 min of acclimatization in
the restrainer and on the warming platform and ensured to read

between 33 and 38◦C. Tail temperatures were monitored until
32–35◦C was maintained. Once body and tail temperatures were
constant, systolic and diastolic blood pressures were measured
automatically using the default settings for blood pressure
monitoring on the blood pressure system. The averages of systolic
and diastolic readings were calculated by the system.

Behavioral Testing
Open Field: To assess general exploration behavior, mobility and
health the younger group of rats were subjected to Open Field
testing at 7 M. After being habituated to the room for 30 min,
animals were placed in the center of a 92 cm2 field (Stoelting
Co., Wood Dale, IL), inside a semi-opaque cylinder and held for
20 s to acclimate to the apparatus. After acclimation, animals
were allowed to explore the open field for a total of 5 min. Total
distance traveled for each animal was tracked using AnyMazeTM

tracking software (Stoelting Co., Wood Dale, IL) and the number
of rearings were scored via manual keypress by the experimenter.

Rotarod: the rats were habituated to the test room for 30 min
and then pre-trained by first being able to balance on the
stationary rod for 10 s and then 60 s on a rod rotating at a speed
of 5 rpm. For the testing protocol, the rod accelerated from 5 to
40 rpm in a period of up to 300 s or until the animal fell off the
rod. The rats were returned to their home cages between trials for
a total of three trials with 15 min ITIs. The mean latency to fall of
the three trials is used to compare time spent on the rod.

Unreinforced Radial Arm Maze (URAM): This procedure
followed an unrewarded version of the Radial Arm Maze (RAM)
task where none of the arms were reinforced. At the start of
each trial, rats were placed in the center circle of an 8-armed
RAM apparatus (Stoelting Co., Wood Dale, IL). Arm entries
were manually recorded by the experimenter and entry was
defined as all four paws entered into the shaft of one arm.
Trials terminated after 5 min or when the rat had successfully
visited each arm of the apparatus once. In this configuration,
this task reveals a slowed rate of arm entrances thought to reflect
sensory-motor slowing in the rTg-DI rats as previously reported
(Popescu et al., 2020).

Brain Collection and Tissue Preparation
Rats were injected with 1 mL/kg of ketamine and 0.5 mL/kg
xylazine for deep anesthesia. The chest cavity was opened for
intracardial perfusion with 1 M phosphate buffered saline (PBS)
containing 0.05% heparin at 20 mL/min perfusion rate for
15 min. Forebrains were removed and cut in half along the mid-
sagittal line. The right hemisphere was immediately embedded in
Tissue-Plus OCT Compound (Fisher Healthcare, Houston, TX),
frozen on dry ice, and stored in −80◦C. These tissues were later
sectioned on the sagittal plane at 20 µm thickness, mounted on
Colorfrost/Plus slides (Thermo Fisher Scientific, Houston, TX)
and stored at −80◦C. In other cases, brain sections were collected
and lysed with radioimmunoprecipitation assay (RIPA) buffer via
12 × 1 s bursts of sonication on ice followed by a 1 h incubation
on ice. Samples were then normalized using BCA protein assay
Kit (Thermo Fisher Scientific, Houston, TX).

The left hemisphere was immersion -fixed with 4%
paraformaldehyde (PFA) for 24 h and then immersed in
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30% sucrose in PBS for 48 h for cryoprotection. These tissues
were then embedded in OCT Compound and frozen at
−80◦C. PFA fixed tissue was sagittal cut at 20 µm thickness
using the Leica CM 3050S Cryostat (Leica Microsystems Inc.,
Buffalo Grove, IL), placed in a flotation PBS bath at −16◦C,
and then mounted on Colorfrost/Plus slides (Thermo Fisher
Scientific, Houston, TX) coated using EMS Tissue Capture
Pen (Electron Microscopy Sciences, Hatfield, PA) and stored
at −80◦C.

Immunoblot Quantitation of AβPP
The levels of AβPP in lysed forebrain tissue sections were
determined by performing quantitative immunoblotting
as described (Davis et al., 2004). Samples were probed
with horseradish peroxidase (HRP) labeled-monoclonal
antibody P2-1 (specific for human AβPP) (Suzukit et al.,
1989) at a concentration of 1:1,000 overnight. HRP-catalyzed
chemiluminescent signal was revealed using SuperSignalWest
Femto Maximum Sensitivity Substrate (Pierce Biotechnology,
Rockford, IL, Thermo Fisher Scientific cat# 34096) and
chemiluminescent signal was detected and quantified using an
Odyssey Fc imager (LI-COR, Lincoln, NE).

Quantitation of Aβ Peptides
Total Aβ40 and Aβ42 levels were determined by ELISA of
guanidine lysates of rat forebrain tissue. In the sandwich
ELISAs, Aβ40 and Aβ42 were captured using their respective
carboxyl-terminal specific antibodies mAb2G3 and mAb21F12
and biotinylated m3D6, specific for human Aβ, was used
for detection (Johnson-Wood et al., 1997; DeMattos et al.,
2002). All lysates were measured in triplicates and compared
to linear standard curves of known concentrations of
human Aβ using a Spectramax M2 plate reader (Molecular
Devices, Sunnyvale, CA).

Immunohistochemical Analysis
Antigen retrieval was performed by treating the tissue sections
with proteinase K (0.2 mg/ml) for 10 min at 22◦C. Tissue
sections were then blocked in Superblock blocking buffer (cat.
#37518, Thermo Fisher Scientific, Franklin, MA) containing 0.3%
Triton X-100 at room temperature for 30 min and incubated
with individual primary antibodies at the following dilutions
overnight: rabbit polyclonal antibody to collagen IV to identify
cerebral blood vessels (1:200, SD2365885, Invitrogen); goat
polyclonal antibodies to glial fibrillary acidic protein (GFAP) to
detect astrocytes (1:250, ab53554, Abcam) and ionized calcium-
binding adapter molecule 1 (Iba-1) to detect microglia (1:250,
NB100-1028, Novus). The primary antibodies were detected with
Alexa Fluorescent 594- or 488-conjugated secondary antibodies
(1:1,000). Staining for fibrillar amyloid was performed using
thioflavin S (123H0598, Sigma-Aldrich). Prussian blue iron
staining was performed to detect hemosiderin deposits reflecting
signs of previous microbleeds (Gomori, 1936; Davis et al., 2018).
Von Kossa calcium staining was used to detect small vessel
calcified occlusion in the brain (Rungby et al., 1993; Davis et al.,
2018).

Quantitative Measures of Cerebral
Vascular Pathologies
The percent area amyloid coverage of cerebral microvessels, the
number of microbleeds and the number of occluded/calcified
vessels in the cortex, hippocampus and thalamus were
determined in the rats using stereological principles as in
previously described studies (Long et al., 1998; Davis et al.,
2018). Diameters of vessel occlusions and thalamic area occupied
by occlusions were measured. Diameters were measured using
the “point to point function” and the free hand area function
was used to delineate an area around the outermost occlusions
in the analyzed section. Vessel occlusion diameters were
categorized by size: < 30 µm (small) or > 30 µm (large). The
number of occlusions in each size was reported as a percent
of the total number of occlusions. The percent area CAA
coverage was determined as the percent area of thioflavin stain
overlapping with collagen IV stain. All images were collected
with the Keyence BZ-X710 Microscope (RRID:SCR_017202)
and analyzed with the Keyence BZ-X Analyzer Software
Version 1.3.1.1 (Keyence Corp. Osaka, Japan). The number of
microbleeds and occluded vessels were measured using with
Image J Software Version 1.52a (ImageJ, RRID:SCR_003070,
National Institute of Health, United States).

