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Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases 

(CVDs) is still unclear. Here we present a systems-genome-wide and metagenome-wide 

association study on plasma concentrations of 92 CVD-related proteins in the population cohort 

Lifelines-DEEP. We identified genetic components for 73 proteins and microbial associations for 

41 proteins, of which 31 were associated to both. The genetic and microbial factors identified 

mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation 

(17.5% on average). Genetics contributes most to concentrations of immune-related proteins, 

while the gut microbiome contributes most to proteins involved in metabolism and intestinal 

health. We found several host-microbe interactions that impact proteins involved in epithelial 

function, lipid metabolism and central nervous system function. This study reveals important 

evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions 

for future applications in personalized medicine.

Advances in high-throughput deep-sequencing technology have revolutionized our 

understanding of the impact of the human genome and gut microbiome on human health. 

Genome-wide association studies (GWAS) and metagenome-wide association studies have 

provided evidence that the development of many complex diseases can be determined by the 

human genome, the microbiome, and their interactions. This has now been shown for 

cardiovascular diseases 1, type 2 diabetes 2, inflammatory bowel disease 3,4, and different 

types of cancer 5. However, the impact of gut microbiome and genome-microbe interactions 

on molecular traits is largely unknown, which greatly limits our mechanistic understanding 

of microbial associations with complex diseases.

Circulating plasma proteins are often used as risk factors or biomarkers for various diseases. 

Understanding the impact of genetics, the gut microbiome, and their interactions on the 

inter-individual variation of circulating plasma proteins will provide deeper insights into 

host-microbe interactions in health and disease. Here we present a systems genome and 

metagenome association analysis on 92 circulating plasma proteins in two subsets of the 

Lifelines Dutch population cohort, Lifelines-DEEP1 (n=1,178) and Lifelines-DEEP2 (n=86) 

(Online Methods, Fig. 1), for which we have genotype, metagenome, transcriptome and 

detailed phenotype data 6. These proteins were selected a priori based on their direct or 

indirect role in the development of cardiovascular diseases (CVD) (Supplementary Table 1). 

However, most of the proteins have a broader impact on host health and are also found to be 

relevant to many other diseases (Supplementary Fig. 1). Thus we believe that the knowledge 

gained here can be generalized to a wide spectrum of diseases and thereby impact other 

physiological processes and diseases.

Results

Associations to genetics

To estimate the effect of host genetics on protein levels, we first performed a local protein 

quantitative trait loci (cis-pQTL) analysis by testing SNPs located within 250kb of the genes 

coding for the 92 proteins. This yielded 129 significant cis-pQTLs for 66 proteins at 

genome-wide false discovery rate (FDR) 0.05 level (Supplementary Table 2 and 

Supplementary Fig. 2). We then regressed out the cis-pQTL effects and conducted a trans-
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pQTL mapping in a genome-wide manner and then separately on disease- and trait-

associated SNPs only, which together yielded 85 independent trans-pQTLs for 36 proteins 

(Supplementary Table 3 and Supplementary Fig. 3). Of these, 19 cis-pQTLs and 74 trans-

pQTLs were associated with complex traits and diseases, including 10 cis- and 7 trans-

regulated proteins known to be relevant for CVD (Supplementary Tables 2 and 3). In 

addition, we separately assessed associations to 422 putative CVD-associated SNPs 7 and 

detected pQTL associations for 14 proteins (Supplementary Table 4 and Supplementary 

Note 1). These pQTLs could point to driver genes in CVD (Supplementary Note 2), e.g. as 

can be seen in the pleotropic trans-pQTLs effect observed at the KLKB1 gene 

(Supplementary Fig. 4)

Next we examined the power of our study by assessing the replication rate of previously 

reported pQTLs 8–11 and identified a 95% replication rate for cis-effects and an 88% 

replication rate for trans-effects, all with the same allelic direction (Supplementary Table 5). 

Our data also revealed novel pQTL associations including 36 cis-pQTLs for 25 proteins and 

48 trans-pQTLs for 27 proteins (Supplementary Tables 2 and 3).

We found that only 64% of cis-pQTLs had at least one corresponding significant cis-eQTL, 

and 76% of these had the same allelic direction in blood from the same individuals or in 

other tissue types from the GTEx project 12 (Supplementary Note 3, Supplementary Tables 

2 and 6, Supplementary Fig. 5). In contrast, none of the 85 trans-pQTLs were detectable at 

expression level, but this may be due to the power issue as the effect sizes of trans-eQTLs 

are known to be very modest. Despite this, our data does provide evidence that a large 

amount of trans-regulation can happen at translation- or protein-level, e.g. through 

regulation of translational rate and protein secretion to blood, through post-translational 

modification or through protein-protein interactions, and these trans effects are not 

necessarily detectable at transcription level.

Associations to the gut microbiome

Next we linked the variation in plasma proteins to the gut microbiome. We assessed the 

association of plasma protein concentration with various microbial features, including alpha 

diversity assessed by Shannon index, beta diversity assessed by Bray-Curtis distance, 355 

bacterial taxa (including 164 bacterial species and 191 upper level taxa) and 438 bacterial 

MetaCyc pathways (Fig. 1, Online Methods, Supplementary Tables 7-10). A total of 41 

unique proteins were associated with at least one microbial feature at FDR 0.05 level: 2 

proteins were associated to Shannon diversity index (Supplementary Table 7 and 

Supplementary Fig. 6), 6 proteins to beta-diversity (Supplementary Table 8 and 

Supplementary Fig. 6), 23 proteins to bacterial taxa (Supplementary Table 9), and 25 

proteins to bacterial pathways (Supplementary Table 10). Although most of the microbial 

associations to proteins are novel, several proteins have previously been linked to the gut 

microbiome, including plasminogen activator inhibitor (PAI)-1 and urokinase plasminogen 

activator (uPA) 13, epidermal growth factor receptor (EGFR) 14, members of the 

paraoxonases family (PON) 15,16, tumor necrosis factor receptor (TNF-R2) 17 and insulin-

like growth factor (IGF) 18. For example, the gastric pathogen Helicobacter pylori 
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stimulates expression of PAI and of uPA and its receptor (uPAR) in gastric epithelial cells 13 

and can also affect epithelial signaling pathways partially through activation of EGFR 14.

In total, we identified host genetic and microbial features that underlie the inter-individual 

variation of 83 plasma proteins, of which 31 were found to be associated to both genetic and 

microbial factors (Supplementary Fig. 7). We further assessed to what extent the protein-

microbiome associations are dependent on genetic effects by systematically comparing the 

pQTLs with previously reported microbiome QTLs (mbQTLs) 19 (Supplementary Note 4). 

While we did not observe any overlap between pQTLs and mbQTLs at the genome-wide 

significance level, several pQTLs for Ep-CAM, PON3, PAI and CHI3L1 showed suggestive 

associations with the corresponding microbial factors (Supplementary Table 11). After 

regressing out the effects of all significant pQTLs and mbQTLs for proteins and 

microbiome, respectively, the association strength between protein and microbiome 

remained highly comparable (Supplementary Fig. 8, Supplementary Note 4, Supplementary 

Tables 12 and 13).

Protein variance explained by genetics and microbiome

We then quantified the proportion of explained variance for each protein by genetic and 

microbial factors separately and jointly (Online Methods). Cis-pQTL effects explained an 

average of 14.9% of the variation of 66 of the cis-regulated proteins (range 0.35% to 73.3%). 

Trans-pQTL effects explained an average of 9.5% of the variation for 36 of the trans-
regulated proteins (range 0.7% to 51.8%). Compared to host genetic factors, the effect of 

microbial features was smaller, contributing on average 3.2% of the variation for the 41 

proteins (range 0.4% to 26.5%) (Fig. 2 and Supplementary Table 14). The effects of host 

genetic factors and microbial features were mostly independent and showed additive effects 

(Supplementary Fig. 9 and Supplementary Note 5). They collectively explained an average 

of 17.5% of the variation, ranging from 1% of the variation in the concentration of tPA 

protein up to 76.6% of the variation in IL6-RA concentrations (Fig. 2). However, we also 

detected 21 significant genome-microbiome interactions for eight proteins (Supplementary 

Table 15 and Supplementary Note 5): 14 significant interactions for Ep-CAM and 1 

interaction each for PON3, CNTN1, CHI3L1, TLT-2, PSP-D, CTSZ and IL-6RA.

Ep-CAM as a mediator between host and microbiome

In contrast to most genes, which were more affected by genetics than by microbiome, 

plasma levels of proteins active in the intestinal epithelium appeared to be more linked to the 

gut microbiome, and these proteins include epithelial cell adhesion molecule (Ep-CAM) and 

trefoil factor 3 (TFF3). The variation in Ep-CAM levels was mostly associated to microbial 

features (26.5%), with 7% of the variation explained by two trans-pQTL loci: the FUT2 
locus at 19q13.33 and the TMIGD1 locus at 17q11.2 (Supplementary Table 14). Both the 

FUT2 and TMIGD1 genes are abundantly expressed in the intestine (Supplementary Fig. 