Protein Digest of Cortical Tissue
The cortical region from brain sections of WT, SHR-SP,
rTg-DI and bigenic rTg-DI/SHR-SP rats was collected
using laser capture microdissection (LCM). Tissue lysis
and sample preparation for MS analysis was performed as
previously described (Schrader et al., 2021). Briefly, tissue
lysis was achieved via sonication in RIPA buffer. 25 µL
dithiothreitol (100 mM) was added for protein denaturation
with incubation and shaking (300 rpm) at 95◦C for 15 min.
Proteins were alkylated by incubation in the dark with
25 µL iodoacetamide (200 mM) 30 min at 20◦C, and then
precipitated and concentrated via chloroform-methanol-
water (1:2:1) precipitation. Proteins were resuspended in
sodium deoxycholate (DOC) (3% w/v in 50 mM ammonium
bicarbonate) and digested with TPCK-treated trypsin (Sciex,
Framingham, MA), in a barocycler (Pressure Biosciences Inc,
Easton MA) as previously described (Schrader et al., 2021). DOC
was precipitated by addition of formic acid and centrifugation
as previously described, and the supernatant was collected for
LC-MS/MS analysis.

Analysis by LC-QTOF/MS
A SCIEX 5600 TripleTOF mass spectrometer, operated in
positive ion mode using a DuoSprayTM ion source (AB
Sciex, Concord, Canada), coupled to an Acquity UPLC
HClass system (Waters Corp., Milford, MA, United States)
for chromatographic separation as was used for all proteomic
experiments as previously described (Schrader et al., 2021).
An Acquity VanGuard pre-column (2.1 × 5 mm, 300 Å,
1.7 µm) preceding an Acquity UPLC Peptide BEH C18
(2.1 × 150 mm, 300 Å, 1.7 µm) column were used for
peptide separation according to the previously described method
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(Schrader et al., 2021). TOF calibration was monitored by
injection of trypsin-digested β-galactosidase every 4 samples.
Analyst TF 1.7.1 software (AB Sciex, Concord, Canada) in
data-independent acquisition (DIA) mode was used for data
acquisition. All mass spec settings were exactly as previously
described (Schrader et al., 2021).

Data Processing
Spectronaut (Biognosys, Schlieren, Switzerland), referencing our
previously formed spectral library (Schrader et al., 2021) was used
for all protein identification and quantification. Factory defaults
were used for all Spectronaut settings, except “used Biognosys’
iRT kit” and “PTM localization” were deselected. Spectronaut
protein intensities were converted to molar concentrations
(pmol/mg brain tissue) using the total protein approach
(TPA) (Wiśniewski and Rakus, 2014). A baseline concentration
(0.03 pmol/mg tissue) was imputed for concentrations of 0 in
individual samples as previously described (Schrader et al., 2021).
Threshold cutoffs of ≥ 50% increase or ≥ 30% decrease to identify
differentially expressed proteins, and Student’s t-test was used
to determine statistical significance (P ≤ 0.05) as previously
described (Schrader et al., 2021).

Statistical Analysis
For blood pressure readings, ordinary one- way ANOVA,
followed by an uncorrected Fisher’s test LSD, with single pooled
variance compared the means of each group. For behavioral data,
it was noted that there was large and differing variance in the
groups, therefore Welch’s correction was used for ANOVA and
individual t-test. Unpaired two tailed t-tests were completed for
ELISAs of total Aβ and for CAA load. For number of occluded
vessel and number of microbleeds, it was observed that the data
was not normally distributed, therefore a non-parametric was
indicated. For these data, non- parametric one-way ANOVA
Kruskal Wallis test followed by Dunn’s multiple comparisons
test was completed. Unpaired, one tailed, parametric t-tests were
used to compare percentages of vessel occlusions within the
listed size ranges. A non-parametric, two tailed Mann-Whitney
test was employed to compare percent area coverage of vessel
occlusions in thalami. GraphPad Prism Version 9.1.2 was used
for all statistical analyses.

RESULTS

Hypertension Phenotype Is Preserved in
7 Month Bigenic Rat Model of Cerebral
Amyloid Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
Groups of rTg-DI, SHR-SP, bigenic rTg-DI/SHR-SP and WT
rats (n = 7) were aged to 7 months (M). Systolic and diastolic
blood pressure readings were acquired for each rat of the
four strains as shown in Figure 1. Data analysis for systolic
blood pressures was completed with one-way ANOVA having
no matching or pairing with single pooled variance, comparing
means of each group and an uncorrected Fisher’s test LSD

(F = 5.418, p = 0.0041, R2 = 0.3440). Systolic blood pressure
readings were significantly increased in SHR-SP and bigenic
rTg-DI/SHR-SP rats compared to control groups of WT and
rTg-DI rats. Systolic blood pressures of SHR-SP animals were
significantly different from those of WT and rTg-DI animals
(P < 0.01 and P < 0.05, respectively). Bigenic rTg-DI/SHR-SP
systolic blood pressures were also increased compared to WT
and rTg-DI (P < 0.005 and P < 0.01, respectively) as indicated
by one-way ANOVA. Data analysis for diastolic blood pressures
was also completed with one-way ANOVA having no matching
or pairing with single pooled variance, comparing means of each
group and an uncorrected Fisher’s test LSD (F = 1.454, p = 0.2456,
R2 = 0.1199). Differences in diastolic blood pressures were only
observed between rTg-DI/SHR-SP and WT animals (P < 0.05).
These results indicate that systolic blood pressure is increased
in SHR-SP animals and that this increase is maintained with
addition of the rTg-DI transgene on the SHR-SP background.

Spontaneously Hypertensive, Stroke
Prone Background Does Not Influence
Human AβPP Transgene Expression
The levels of AβPP expression in rTg-DI and bigenic
rTg-DI/SHR-SP rats were measured using quantitative
immunoblotting (Figure 2). Unpaired t-test shows that
there are no differences in human AβPP protein levels between
rTg-DI and bigenic rTg-DI/SHR-SP animals. This indicates

FIGURE 1 | Bigenic rTg-DI rats exhibit elevated blood systolic pressure at 7 M
of age. Systolic (closed circles) and diastolic (open circles) blood pressure
readings were measured in WT (black; n = 7), SHR-SP (green; n = 9), rTg-DI
(red; n = 12), and bigenic rTg-DI/SHR-SP (blue; n = 7) rats at 7 M of age.
Mean pressures are represented by solid or hashed horizontal lines ± SD. The
systolic blood pressures of SHR-SP and rTg-DI/SHR-SP rats are significantly
increased from those of WT and rTgDI rats. One-way ANOVA shows
P < 0.001 between SHR-SP and WT, P < 0.05 between SHR-SP and rTg-DI,
P < 0.005 between bigenic rTg-DI/SHR-SP and WT, and P < 0.001 between
bigenic rTg-DI/SHR-SP and rTg-DI. These results indicate that increased
systolic blood pressure is preserved with addition of the rTg-DI transgene on
the SHR-SP background.
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FIGURE 2 | Equivalent transgenic human AβPP expression in rTg-DI and
bigenic rTg-DI/SHR-SP rats. (A) Representative immunoblots of human AβPP
expression in total brain homogenates from 7M rTg-DI rats and bigenic
rTg-DI/SHR-SP rats. (B) Quantitative immunoblotting was performed to
measure human AβPP in brain homogenates of rTg-DI rats (red circles) and
bigenic rTg-DI/SHR-SP rats (blue circles). The data presented are the
means ± S.D. of n = 7 rats per each group. Unpaired t-test showed no
differences in human AβPP expression in 7 M rTg-DI and bigenic
rTg-DI/SHR-SP animals.

equivalent expression of AβPP in both rTg-DI and bigenic
rTg-DI/SHR-SP rats and preservation of the rTg-DI phenotype
on the SHR-SP background.

Hypertension Phenotype Does Not Affect
Brain Accumulation of Ab40 and Ab42 in
7 M Bigneic Rat Model of Cerebral
Amyloid Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
We next measured the levels of total Aβ40 and total
Aβ42 in rTg-DI and bigenic rTg-DI/SHR-SP rats using
specific ELISA assays. Analysis of the data presented in
Figure 3 using unpaired, two tailed t-test showed that there
were no differences between total Aβ40 and Aβ42 levels in
rTg-DI and bigenic rTg-DI/SHR-SP animals. These findings
indicate that the hypertensive SHR-SP background does not
influence the accumulation of Aβ peptides in the rTg-DI
model at 7 M of age.