10). Ep-CAM is a trans-membrane glycoprotein highly expressed in the colon and small 

intestine (according to GTEx data 20) and associated with both benign and malignant cell 

proliferation. Ep-CAM is overexpressed in cancer cells 21,22 and considered a plausible 

anti-cancer drug target 23–25. The FUT2 gene encodes alpha-(1,2)-fucosyltransferase, 

which is involved in the creation of the H antigen precursor. The top trans-pQTL, SNP 
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rs601338 in FUT2 (r LLD1=-0.13; P=3.9x10-6), is a functional SNP. The rs601338-A allele 

creates a stop codon that results in a non-functional enzyme. Individuals homozygous for 

rs601338-A are not able to express the H-type1 oligosaccharide ligand to their mucus and 

are called ‘non-secretors’ for ABH antigens. FUT2 non-secretors have reduced susceptibility 

to multiple pathogens, including Norwalk virus 26 and Helicobacter pylori 27, but are at 

increased risk for Crohn’s disease 28. FUT2 locus genotypes are also strongly associated 

with cancer markers 29 and to plasma level of B12, which is clinically associated with CVD 

30.

In our study, FUT2 non-secretor status correlated with a lower expression of Ep-CAM 

(r=-0.227, P=2.3x10-12) (Fig. 3A). Moreover, the FUT2 SNP is among the top trans-pQTL 

SNPs that showed suggestive associations to the gut microbiome (Supplementary Table 11). 

This is consistent with previously reported associations between FUT2 and microbial 

composition and function 31,32, suggesting an impact of host genetics on the gut 

microbiome. The strongest microbial association to the FUT2 SNP was observed for the 

abundance of the Blautia genus, which was also significantly correlated with Ep-CAM 

levels. We observed decreased levels of Blautia genus in non-secretors in our Lifelines-

DEEP cohort (r=-0.069, P=0.036) and replicated this in the independent 500FG cohort 

(r=-0.18, P=2.4x10-4) (Fig. 3B) for which both genetic and microbiome data are available 

19. In line with the genetic impact of FUT2 on both Ep-CAM concentration and Blautia 
abundance, higher Ep-CAM level was indeed associated with increased abundance of 

Blautia in the Lifelines-DEEP cohort (r=0.138, P=9x10-6, FDR=0.005)(Fig. 3C). A partial 

correlation analysis suggested Ep-CAM as a likely mediator between FUT2 and Blautia 
(Fig. 3D), and mediation analysis estimated that 32.7% of the genetic effect of FUT2 on 

Blautia abundance is mediated by Ep-CAM level (Pmediated=0.0084, Pdirect=0.26). Most 

species from Blautia genus are involved in the production of short-chain fatty acids 33,34. 

These metabolites, especially butyrate, have anti-inflammatory, anti-proliferative and 

antineoplastic properties and are implicated in protection against colorectal cancer 35.

Other producers of butyrate include commensal bacteria Clostridia, which helps to maintain 

gut homeostasis 36. We also found the plasma level of Ep-CAM was associated with many 

species of the Clostridiales order, e.g. Clostridium bartlettii (r=-0.30, P=3.8x10-25, 

FDR=4.7x10-21) (Supplementary Table 9). Interestingly, we also detected suggestive 

interactions between Clostridia spp. and the FUT2 SNPs (Supplementary Table 15). 

Furthermore, of the 97 pathways significantly associated with Ep-CAM (Supplementary 

Table 10), higher plasma level of Ep-CAM was associated to a lower biosynthesis of preQ0 

(r=-0.29, P=4.3x10-22, FDR=1.7x10-17), a newly discovered metabolite with anti-cancer 

activity 37. However, FUT2 secretor/non-secretor status did not appear to have any effect on 

the association between Ep-CAM and bacterial biosynthesis of anti-cancer compounds. 

Based on the methodology behind the Mendelian randomization approach, the lack of 

genetic association of FUT2 with pre-Q0 biosynthesis does not support a causal impact of 

Ep-CAM on pre-Q0 biosynthesis. This may indicate that pre-Q0 biosynthesis can affect Ep-

CAM, in line with the anti-cancer properties of pre-Q0.
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PON3 links lipid oxidation to the gut microbiome

Proteins that function in the same pathways can have direct protein-protein interactions 

and/or form a co-abundant relationship. To visualize these relations, we combined Bayesian 

network analysis on protein co-abundance with experimentally validated protein-protein 

interactions to produce a joined network (Fig. 4). A group of proteins involved in lipid/

glucose metabolism that were mainly associated to the gut microbiome also formed a sub-

cluster in the Bayesian network analysis. These proteins—PAI, PON3, uPA, IGFBP-1 and 