FIGURE 3 | Equivalent Aβ levels in 7 M rTg-DI and bigenic rTg-DI/SHR-SP
rats. The levels of total Aβ40 and Aβ42 peptides in the forebrains of rTg-DI
rats (red circles) and bigenic rTg-DI/SHR-SP rats (blue circles) were measured
by ELISA as described under section “Materials and Methods.” The data
presented are the means ± S.D. of n = 7 rats per group. Unpaired t-test
showed that there are no significant differences between Aβ40 and Aβ42
levels in rTg-DI and bigenic rTg-DI/SHR-SP animals.

Hypertension Phenotype Does Not
Influence Behavioral Deficits in Bigenic
Rat Model of Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats at 7 M
rTg-DI rats were previously shown to exhibit a “sensory-motor
slowing” phenotype with the onset of microvascular amyloid
accumulation (Popescu et al., 2020). This phenotype was seen
by comparing the 7 M WT vs. rTg-DI animal rearing measures
in the open field (Figure 4A) and is emerging in the open
field distance traveled (Figure 4B) and in the number of arm
entries measure in the unreinforced radial arm maze (Figure 4C).
No significant differences in distance traveled in open field or
number of rears were seen between rTg-DI and bigenic rTg-
DI/SHR-SP rats in any of the behavioral measures, indicating
that most of the difference between the bigenic rats and SHR-
SP rats is contributed by the rTg-DI genotype. All groups also
performed similarly in rotarod task, indicating that differences in
other assays were not due to motor impairment (data not shown).
These findings indicate that non-pharmacological, chronic HTN
does not alter the behavioral deficits observed in 7 M old rTg-
DI rats.

Hypertension Phenotype Is Preserved in
10 M Bigenic Rat Model of Cerebral
Amyloid Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
Since no profound changes were observed in 7 M bigenic
rTg-DI/SHR-SP rats, a second cohort of rTg-DI, SHR-SP, and
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FIGURE 4 | Behavioral deficits of 7 M rTg-DI and bigenic rTg-DI/SHR-SP rats.
Bigenic rTg-DI/SHR-SP rats were not significantly different than rTg-DI rats in
the number of rears (A) or distance traveled (B) in the open field. Similarly, no
significant differences were found between rTg-DI and bigenic rTg-DI/SHR-SP
animals in the number of arm entries (C) in Unreinforced Radial Arm Maze
(URAM). WT rats (black; n = 7), SHR-SP (green; n = 9), rTg-DI (red; n = 5), and
bigenic rTg-DI/SHR-SP (blue; n = 7). Data presented are the mean ± SD.
These data show that the hypertensive SHR-SP background does not
significantly impact behavioral deficits of rTg-DI rats at 7 M of age.

FIGURE 5 | Bigenic rTg-DI rats exhibit elevated systolic and diastolic blood
pressure at 10 M of age. Systolic (closed circles) and diastolic (open circles)
blood pressure readings were measured in WT (black; n = 7), SHR-SP (green;
n = 6), rTg-DI (red; n = 6), and bigenic rTg-DI/SHR-SP (blue; n = 7) rats at 10
M. Mean pressures are represented by solid or hashed horizontal lines ± SD.
The systolic blood pressures of SHR-SP and bigenic rTg-DI/SHR-SP rats are
significantly increased from those of WT and rTg-DI rats. It is shown by
one-way ANOVA that P < 0.0001 for SHR-SP compared to both WT and
rTg-DI, P < 0.0005 for bigenic rTg-DI/SHR-SP compared to WT and
P < 0.005 compared to rTg-DI. The same differences between groups are
shown in diastolic pressures by one-way ANOVA. Comparisons of SHR-SP to
WT and rTg-DI both are P < 0.0001. Diastolic pressures of bigenic
rTg-DI/SHR-SP compared to those of WT and rTg-DI are P < 0.005 and
P < 0.05, respectively. These results indicate that the increase in both systolic
and diastolic blood pressures is maintained with addition of the rTg-DI
transgene on the SHR-SP background.

bigenic rTg-DI/SHR-SP and WT rats were aged further to 10
M. Systolic and diastolic blood pressure readings were acquired
for each rat of the four strains as shown in Figure 5. Data
analysis for systolic blood pressures was completed with one-
way ANOVA having no matching or pairing with single pooled
variance, comparing means of each group and an uncorrected
Fisher’s test LSD (F = 17.51, P < 0.0001, R2 = 0.7048). Systolic
blood pressure readings were significantly increased in SHR-SP
and bigenic rTg-DI/SHR-SP rats compared to control groups
of WT and rTg-DI rats. Systolic blood pressures of SHR-SP
animals were significantly different from those of WT and rTg-DI
animals (both comparisons P < 0.0001). Bigenic rTg-DI/SHR-
SP systolic blood pressures were similarly increased compared
to WT and rTg-DI (P < 0.0005 and P < 0.005, respectively).
Data analysis for diastolic blood pressures was completed in the
same manner by one-way ANOVA having no matching or pairing
with single pooled variance, comparing means of each group
and an uncorrected Fisher’s test LSD (F = 13.53, P = < 0.0001,
R2 = 0.6485). Similar to the systolic readings, diastolic blood
pressure readings were significantly increased in SHR-SP and
rTg-DI/SHR-SP rats compared to both control groups WT and
rTg-DI. Diastolic pressures of SHR-SP animals were significantly

Frontiers in Neuroscience | www.frontiersin.org 7 March 2022 | Volume 16 | Article 811371

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-811371 March 9, 2022 Time: 14:36 # 8

Stanisavljevic et al. Hypertension and Cerebral Amyloid Angiopathy

FIGURE 6 | Similar Aβ levels in 10 M rTg-DI and bigenic rTg-DI/SHR-SP rats.
The levels of total Aβ40 and Aβ42 peptides in the forebrains of rTg-DI rats (red
circles) and bigenic rTg-DI/SHR-SP rats (blue circles) were measured by
ELISA as described under section “Materials and Methods.” The data
presented are the means ± S.D. of n = 5 for rTg-DI rats and n = 6 for bigenic
rTg-DI/SHR-SP rats. Unpaired t-test showed that there are no significant
differences between Aβ40 and Aβ42 levels in rTg-DI and rTg-DI/SHR-SP
animals.

increased from those of WT and rTg-DI animals (P < 0.0001
for both comparisons). Bigenic rTg-DI/SHR-SP diastolic blood
pressures were also increased compared to WT and rTg-DI by
(p < 0.0005 and p < 0.05, respectively). No differences were
observed between SHR-SP and bigenic animals in either blood
pressure reading. These results indicate that systolic and diastolic
blood pressures are both increased in 10 M SHR-SP animals
and that this increase is maintained with addition of the rTg-DI
transgene in the bigenic animals.

Hypertension Phenotype Does Not
Influence the Brain Accumulation of
Aβ40 and Ab42 in 10 M Bigenic Rat
Model of Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
We next measured the levels of total Aβ40 and total Aβ42 in
10 M rTg-DI and bigenic rTg-DI/SHR-SP rats using previously
described ELISA assays. Analysis of the data presented in
Figure 6 using unpaired, two tailed t-test shows that, similar
to the 7 M old rats, there were no differences between total
Aβ40 and Aβ42 levels in rTg-DI and bigenic rTg-DI/SHR-SP
animals. These findings indicate that the hypertensive SHR-SP
background does not influence accumulation of Aβ peptides in
the rTg-DI rats as they age further to 10 M.