IGFBP-2, TFF3, LDL-receptor and RARRES2 (Fig. 4)—were also highly correlated to 

various risk factors for CVD measured in the Lifelines-DEEP cohort (Supplementary Table 

16). Body Mass Index (BMI), for instance, was highly correlated to chemerin (RARRES2) 

(r=0.37; P=1.8x10-34), which regulates adipogenesis and adipocyte metabolism 38, and 

insulin like growth factor binding protein 1 (IGFBP-1), which plays an important role in 

glucose and insulin metabolism 39 (r=-0.44; P=6.9x10-49). Triglyceride concentration was 

mostly associated to IGFBP-2 (r=-0.35; P=2.0x10-31), while HDL cholesterol level was 

mostly positively associated to PON3 (r=0.40; P=4.2x10-39). Insulin was mostly associated 

to insulin binding proteins IGFBP-1 (r=-0.40; P=4.35x10-41) and IGFBP-2 (r=-0.39; 

P=1.69x10-38).

Among these proteins, the gut microbiome showed the strongest association to blood levels 

of PON3 and PAI (Fig. 4). PON3 associates with HDL in the blood stream and inhibits LDL 

oxidation 40,41. In our data, 16% of the variation of PON3 can be explained: 7.8% by cis-
genetic effects and 8.2% by gut microbiome. At diversity level, PON3 was the top protein 

associated to Shannon diversity (r=0.13, P=2.2x10-5, FDR=0.002) and had the second 

highest association to beta-diversity (r2=0.004, P=9.9x10-5, FDR=0.009) (Supplementary 

Fig. 6). At microbiome composition level, 14 unique taxa were significantly associated with 

PON3 at FDR < 0.05 (Supplementary Table 9). Many of these species are known to be 

associated with metabolic traits and inflammatory bowel disease (IBD), including the BMI- 

and lipid-lowering species Akkermansia muciniphila 42,43 (r=0.12, P=7.8x10-5, 

FDR=0.03), the butyrate-producing bacteria Roseburia hominis 44 (r=0.13, P=2.6x10-5, 

FDR=0.01), and that hydrogen-removing archaeon Methanobrevibacter smithii 45(r=0.18, 

P=2.1x10-8, FDR=3.3x10-5) that has also been associated with BMI in the Lifelines-Deep 

cohort 46. At functional profile level, 63 pathways were associated to PON3 (Supplementary 

Table 10) and 97% of these can be significantly linked with more than one PON3-associated 

species with a concordant direction (Supplementary Fig. 11A). Among them, one significant 

association was that observed for L-methionine biosynthesis (HOMOSER-METSYN-PWY, 

r=-0.17, P=3.4x10-8, FDR=7.2x10-5). L-methionine is an essential amino acid that must be 

obtained through diet that can be further metabolized to or from L-homocysteine through the 

S-adenosyl-L-methionine (SAM) cycle. L-homocysteine/SAM is considered to be a risk 

factor for CVD 47, although this has been debated in recent years 48. Another significant 

association we found was for a bacterial pathway involved in thiamine (vitamin B1) 

biosynthesis (PWY-7357, r=-0.16, P=2.3x10-7, FDR=2.6x10-4). Notably, a suggestive 

interaction was also observed between the thiamine biosynthesis pathway and the cis-pQTL 

SNP (rs10953142) of PON3 (ANOVA P=0.003) (Supplementary Table 15).
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Serum level of plasminogen activator inhibitor (PAI) was another protein showing a strong 

association with the gut microbiome: 6.9% of the variation in PAI could be explained by the 

gut microbiome and only 0.74% by genetics. PAI is a key regulator in fibrinolysis, the 

process of breaking down fibrin and maintaining vessel patency. PAI also plays a role in 

inflammation, and its level can be induced by oxidized LDL 49,50. Consistent with PON3 

preventing LDL oxidation 40, our data showed negative association between PON3 and PAI 

(r=-0.33, P < 2.2x10-16), with both being associated to metabolic traits like BMI 

(Supplementary Table 16). We detected significant associations of PAI with 6 taxa and 38 

pathways, 4 and 14 of which are shared with PON3, respectively (Supplementary Fig. 11B). 

Notably, the bacterial species and pathways shared between PON3 and PAI were likely to 

affect proteins through their impact on metabolism. After regressing out BMI, most shared 

associations vanished (Supplementary Fig. 11B). This provides a functional link between the 

gut microbiome, lipid metabolism and obesity-related inflammation. However, almost all 

bacterial species (8 out of 9) and pathways (38 out of 46) specifically associated to PON3 

remained significant after regressing out BMI, suggesting PON3 has a more direct impact 

on<?> the gut microbiome (Supplementary Fig. 11B). Previous studies have shown that 

paraoxonases (PON1, 2 and 3) can display antioxidative and anti-inflammatory effects in the 

intestine 51. In patients with inflammatory gastrointestinal disorders, PON3 gene expression 

in the intestine and colon was significantly reduced 52. Moreover, expression of human 

PON1 in Drosophila resulted in a decrease in the superoxide anion level, which plays an 

important role in gut immunity, and eventually in altered bacterial colonization 15. Thus, the 

association between PON3 and the gut microbiome has revealed a novel functional link 

between lipid oxidation, intestinal health and gut microbiome.

Genetic-microbiome interaction in the gut-brain axis

The central nervous system (CNS) is emerging as an important factor in control of BMI and 

susceptibility to obesity and related morbidity53. In addition to proteins functioning in the 

intestine and in metabolism, we found some proteins associated with the gut microbiome 

that are active in neural systems. Among these, the most notable were contactin 1 (CNTN1) 

and NOTCH3, both proteins involved in the NOTCH signaling pathways that play important 

roles in the development of the neural system, and EGFR, an epidermal growth factor (Fig. 

4). CNTN1, in particular, was associated to both genetics and the microbiome. Our data 

showed 6.6% of the variation in CNTN1 could be explained by two independent cis-pQTL 

SNPs, rs12811939 (r=0.21; P=1.14x10-13) and rs17541621 (r=0.18; P=7.47x10-10) 

(Supplementary Table 2), and 6.1% of the variation was explained by a trans-pQTL SNP, 

rs61261356, located at the intronic region of the TMEM8A gene (r=0.26; P=4.25x10-22) 

(Fig. 5A). Moreover, 3% of the variation of CNTN1 was explained by the gut microbiome 

(Fig. 2), with a positive association with the bacterial pathway of chorismate biosynthesis 

(r=0.13, P=2.5x10-5, FDR=8.6x10-3, Fig. 5B). Chorismate is a precursor for tryptophan, 

which can be further converted to serotonin. 90% of tryptophan is synthesized in the 

gastrointestinal tract and is considered as a key signaling metabolite between the gut and the 

CNS 54. Interestingly, we also found a nominally significant interaction between chorismate 

biosynthesis and the trans-pQTL SNP at the TMEM8A locus (P=0.04). The association 

between chorismate biosynthesis and CNTN1 is weaker and non-significant in individuals 
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homozygous for the rs61261356 C/C (r=0.029) and T/T (r=0.068) genotypes as compared to 

T/C individuals (r=0.20, P=1.6x10-5) (Fig. 5C).

To pinpoint the putative candidate gene at rs61261356, we checked blood eQTL data from 

the same samples and detected a cis-eQTL effect of this SNP on TMEM8A (P=2.75x10-28) 

(Supplementary Table 3). The role of TMEM8A is largely unknown. However, it is 

predicted to act as an adhesion protein that keeps T cells in resting state 55. To search for 

other genes affected by this SNP, we looked for it in a larger RNA-seq-based eQTL mapping 

56. In addition to the eQTL for TMEM8A, we found that this SNP affects alternative exon 

usage (exon-ratio levels) of AXIN1. The gene AXIN1 encodes a scaffold protein in the β-

catenin destruction complex which, if disrupted, contributes to pathogenesis of various 

human diseases including colorectal carcinogenesis and IBD 57. AXIN1 shows a relatively 

abundant expression in brain and colon and plays a role in intestinal inflammation. A 

previous study demonstrated that Salmonella infection promotes the degradation and plasma 

sequestration of AXIN1, leading to bacterial invasiveness and inflammatory responses 58. 

Moreover, evidence also supports vitamin D and the vitamin D receptor (VDR) as important 

regulators of IBD and colon cancer and they also play a role in maintenance of physiological 

level of AXIN1 57. This highlights the potential link between AXIN1 and the gut 

microbiome.

Discussion

Cardiovascular diseases (CVDs) are complex multifactorial diseases, and the processes 

underlying them include metabolism and inflammation, which relate to many other organs, 

including the liver, intestine and CNS. CVD can therefore be considered as a “systemic 

disease” rather than a single organ disease. In this study, we performed a systematic genome 

and metagenome analysis on plasma levels of 92 CVD-related proteins in 1,264 individuals. 