Hypertension Phenotype Alters the
Distribution of Cerebral Amyloid
Angiopathy in 10 M Bigenic Rat Model of
Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
Although the SHR-SP background does not significantly alter
the expression of human AβPP or the accumulation of Aβ

peptides, we next evaluated if the hypertensive background
influences the amount or distribution of vascular amyloid in
10 M rTg-DI rats. Figure 7 shows representative images of
thioflavin S-positive cerebral microvascular amyloid present
in the cortex, hippocampus and thalamus, regions that were
previously shown to accumulate robust levels of CAA type-1
(Davis et al., 2004; Zhu et al., 2020). In addition, representative
images of surface pial vessels are also shown. The percent area
of vessel coverage with amyloid in each area was measured
for each rat. Unpaired, two tailed t-tests were completed for
rTg-DI (n = 6) and bigenic rTg-DI/SHR-SP (n = 7) in each
area of interest: cortex, hippocampus, thalamus, and surface
pial vessels (Figure 7I). There were significant reductions
(P < 0.05) in the amount of microvascular amyloid in the
hippocampus and thalamus of rTg-DI/SHR-SP rats compared
to rTg-DI rats. On the other hand, surface pial vessel
coverage was significantly increased (P < 0.05) in bigenic
rTg-DI/SHR-SP compared to rTg-DI. No thioflavin S-positive
CAA was observed in any of the WT or SHR-SP rats (data
not shown). These findings suggest that at 10 M of age
the hypertensive SHR-SP background causes changes in the
amount of vascular amyloid in the hippocampus, thalamus, and
surface pial vessels.

Hypertension Phenotype Does Not Alter
Thalamic Glial Activation in 10 M Bigenic
Rat Model of Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
In rTg-DI rats, the presence of cerebral microvascular amyloid
drives strong neuroinflammation indicated by a marked elevation
of reactive perivascular glial cells (Davis et al., 2018; Zhu
et al., 2020; Schrader et al., 2021). To determine if the SHR-
SP hypertensive background influences this response in rTg-
DI rats we performed immunolabeling studies for astrocytes
and microglia. Figure 8 shows that both rTg-DI rats and
bigenic rTg-DI/SHR-SP rats exhibit a robust increase in thalamic
astrocytes compared to WT rats and SHR-SP rats (Figures 8A–
D). Similarly, both rTg-DI rats and bigenic rTg-DI/SHR-SP rats
showed an increase in thalamic microglia compared to WT rats
and SHR-SP rats (Figures 8E–H). It is also noteworthy that the
microglia adopt an activated morphology in the rTg-DI rats and
bigenic rTg-DI/SHR-SP rats whereas in the WT rats and SHR-
SP rats the microglia exhibit a resting surveillance state with
numerous extended processes. Together, these findings indicate
that the robust neuroinflammation in response to microvascular
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FIGURE 7 | CAA loads in 10 M rTg-DI rats and bigenic rTg-DI/SHR-SP rats. Representative images of brain sections from 10 M old rTg-DI rats (A,C,E,G) and
bigenic rTg-DI/SHR-SP rats (B,D,F,H) were stained for fibrillar amyloid using thioflavin-S (green) and immunolabeled for collagen type IV to identify cerebral vessels
(red). Scale bars = 50 µM. (I) Quantitation of thioflavin-S positive vascular amyloid load in different brain regions of rTg-DI rats (red circles) and bigenic
rTg-DI/SHR-SP rats (blue circles). Data shown are mean ± S.D of n = 6–7 rats per group. Unpaired, two tailed t-tests show a significant decrease in CAA load in the
hippocampus and thalamus of bigenic rTg-DI/SHR-SP rats compared to that of rTg-DI, both comparisons with p-values of P < 0.05. Contrarily, surface pial vessel
coverage is significantly increased bigenic rTg-DI/SHR-SP rats compared to rTg-DI where P < 0.05. These data indicate a change in CAA load in when introducing
the rTg-DI transgene onto the SHR-SP hypertensive background.

FIGURE 8 | Increased thalamic activated glial cells in 10 M rTg-DI rats and bigenic rTg-DI/SHR-SP rats. Representative images of the thalamus from rat brain
sections immunolabeled for GFAP to identify astrocytes (upper panels) and IBA-1 to identify microglia (lower panels). WT rats (A,E), SHR-SP rats (B,F), rTg-DI rats
(C,G), and bigenic rTg-DI/SHR-SP rats (D,H). Scale bars = 50 µm. Both rTg-DI and bigenic rTg-DI/SHR-SP rats exhibit increased numbers and activation of glial
cells in the thalamus.
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FIGURE 9 | Cerebral microbleeds in 10 M rats. Representative images of the thalamic region of 10 M old SHR-SP (A), rTg-DI (B), and bigenic rTg-DI/SHR-SP (C)
stained with hemosiderin to identify cerebral microbleeds. Scale bars = 50 µm. (D) Number of microbleeds in different brain regions are shown in SHR-SP (n = 6) in
green, rTg-DI (n = 6) in red, and rTg-DI/SHR-SP (n = 7) in blue. Data shown are means ± S.D. Significant differences are shown by one-way ANOVA between rTg-DI
and SHR-SP (P < 0.05) and between bigenic rTg-DI/SHR-SP and SHR-SP (P < 0.05). These differences indicate a preservation of the microbleeding pattern
observed in rTg-DI in bigenic rTg-DI/SHR-SP animals.

amyloid in rTg-DI rats is preserved in the bigenic rTg-DI/SHR-
SP rats. Further, these findings show that glial activation is not
appreciably observed with HTN alone in the SHR-SP rats.

Hypertension Phenotype Does Not
Influence the Number of Microbleeds in
the Brains of 10 M Bigenic Rat Model of
Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
Thalamic microbleeds are a prominent pathological feature of
rTg-DI rats that emerge at ≈6 M of age (Davis et al., 2018).
Cerebral microbleeds also occur in different brain regions of
aged SHR-SP rats (Schreiber et al., 2012, 2013). Therefore,
we evaluated the presence of cerebral microbleeds in the
cortex, hippocampus and thalamus of all rats by performing
hemosiderin staining. Figures 9A–C shows representative images

of microbleeds in the thalamic region of the rats. WT rats show no
evidence of microbleeds in the thalamus or any other region (data
not shown). Quantitation of microbleeds in the different brain
regions of the rats was performed. Kruskal Wallis test of means
comparison of each positive group followed by a Dunn’s test was
completed for the cortex, hippocampus and thalamus to compare
the total number of bleeds in SHR-SP (n = 6), rTg-DI (n = 6), and
rTg-DI/SHR-SP (n = 7) (Figure 9D) revealing several findings.
First, in the cortex several SHR-SP and bigenic rTg-DI/SHR-SP
rats showed some cerebral microbleeds whereas the rTg-DI rats
did not show any. The same trend is observed for microbleeds
in the hippocampus. Lastly, the thalamus is most affected with
numerous microbleeds in rTg-DI and rTg-DI/SHR-SP while
SHR-SP show lower levels similar to those observed in the cortex.
The Kruskal-Wallis test showed significance with (P = 0.0004)
and a Kruskal-Wallis statistic value of 11.80. Differences were
found between number of bleeds in the thalamus of SHR-SP and
rTg-DI (P < 0.05) and SHR-SP and rTg-DI/SHR-SP (P < 0.05).
These results indicate the number of microbleeds in thalamus
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FIGURE 10 | Thalamic small vessel occlusions in 10 M rats. Representative images of 10 M brain sections of SHR-SP (A), rTg-DI (B), and bigenic rTg-DI/SHR-SP
(C) rats showing thalamic calcified, occluded vessels. Scale bars = 100 µm. (D) Total number of thalamic occluded vessels in SHR-SP (n = 7) in green, rTg-DI (n = 6)
in red and bigenic rTg-DI/SHR-SP (n = 7) in blue (D). Data presented are the means ± S.D. Significant differences were found by one-way ANOVA between SHR-SP
and rTg-DI (P < 0.05) and between SHR-SP and bigenic rTg-DI/SHR-SP (P < 0.05). (E) The percentage of total thalamic vessel occlusions < or > 30 µm in
diameter in rTg-DI (n = 6; red) and bigenic rTg-DI/SHR-SP (n = 7; blue). Data presented are the means ± S.D. Unpaired t-test shows an increase in the percentage
of thalamic vessel occlusion diameters < 30µm or > 30 µm in bigenic rTg-DI/SHR-SP compared to rTg-DI (P < 0.05). Lower magnification representative images of
10 M brain sections of rTg-DI (F) and bigenic rTg-DI/SHR-SP (G) rats showing the range of thalamic calcified, occluded vessels. White tracings depict the borders of
small vessel occlusions in thalamus. Scale bars = 100 µm. (H) The percent thalamic volume presenting with small vessel occlusions in rTg-DI (n = 6) in red and
bigenic rTg-DI/SHR-SP (n = 7) in blue. Data presented are the means ± S.D. Unpaired t-test shows a significant increase in thalamic volume with small vessel
occlusions in bigenic rTg-DI/SHR-SP rats compared to rTg-DI rats (P < 0.005). Together, these data indicate that the number of thalamic vessel occlusions does not
change with the introduction of the rTg-DI transgene onto the SHR-SP background, although there is a change in size and extent of spatial distribution of these
vessel occlusions in the thalamus.