To our knowledge, this is the first effort to date to evaluate the roles of host genetics and 

microbiome composition, and their interaction, in regulating plasma protein concentrations 

in relation to CVD. We not only quantify what percentage of variation in plasma proteins 

can be collectively explained by genetics and the gut microbiome, but also provide insights 

into the mechanisms that underlie host-microbe interactions that relate to CVD. Our data 

show that genetic factors contribute most strongly to immune-related proteins, while the gut 

microbiome has a stronger relation to proteins involved in metabolism and obesity-related 

inflammation. We further demonstrate the interactions between the gut microbiome and host 

genetics, and these suggest novel microbial links to CVD via intestinal health, lipid 

oxidation and the CNS.

Ep-CAM is an intestinal epithelial membrane protein that has a role in intercellular adhesion 

and immune defense against mucosal infections. Intestinal permeability has been suggested 

as a target for prevention and therapy in various disease including CVD 59. In line with this, 

Ep-CAM-deficient mice exhibited increased intestinal permeability and decreased iron 

transport 60, which may contribute to CVD susceptibility risk 59. In this respect, our study 

provides evidence for the interplay between genetics, gut microbiome and the plasma level 

of Ep-CAM. We found that 26.5% of the variation in Ep-CAM levels can be explained by 

microbial factors, while 7% can be explained by two trans-pQTL loci, one of them in the 
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FUT2 locus that is also associated to plasma vitamin B12 level, infectious diseases, and 

Crohn’s disease. We showed that Ep-CAM can mediate the impact of FUT2 on the butyrate-

producing bacteria Blautia. Our study also reported that many microbial associations with 

Ep-CAM were independent of FUT2, including the top association observed for bacterial 

biosynthesis of an anti-cancer compound: a higher plasma level of Ep-CAM was associated 

with lower level of the bacterially produced anti-cancer metabolite preQ0.

The CNS has an important regulatory role in the development of obesity, which, in turn, is a 

well-known risk factor for CVD. The CNTN1 gene encodes a key CNS regulator with a still-

unclear role in the etiology of obesity and CVD. However, decreased plasma concentrations 

of CNTN1 have been proposed as a protein marker for new onset CVD 61. A mouse 

experiment has also shown that deletion of the innate immunity antibacterial gene, Nod2, 

induces dysbiosis and increases susceptibility to diet-induced obesity and metabolic 

dysfunction, as well as leading to an overall decrease in the expression of CNS genes 

including Cntn1 62. Our study demonstrates an association between a bacterial pathway 

related to metabolism of tryptophan and CNTN1 levels. Tryptophan is a well-established 

signaling metabolite in the gut-brain axis that is also related to appetite. Consistent with this, 

our study suggests a link between the gut microbiome, CNS and obesity via tryptophan 

metabolism.

Oxidation of low-density lipoprotein (LDL) contributes to the risk of CVD. LDL oxidation 

can be inhibited by paraoxonases that are bound to HDL and exert antioxidant properties. 

The paraoxonase (PON) family contains three members: PON1, 2 and 3. The role of PON1 

in atherosclerosis has been well-established 63, it was recently identified as part of the 

cardiac secretome in post-myocardial infarction heart failure 64. The role of PON3 is less 

clear, but PON3-/- knockout mice exhibited a reduced arterial lesion size comparable to that 

seen in PON1-/- mice, although this was likely occurring via a different mechanism 65. 

PON3 is one of the top proteins associated to microbial diversity, taxa and pathways. 

Interestingly, most of its associations are independent of BMI, and one top associated 

bacterial pathway involves the biosynthesis of vitamin B1, which also exhibits antioxidant 

activity. Although the causal role of PON3 in gut microbiome and susceptibility risk for 

CVD still needs further evaluation, our data suggest a novel link between the antioxidative 

role of PON3 and the gut microbiome.

Altogether, our results demonstrate complex genetic–microbiome interplay in the regulation 

of circulating proteins which modulate various biological processes and that these effects 

can be seen in many different organs and tissues. This study provides conceptual advances 

that lay important groundwork for future applications in personalized medicine, which will 

have to take into account both the genome and metagenome.

Online Methods

Study cohorts

The Lifelines cohort is a large prospective cohort study from the north of the Netherlands. 