of rTg-DI and rTg-DI/SHR-SP are similar and higher when
compared to SHR-SP rats. Thus, there is a preservation of rTg-
DI thalamocentric pattern of microbleeds with addition to the
hypertensive SHR-SP background.

Hypertension Phenotype Impacts
Thalamic Small Vessel Occlusions in 10
M Bigenic Rat Model of Cerebral
Amyloid Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
In the rTg-DI model, calcified small vessel occlusions emerge at
≈6 M and increase with further aging (Davis et al., 2018). We next

determined if the hypertensive SHR-SP background impacts the
presence and numbers of these small vessel occlusions. Figure 10
shows representative images of calcified, occluded small vessels
in the thalamic region of the different rats (Figures 10A–C).
Occluded vessels were observed only in the thalamus of rTg-DI
and bigenic rTg-DI/SHR-SP rats. Kruskal Wallis test of means
was completed for the total number of occluded vessels in
the thalamus of SHR-SP, rTg-DI, and bigenic rTg-DI/SHR-SP
(Figure 10D). Significant differences were found between SHR-
SP rats and rTg-DI and bigenic rTg-DI/SHR-SP (P < 0.05)
since SHR-SP itself showed no vessel occlusions. Though the
total number of occlusions did not differ between rTg-DI and
bigenic rTg-DI/SHR-SP animals, a qualitative difference was
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FIGURE 11 | Comparison of significantly enhanced and reduced proteins in the 10 M SHR-SP, rTg-DI and bigenic rTg-DI/SHR-SP cortex. (A) Venn diagram
comparing significantly (P < 0.05) enhanced proteins by ≥ 50% of the WT concentration in the cortex of 10 M SHR-SP, rTg-DI and bigenic rTg-DI/SHR-SP rats
(n = 5, 6). (B) Heat map depicting relative expression of most abundantly enhanced cortical proteins in the bigenic rTg-DI/SHR-SP only (top) or common to both
rTg-DI and bigenic rTg-DI/SHR-SP, along with the corresponding expression in the SHR-SP cortex, with red indicating enhanced expression, green representing
reduced expression, and color intensity representing the degree of expression change. (C) Venn diagram comparing significantly (P < 0.05) reduced proteins
by ≥ 30% of the WT concentration in the cortex of 10 M SHR-SP, rTg-DI and bigenic rTg-DI/SHR-SP rats (n = 5, 6). (D) Heat map depicting relative expression of
most reduced proteins arranged as in (B) with color shading as in (B).

observed in the sizes and spatial distribution of the occlusions
(Figures 10B,C). We next measured the diameters of occlusions
and sorted them based on size. The number of small and large
occlusions are shown as percentage of total number of vessel
occlusions in the thalamus (Figure 10E). Unpaired t-test shows
an increase in the percentage of small vessel occlusions in
bigenic rTg-DI/SHR-SP thalamus compared to rTg-DI thalamus
(P < 0.05). On the other hand, a significant increase was found
in the percentage of larger occlusions in the thalamus of rTg-
DI rats compared to bigenic rTg-DI/SHR-SP rats (P < 0.05).
A difference was also observed in the percent of thalamic volume
that presented small vessel occlusions between rTg-DI and
bigenic rTg-DI/SHR-SP rats by two-tailed, unpaired parametric
t-test (P < 0.005) (Figures 10F–H). These findings show that
even though the total number of small vessel occlusions did
not differ between rTg-DI rats and bigenic rTg-DI/SHR-SP rats

the latter exhibited primarily small occlusions that were more
broadly distributed in the thalamus.

Elevated Cortical Proteins in
Spontaneously Hypertensive, Stroke
Prone, Rat Model of Cerebral Amyloid
Angiopathy and Bigenic Rat Model of
Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone
To further understand the impact of the SHR-SP hypertensive
phenotype on the pathology of the rTg-DI rats we conducted
proteomic analysis of cortical tissue from WT, SHR-SP,
rTg-DI, and bigenic rTg-DI/SHR-SP rats via Sequential

Frontiers in Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 811371

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-811371 March 9, 2022 Time: 14:36 # 13

Stanisavljevic et al. Hypertension and Cerebral Amyloid Angiopathy

FIGURE 12 | IPA identified upstream regulators, causal networks, and disease functions. (A) Heat map depicting the differentially expressed proteins (≥ 50%
increase or ≥ 30% decrease, P < 0.05) in the SHR-SP, rTg-DI, and bigenic rTg-DI/SHR-SP cortex associated with the upstream regulator Tgfβ1 (A), Interleukin 2
causal network (B) and the pathway neurovascular coupling (C). Red indicates increased, green indicates decreased, and white indicates not differentially expressed
proteins, and color intensity correlates with degree of change.

Acquisition of all Theoretical Mass Spectra (SWATH-MS), a
data independent acquisition (DIA) protein mass spectrometry
approach, as previously described (Schrader et al., 2021) and
in section “Materials and Methods.” Protein identification and
quantification from DIA data was performed using Spectronaut
(Biognosys), referencing a previously compiled spectral library
(Schrader et al., 2021). Protein intensities from Spectronaut
were converted to molar concentrations using the “total protein
approach” (TPA) (Wiśniewski and Rakus, 2014). Differentially
expressed proteins were then determined by comparison of molar
concentrations (pmol/mg total protein) with the corresponding
WT concentrations. As previously reported, multiple testing
corrected false discovery rates (FDR) are often too restrictive
in small n proteomics studies (Pascovici et al., 2016; Hondius
et al., 2018), and thus we used threshold cutoffs with uncorrected
P-values to manage the FDR as before (Schrader et al., 2021).
Significantly increased proteins were defined as ≥ 50% increase
with P ≤ 0.05. From this analysis 63, 226, and 100 proteins were
found significantly elevated in the cortex of the SHR-SP, rTg-DI,
and bigenic rTg-DI/SHR-SP rats, respectively (Figure 11A), and
lists of these proteins can be found in Supplementary Tables 1–
3. The rTg-DI and bigenic rTg-DI/SHR-SP rats displayed the
greatest commonality, as a total of 69 elevated proteins were
shared between the two, whereas only 6 proteins were common
to all three models. The bigenic rTg-DI/SHR-SP and SHR-SP
models shared only 14 elevated proteins (Figure 11A). Heat
maps depicting the relative expression of the 20 most abundant
elevated proteins in the bigenic rTg-DI/SHR-SP rats along with
a heat map depicting the 20 most abundant elevated proteins
common to the rTg-DI and bigenic rTg-DI/SHR-SP rats is shown
in Figure 11B, including the corresponding expression in the

SHR-SP cortex. Red shading indicates increased, green decreased,
and white no change in expression, with color intensity relative
to the degree of change. Of note among these proteins is Hspb1,
which is strongly enhanced in bigenic rTg-DI/SHR-SP cortex,
but not in that of the other models. We have previously reported
upregulation of Hspb1 other brain regions of rTg-DI rats that
display greater CAA burden and more severe CAA related
pathology (Schrader et al., 2021). Furthermore, many of the
significantly enhanced proteins shared by the rTg-DI and bigenic
rTg-DI/SHR-SP rats display greater increases in the bigenic
rTg-DI/SHR-SP cortex. For example, Apoe, Gsta3, Fabp7, Cst3,
Anxa3, Gfap, and S100a13 were all previously reported as
commonly elevated in the cortex, thalamus, and hippocampus
of rTg-DI rats (Schrader et al., 2021). All of these proteins are
commonly elevated in the rTg-DI and bigenic rTg-DI/SHR-SP
cortex (Figure 11B), but to a greater extent in the bigenic
rTg-DI/SHR-SP animals. Taken together, this could suggest
an enhancing effect of the SHR-SP hypertensive phenotype on
the rTg-DI model, as proteins that were elevated in the cortex
of rTg-DI rats are elevated to a greater degree in the bigenic
rTg-DI/SHR-SP rats. In addition, Anxa3, Vim, Clu, and Ctsd,
all previously reported to be elevated in brain regions of 12 M
rTg-DI rats, were commonly elevated in the 10 M rTg-DI and
bigenic rTg-DI/SHR-SP cortex. Of particular note is Anxa3,
which has been previously suggested as a marker of microglia
activation (Junker et al., 2007; Smithson and Kawaja, 2010),
and proven to be an indicator of microgliosis in rTg-DI rats
(Schrader et al., 2021). The finding that many of these proteins
are not elevated in the SHR-SP cortex further suggests that the
presence of CAA is responsible for their consistent expression
profile between rTg-DI and bigenic rTg-DI/SHR-SP rats.
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Reduced Cortical Proteins in
Spontaneously Hypertensive, Stroke
Prone, Rat Model of Cerebral Amyloid
Angiopathy and Bigenic Rat Model of
Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
We also compared the significantly reduced (≥30% decrease,
P ≤ 0.05) proteins in the cortex of each model (Figures 11C,D).
In this comparison 25, 58, and 76 proteins were decreased
in the SHR-SP, rTg-DI, and bigenic rTg-DI/SHR-SP cortex,
respectively, and lists of these proteins can be found in
Supplementary Tables 4–6. Again, the rTg-DI and bigenic
rTg-DI/SHR-SP rats shared the greatest commonality, as 22
reduced proteins were shared between the two, whereas
only 9 were shared between the SHR-SP and bigenic rTg-
DI/SHR-SP rats (Figure 11C). Notable among the shared
proteins are myelin oligodendrocyte glycoprotein (Mog), myelin
associated glycoprotein (Mag), myelin basic protein (Mbp),
myelin oligodendrocyte basic protein (Mobp), and neurofilament
medium polypeptide (Nefm). Mog, Mag, Mbp, and Mobp
(Yoshikawa, 2001; Pronker et al., 2016; Weil et al., 2016;
Peschl et al., 2017). All contribute to axonal myelination,
and thus significant reduction in their expression could lead
to demyelination and disruption of axonal integrity, while
alteration in neurofilament expression is often indicative of
neurodegeneration (Liu et al., 2011). These results are consistent
with the diffuse white matter loss previously reported in brain
regions of the rTg-DI rats, along with our previous findings
of their differential expression (Lee et al., 2021; Schrader et al.,
2021). Proteolipid protein 1 (Plp1) and neurofilament heavy
polypeptide (Nefh), listed as specifically down regulated in the
bigenic rTg-DI/SHR-SP cortex, did not meet our threshold
cutoffs in the rTg-DI cortex, though their 25 and 18%
respective decreases were statistically significant. Considering
their implicated roles in myelination (Plp1) (Gould et al., 2018)
and axonal integrity (both) (Liu et al., 2011; Gould et al., 2018),
this is consistent with our other findings. In any case, like the
upregulated proteins, the observed trends in the down regulated
proteins suggest that the bigenic rTg-DI/SHR-SP rats adopt a
proteome much more similar to the rTg-DI rats than the SHR-SP.

Pathway Analysis of Differentially
Expressed Cortical Proteins in
Spontaneously Hypertensive, Stroke
Prone, Rat Model of Cerebral Amyloid
Angiopathy and Bigenic Rat Model of
Cerebral Amyloid
Angiopathy/Spontaneously
Hypertensive, Stroke Prone Rats
To provide functional context to the similarities and differences
observed in the different rat model proteomes, we performed
comparative pathway analysis using Ingenuity Pathway Analysis

(IPA) (QIAGEN Inc.).1 Only proteins meeting our imposed
threshold cutoffs were included in the analysis. IPA predicts
activation (z score > 2) or inhibition (z score < −2) states
of upstream regulators, causal networks, or disease functions
based on the directional differential expression of downstream
or associated target proteins (Krämer et al., 2014). Comparative
analysis predicted activation of the upstream regulator TGF-β1
in the rTg-DI and bigenic rTg-DI/SHR-SP cortex, but not in the
SHR-SP. This is consistent with our previous reports of increased
mRNA expression of TGF-β1 in the brain of rTg-DI rats and
IPA predicted activation of TGF-β1 in brain regions of 12 M
rTg-DI rats (Zhu et al., 2020; Schrader et al., 2021). A heat map
comparing relative fold changes in each model of downstream
proteins associated with TGF-β1 is displayed in Figure 12A, with
red color indicating increased expression, green decreased, and
color intensities relative to the degree of change. Proteins that
did not meet the imposed effect threshold cutoffs are depicted in
white as they were not considered in the IPA analysis. Many of
the depicted proteins, such as Apoe, App, clusterin (Clu), Gfap,
serine protease Htra1 (Htra1), vimentin (Vim), and integrin β-2
(IGB2) are not only common to rTg-DI and bigenic rTg-DI/SHR-
SP cortex, but were also previously found to be elevated in
other brain regions of 12 M rTg-DI rats (Schrader et al., 2021).
Also noteworthy is Hspb1, which, as stated above, is specifically
upregulated in the bigenic rTg-DI/SHR-SP cortex, but not in the
rTg-DI nor the SHR-SP cortex.

IPA also indicated activation of Interleukin 2 (IL2) in the
bigenic rTg-DI/SHR-SP cortex, but not in that of the SHR-
SP. Only 2 of the 11 proteins were somewhat enhanced
in the SHR-SP cortex. A heat map comparing relative fold
changes in each model of downstream proteins associated with
IL2 is depicted in Figure 12B, with color shading as above.
IL2 has been reported to enhance astrocyte recruitment and
activation of astrocytes and lead to decreased amyloid load
in the mouse hippocampus (Alves et al., 2017). Additionally,
IL2 has been shown to influence activation of macrophages by
directly mediating the release of TGF-β1 (Nelson et al., 1994).
On the other hand, IL2 also disrupts BBB integrity and can
lead to vascular leak syndrome (Wylezinski and Hawiger, 2016),
which could exacerbate microbleeds. Interestingly, many of the
proteins indicated here for bigenic rTg-DI/SHR-SP rats are also
differentially expressed in the rTg-DI cortex, though it did not
meet the threshold (z score > 2) for predicted activation. Thus,
these results, along with the activation of TGF-β1 mentioned
above, further suggest that the bigenic rTg-DI/SHR-SP rats
closely resemble that of the rTg-DI rats, where the SHR-SP
hypertensive phenotype exacerbates changes in the cortex.

IPA also predicted activation of the Neurovascular Coupling
pathway in the cortex of rTg-DI rats, but not the bigenic rTg-
DI/SHR-SP nor the SHR-SP cortex (Figure 12C). Neural vascular
coupling is the mechanism responsible for altering localized
cerebral blood flow in response to enhanced neuronal activity
(Hendrikx et al., 2019). Neurovascular coupling will regionally
enhance cerebral blood flow to areas of enhanced neuronal
activity to support neuronal function while aiding in waste

1massive.ucsd.edu/ProteoSAFe/static/massive.jsp
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removal (Kaplan et al., 2020). Considering its role in removal
of waste, neurovascular coupling may be important for amyloid
clearance. Although some of these features are lost in the bigenic
rTg-DI/SHR-SP cortex it still more closely resembles rTg-DI
cortex rather than SHR-SP.