This study includes two sub-cohorts of Lifelines: Lifelines-DEEP (LLD, n=1,500) and 

Lifelines-DEEP 2 (LLD2, n=119). The cohort contains 58% females and 42% males, the 
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mean age is 45.04 (standard deviation (s.d.)=13.60), the mean body mass index (BMI) is 

25.26 (s.d.=4.18) and 12% of participants are obese (BMI > 30). Common diseases within 

the cohort include high blood pressure (19%), anemia (15%), migraine (20%), irritable 

bowel syndrome (10%) and asthma (10%). The mean Framingham risk score for CVD is 8.6 

for men and 5.7 for women, and 20% of individuals are current smokers. A detailed cohort 

description can be found in Tigchelaar et al. 6 and Zhernakova et al. 66

For both these sub-cohorts multiple levels of omics data are available, including genotypes, 

gene expression, microbiome, and proteomics data 6,67.

Data generation and preprocessing

Profiling of proteomics data—Blood samples of study participants were collected and 

frozen at -80°C prior to proteomics measurement. Protein levels from EDTA plasma samples 

were measured in 1,447 participants in the LLD (n=1,332) and LLD2 (n=115) cohorts and 

determined using Olink Proseek Multiplex CVD III panel (OLINK, Uppsala, Sweden), a 

multiplex immunoassay for high-throughput detection of protein biomarkers in liquid 

samples 68. This panel includes 92 proteins that are either established biomarkers or 

exploratory proteins with a high potential as new cardiovascular disease biomarkers. More 

detailed information can be found at the Olink website (see URLs section).

We normalized the protein data by applying a z-score transformation. To further identify 

confounding factors, we first calculated correlations of protein levels with phenotypes and 

detected significant correlations for age, sex, smoking status, oral contraceptive usage and 

blood cell counts (basophils, eosinophils, erythrocytes, granulocytes, lymphocytes, 

monocytes and thrombocytes). For subsequent analyses for each protein level, we 

considered adjusted protein levels: residuals obtained from a linear regression model that 

included all the confounding factors as covariates. We further investigated for the presence 

of hidden confounders by principal component analysis (PCA) on adjusted protein levels. 

We found that the first 10 PCs were associated with genetic variants and therefore did not 

adjust for any PCs in subsequent analyses. Finally, we estimated the effect of sample plate 

batches on protein levels, and detected no plate batch effect.

Metagenomic data—Fecal samples were collected within two weeks of blood sample 

collection, and microbial DNA isolation in LLD was performed as described earlier 66. The 

metagenomics analysis in LLD2 samples followed the same procedure, except that fecal 

samples were not frozen but stored in RNAlater. We generated high quality metagenomics 

sequencing data for 1,135 LLD samples and 119 LLD2 samples, with at least 15 million 

reads per sample.

The relative abundance of gut microbial taxonomic units was determined using 

Metagenomic Phylogenetic Analysis (MetaPhlan 2.2) 69. MetaPhlan 2.2 reported 1,772 

URLs
The LifeLines cohort study: www.lifelines.nl; Olink CVD II panel description: http://www.olink.com/products/cvd-iii-panel/; 
HUMAnN2 pipeline: http://huttenhower.sph.harvard.edu/humann2; UniRef50: http://www.uniprot.org/; MetaCyc metabolic pathway 
database: www.metacyc.org; Vegan R package: http://CRAN.R-project.org/package=vegan; the Human reference consortium (HRC 
v1.0) preparation checking tool: http://www.well.ox.ac.uk/~wrayner/tools/.
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microbial taxa in our data. We then filtered out low abundance and rare taxa to only include 

taxa that accounted for at least 0.01% of total microbial composition and that were present 

in more than 10% of samples in both LLD and LLD2, separately. This yielded a confined list 

of 355 taxa that accounted for 99.1% of microbial composition, including 164 microbial 

species and 191 taxa from upper levels. For all subsequent analyses, redundant taxa that 

provide the same information were removed (taxon-taxon correlation r > 0.99), leaving 267 

unique taxa representatives.

Relative abundances of metabolic pathways were determined using the HUMAnN2 pipeline 

(see URLs section). Human genes were first removed and HUMAnN2 reported the 

abundances of 5,379,353 gene families from the UniProt Reference Clusters (UniRef50, see 

URLs section), which were further mapped to 773 microbial pathways from the MetaCyc 

metabolic pathway database (see URLs section). Rare (present in fewer than 50% of the 

samples) microbial pathways were filtered out, leaving 536 out of the original 773 microbial 

pathways. These 536 pathways retained 98.9% of the original functional composition. 

Redundant pathways (pathway-pathway correlation r > 0.99) were then removed, leaving 

438 unique pathways for subsequent analysis.

Both taxa and pathway datasets were log-transformed for subsequent analysis.

Expression data—Whole blood RNA-seq data was generated as described previously 56. 