DISCUSSION

The impact of HTN on CAA and ICH remains controversial.
Clinically, ICH in CAA patients occurs mostly in the cortex
of elderly patients (Sahni and Weinberger, 2007; Mehndiratta
et al., 2012). CAA patients have a lower mortality rate but
higher incidence of recurrence than HTN patients (Mehndiratta
et al., 2012). On the other hand, HTN generally affects younger
patients and associated bleeds typically occur in deeper regions
of the brain, particularly the basal ganglia, cerebellum and
pons (Sutherland and Auer, 2006; Sahni and Weinberger, 2007).
A clinical study of risk of ICH showed that patients diagnosed
with both HTN and CAA had lower incidences of ICH (mixed
ICH) compared to patients with only CAA (Pasi et al., 2018).
On the other hand, mixed ICH patients seemed to have a higher
incidence of ICH than only HTN ICH occurrences (Pasi et al.,
2018) suggesting a possible protective effect of HTN in CAA.
Another study reported similar results; CAA patients with HTN
had better clinical outcomes after ICH events (Zhang et al.,
2020). Treating with anti-hypertensive therapies was shown to
reduce incidence of ICH and stroke in HTN patients (Qureshi
et al., 2001) and was also found to decrease ICH incidence in
CAA patients (Arima et al., 2010). Overall, clinical data suggests
that HTN and CAA as comorbidities could provide a protective
effect against characteristic ICH events of CAA but further
investigation is required.

There have been previous experimental studies on the effects
of acute and chronic HTN in AD and CAA in murine models.
For example, it was reported that AD-like symptoms in Tg-SwDI
mice worsened with pharmacologically induced chronic HTN
(Kruyer et al., 2015). In this study, the endothelial nitric oxide
synthase (eNOS) inhibitor, L-NAME (Wu et al., 2020) was used.
In similar studies, HTN was pharmacologically induced by eNOS
inhibition in conjunction with administration of angiotensin
II in the Tg2576 mouse model of AD-like pathology (Passos
et al., 2016; Nyúl-Tóth et al., 2020). In both cases, there was
an increase in cerebral microbleeds. However, the inhibition of
eNOS can be controversial as this has been shown to cause
an increase in AβPP expression in mice (Austin et al., 2013)
and pharmacological inhibitors can target other NOS isoforms
(Alderton et al., 2001). In another study HTN was induced in
mice by transverse aortic coarctation resulting in brain injury
in the cortex and hippocampus and increased Aβ in brain
(Carnevale et al., 2012). Although this is not a pharmacological
intervention, transverse aortic coarctation is used to induce heart
failure and could cause excessive cardiac effects with undesired
consequences (deAlmeida et al., 2010).

In the present study, we investigate how chronic, non-
pharmacological HTN interacts as a comorbidity of CAA, a
prominent amyloidal CSVD and cause of stroke, using novel rat

models of disease. There are several advantages to our approach
to study these interactions. First, in contrast to the studies
mentioned above that used murine models, here we use rat
models of CAA and HTN. Rat models may be more suited for
investigating human disease. In particular, the rTg-DI rat model
of CAA faithfully recapitulates many of the pathological features
of clinical CAA including perivascular neuroinflammation,
cerebral microbleeds, small vessel occlusions, progressive white
matter loss and progressive behavioral decline (Davis et al.,
2018; Popescu et al., 2020; Zhu et al., 2020; Lee et al., 2021).
Second, the use of rTg-DI rats focuses specifically on CAA
pathology without parenchymal AD-like pathologies observed
in most murine models. Lastly, due to the genetic origin of
the phenotype, the use of a spontaneous, non-pharmacological
rat model of HTN eliminates the potential confounds of any
pharmacological or surgical side effects. In this regard, the SHR-
SP model is appropriate due to its clinically relevant pathologies
such as patterns of bleeding (Yamori et al., 1976). In addition,
both the SHR-SP and rTg-DI models have consistent timelines
of emerging pathology. SHR-SP rats are shown to develop
and maintain hypertensive systolic blood pressure starting at
≈10 weeks of age (Okamoto and Aoki, 1963). This is harmonious
with the rTg-DI rats that begin to accumulate CAA at ≈3 M of age
(Davis et al., 2018; Zhu et al., 2020). The reliable timing of both
models produces a cross that steadily exhibits clinically relevant
pathologies of both CSVDs.

Crossbreeding of the SHR-SP rats and rTg-DI rats showed a
preservation of both model phenotypes. Systolic blood pressures
of SHR-SP rats and bigenic rTg-DI/SHR-SP rats were increased
compared to WT rats and rTg-DI rats at 7 M. Despite the
elevated blood pressures in bigenic rTg-DI/SHR-SP rats this had
no appreciable impact on the level of transgene human AβPP
expression or in the accumulation of Aβ peptides in the brain at
7 M (Figures 2, 3). HTN at this age also did not affect cognitive
decline characteristic of rTg-DI rats. Because 7 M bigenic rTg-
DI/SHR-SP rats showed no changes from rTg-DI other than
increased systolic blood pressure, we bred a second cohort of
animals that were aged to 10 M to determine the effects of HTN
in rTg-DI rats that exhibit more advanced pathologies.

In addition to already increased systolic pressure observed in
7 M animals, SHR-SP and bigenic rTg-DI/SHR-SP rats at 10 M
also exhibited increased diastolic blood pressures compared to
WT and rTg-DI rats. Though AβPP expression (not shown) and
Aβ peptide accumulation were not different between 10 M rTg-
DI and bigenic rTg-DI/SHR-SP animals the SHR-SP background
was correlated with a significant redistribution of CAA load in
the bigenic rTg-DI/SHR-SP rats. The thalamic and hippocampal
vascular amyloid loads of the bigenic rTg-DI/SHR-SP rats were
significantly decreased whereas the surface pial vessel amyloid
load was more than doubled in the same rats indicating a
significant shift in amyloid distribution to a different vascular
bed. Though the microvascular CAA load in the cortex was not
significantly different, there appears to be a modest increase in
the rTg-DI/SHR-SP rats and that could indicate an emerging
change. It was previously reported that CAA spontaneously
develops in SHR-SP rats (Carnevale et al., 2012; Jandke et al.,
2018; Denver et al., 2019). However, we were unable to detect
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the accumulation of vascular Aβ or fibrillar amyloid in the 10 M
SHR-SP rats used in this study. This redistribution of vascular
amyloid load in bigenic rTg-DI/SHR-SP rats could result from
different effects of HTN. For example, HTN is known to lower
cerebral vasoreactivity (Hajjar et al., 2010). Also, cerebrospinal
fluid (CSF) flow is driven by arterial pulsations and is reduced
in HTN (Mestre et al., 2018). In this regard, we recently found
that rTg-DI rats exhibit a hyperdynamic CSF flow coupled with
reduced glymphatic clearance compared with WT rats (Chen
et al., 2022). In future studies it will be interesting to investigate if
the HTN phenotype impacts CSF flow and glymphatic clearance
in bigenic rTg-DI/SHR-SP rats.

The rTg-DI rats typically present with microbleeds that are
largely restricted to the thalamus and emerge at ≈6 M of age
(Davis et al., 2018). SHR-SP animals were reported to exhibit
microbleeds emerging at ≈3 M which increase in severity and
number with age (Schreiber et al., 2012). These previous findings
in the CAA and HTN rat models are consistent with clinical
ICH where CAA bleeds affect more elderly individuals whereas
HTN patients with bleeds are generally younger (Sahni and
Weinberger, 2007; Mehndiratta et al., 2012). In our study, SHR-
SP rats showed some microbleeds in all brain regions whereas in
rTg-DI rats they were mostly observed in the thalamic region.
The presence of HTN in bigenic rTg-DI/SHR-SP rats appears to
somewhat enhance the number of microbleeds in the thalamus,
although no significant difference was observed.

Similarly, small vessel thalamic occlusions also emerge at ≈6
M (Davis et al., 2018). SHR-SP rats showed no small vessel
occlusions in the thalamus or in any other brain region. It should
be noted that infarcts occurring in SHR-SP animals are associated
with blood-brain barrier (BBB) compromise rather than vessel
occlusions (Schreiber et al., 2013), supporting the lack of vessel
occlusions found in the SHR-SP rats. Although there was no
significant difference found between the number of small vessel
occlusions in the thalamus of rTg-DI rats and bigenic rTg-
DI/SHR-SP rats, a clear qualitative difference was observed in
the size and area occupied by vessel occlusions (Figures 10A–C).
Further quantitation of size and spatial distribution of occlusions
confirmed that there is a change in the characteristics of vessel
occlusions when rTg-DI rats are on the SHR-SP background.
Bigenic rTg-DI/SHR-SP rats have smaller and more dispersed
occlusions in the thalamus than rTg-DI rats. It has been reported
in several studies that blood vessel lumens decrease in diameter
due to contraction of the blood vessels, thickening of vessel
walls, and overall change in function of vessels as a result of
HTN (Schiffrin, 1992; Intengan and Schiffrin, 2000; Mulvany,
2002; Pires et al., 2013). Studies of SHR-SP rats have shown
that remodeling of cerebral arterioles occurs in older (6–10
M) rats and is characterized by thickening of the blood vessel
wall and decrease of lumen diameter (Baumbach et al., 1988;
Baumbach and Heistad, 1989). This HTN decrease in vessel
lumens could physically be preventing the characteristic larger
occlusions observed in rTg-DI rats from forming in bigenic
rats. It is also possible that the global remodeling of arterioles
caused by HTN is impacting the area affected within the thalamus
leading to the wider distribution of occluded vessels in bigenic
rats, although this would need further study.

Proteomic analysis of the SHR-SP, rTg-DI and bigenic rTg-
DI/SHR-SP cortex revealed much greater similarity between the
rTg-DI and bigenic rTg-DI/SHR-SP models, as they shared 91
differentially expressed proteins compared to only 23 common
differentially expressed proteins between the SHR-SP and bigenic
rTg-DI/SHR-SP cortex (Figures 11A,C). Many of the commonly
reduced proteins including Mbp, Mobp, Mog, Mag, and Nefm,
are associated with myelination, axonal integrity, and neuronal
degeneration. Thus, these results are consistent with our previous
findings of diffuse white matter loss and down regulation of
these proteins in similarly aged rTg-DI rat brains (Lee et al.,
2021; Schrader et al., 2021). Notable among the commonly
elevated proteins are Apoe, Anxa3, and Gfap. We have previously
reported elevation of Apoe in brain regions of 12 M rTg-DI
rats with strong co-localization of Apoe and vascular amyloid
deposits (Schrader et al., 2021). Thus, elevated Apoe in the
bigenic rTg-DI/SHR-SP cortex is not surprising due to the
abundant vascular amyloid in these animals. It is not surprising
that Gfap, a well-known astrocyte marker, is robustly elevated
in both bigenic rTg-DI/SHR-SP and rTg-DI rats since these
animals similarly present with increased astrocytes (Figure 8;
Davis et al., 2018; Zhu et al., 2020; Schrader et al., 2021).
Similarly, we previously reported Anxa3, a marker of activated
microglia, is elevated in rTg-DI rats (Schrader et al., 2021).
Thus, elevated levels of Anax3 in bigenic rTg-DI/SHR-SP rats
is consistent with increased microglial activation observed in
both rTg-DI rats and bigenic rTg-DI/SHR-SP rats (Figure 8).
Taken together, these results suggest that bigenic rTg-DI/SHR-
SP rats adopts a proteome more similar to the rTg-DI rats
than the SHR-SP rats, and the SHR-SP hypertensive phenotype
may enhance the differential expression of many of these
shared proteins.

IPA analysis of the proteomes obtained from the three models
predicted common and distinct activation of pathways and
regulators related to inflammation, BBB integrity/permeability,
and changes in cerebral blood flow. Activation of TGF-β1 was
predicted in the cortex of rTg-DI and rTg-DI/SHR-SP rats
(Figure 12A). We have previously shown increases in TGF-β1
mRNA expression and IPA indicated activation of TGF-β1 in 12
M rTg-DI rats, and other studies have linked upregulation of
TGF-β1 mRNA in Dutch-type CAA to increased CAA severity
(Moursel et al., 2018; Zhang and Yang, 2020; Zhu et al., 2020;
Schrader et al., 2021). Interestingly, it has been reported that
TGF-β1 deficiency in the neurovascular unit increases BBB
permeability and that TGF-β1 released from astrocytes promotes
BBB integrity (Garcia et al., 2004; Derada Troletti et al., 2016).
Considering these reported roles of TGF-β1 in the neurovascular
unit, it is interesting that the neurovascular coupling pathway was
only predicted to be activated in the rTg-DI cortex (Figure 12C).
Neurovascular coupling, mediated by vascular smooth muscle,
astrocytes and neurons, is responsible for regional changes in
cerebral blood flow in response to neuronal activity (Hendrikx
et al., 2019; Kaplan et al., 2020). These changes in blood flow
promote essential nutrient delivery and waste removal (Kaplan
et al., 2020), and therefore may be important for Aβ clearance.
Thus, the lack of activation of neurovascular coupling in the
bigenic rTg-DI/SHR-SP cortex could suggest altered deposition
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or clearance of vascular amyloid, and may lead to changes in
CAA pathology, however, this requires further investigation. IPA
predicted activation of IL2 only in the bigenic rTg-DI/SHR-
SP rats, although 10 of the 11 implicated proteins were also
differentially expressed in the rTg-DI rats. IL2 activity has been
reported to promote clearance of Aβ through the activation and
recruitment of astrocytes (Alves et al., 2017). On the other hand,
IL2 may be detrimental to BBB integrity and can lead to vascular
leak syndrome (Wylezinski and Hawiger, 2016). Thus, IL2 could
have beneficial or damaging functions in CAA related pathology
depending on its context. Nevertheless, the differential expression
of proteins associated with IL2 activation further suggests that the
bigenic rTg-DI/SHR-SP proteome is most closely related to the
rTg-DI model, and may not only enhance these protein changes,
but the activation of pathways as well.

Despite the new information gained there are several noted
limitations of the present study. Our investigations focused
primarily on 10 M old rats where CAA and associated vascular
pathologies are developed but, still progressing. Potential
chronic effects of HTN at this stage of disease may not be
prominent but could be become much more robust as the
animals continue to age and disease progresses. For example,
a recent study similarly bred SHR-SP rats with a rat model
of AD-like pathologies (Denver et al., 2019). Aging of these
particular bigenic animals to 16–18 M showed a worsening
of several AD-like pathologies in the brain including vascular
changes, neuroinflammation and mitochondrial stress, but
no effect on behavioral deficits (Denver et al., 2019). This
underscores how further aging of our bigenic rTg-DI/SHR-
SP rats may be necessary to observe more robust effects
of HTN on CAA related pathologies. Second, the rTg-DI
rat is a model of CAA type-1 that primarily affects small
microvessels and capillaries. Perhaps HTN introduced by the
SHR-SP crossing would be more impactful on a model of CAA
type-2 that targets larger vessels in the brain. Finally, the rTg-
DI model involves cerebral vascular deposition of chimeric
Dutch/Iowa familial CAA mutant Aβ. HTN could have a
more prominent impact on CAA accumulation and associated
pathologies in a model that accumulates non-mutated Aβ. In
any case, the changes caused by HTN that are observed in
this study suggest that over time, the CAA pathologies could
be further altered and perhaps have a significant impact on
cognitive deficits. The hypertensive bigenic rTg-DI/SHR-SP rats
generated in this study provide a preclinical platform to further

investigate the consequences of chronic, non-pharmacological
HTN on CAA and VCID.
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