In brief, paired end reads were aligned to the human genome using STAR aligner 70, 

allowing for no more than 7 mismatches. Gene expression estimation was performed using 

HTSeq-count 71 on uniquely mapping reads. Gene level expression data was normalized by 

TMM method 72, followed by log2 transformation, probe centering and sample z-

transformation. We regressed out the effects of age, sex and blood cell counts (basophils, 

eosinophils, erythrocytes, granulocytes, lymphocytes, monocytes and thrombocytes) from 

expression data using a linear regression model. Both proteomic and expression data was 

available for 1,293 samples.

Genotype data—Microarray genotype data for the LLD cohort was generated using 

CytoSNP and ImmunoChip assays as previously described 6. Quality control checks on the 

LLD cohort were performed using the Human reference consortium (HRC v1.0) preparation 

checking tool (v4.2.3) (see URLs section). We then uploaded the resulting VCF files to the 

Michigan Imputation Server 73. Phasing and imputation were performed using the option 

SHAPEIT for phasing, population EUR and mode Quality Control and Imputation, for all 

steps we used version R1 as reference 74.

Whole-genome-sequencing-based genotypes were generated for LLD2 as described 

previously 75. As the LLD2 participants were trios, we excluded first-degree relatives 

(offspring) for this study.

We further excluded SNPs that had imputation quality r2 < 0.5, failed the Hardy-Weinberg 

equilibrium test (P < 1x10-6), or had a call rate < 95% or a minor allele frequency < 5%. In 

this way, we obtained genotype data for > 7 million SNPs (Genome Build hg19) for 1,349 

unrelated individuals: 1,262 from LLD and 87 from LLD2.
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Statistical analysis

QTL mapping—Using a previously described pipeline 76, we performed QTL mapping by 

calculating Spearman rank correlation in LLD (1178 samples with both genotype and 

protein data) and LLD2 (86 samples with both genotype and protein data) datasets and 

combining the results using the weighted z-score method. To correct for multiple testing, we 

permuted genotype labels 250 times to create a null distribution that was then used to control 

false discovery rate (FDR) at 0.05.

Cis-pQTL mapping was done by testing SNP-gene pairs located within a ±250kb window. 

Proteins (corresponding Uniprot IDs) were converted to genes and genomic coordinates 

using Ensembl v75. One of the proteins (PECAM-1) mapped to an unmapped contig, and 

was thus removed from cis-pQTL mapping, but was used for trans-pQTL mapping. To 

extract all independent cis-pQTLs, we performed a step-wise conditional analysis for each 

protein. Specifically, we first performed a primary cis-pQTL mapping then regressed out the 

top SNP cis effect and ran cis-pQTL mapping again. This procedure was repeated stepwise 

until no more pQTLs could be detected at FDR < 0.05.

Trans-pQTL mapping was run on protein data after regressing out all independent cis-

pQTLs. To reduce the multiple testing burden, we first ran trans-pQTL mapping only on 

SNPs previously associated to complex traits and diseases. This SNP list contained 10,562 

SNPs and was obtained as follows. Genetic risk factors were downloaded from three public 

repositories, the EBI GWAS Catalogue (downloaded 21.11.2016), the NIH GWAS 

Catalogue and Immunobase (accessed 26.04.2016), with an applied significance threshold P 

≤ 5×10-8. Additionally, we added 2,706 genome-wide significant GWAS SNPs from a recent 

blood trait GWAS 77. SNP coordinates were lifted to hg19 using the liftOver command from 

the rtracklayer v1.34.1 R package 78 and subsequently standardized to match the GIANT 

1000G p1v3 reference panel. After running a trans-pQTL mapping on disease-associated 

genetic risk factors, we also ran a genome-wide trans-pQTL mapping following the same 

procedure. 195 trans-pQTLs were identified by the disease-associated analysis and 32 trans-
pQTLs by the genome-wide analysis. We then combined these two lists and pruned it by 

removing trans-pQTL SNPs in linkage disequilibrium with r2 > 0.8. This resulted in 86 

independent trans-pQTLs for 36 proteins.

We also compared genetic effects on protein and mRNA expression levels. To do this we 

specifically tested all significant independent SNP–gene combinations, reported all eQTLs 

with FDR < 0.05, and compared the effect size and direction. We also used the large scale 

whole blood eQTL published by Westra et al. 79 and eQTLs data of various tissue types 

from GTEx v7 release 12.

Replication of published pQTLs—To replicate previously reported pQTLs, we 

considered all pQTL studies with reasonable sample sizes (n > 1,000) published in the two 

years prior to November 2017 (Sun et al. 2017 8, Suhre et al. 2016 9, Sun et al. 2016 10 and 

Folkersen et al. 2017 11). We first extracted pQTLs for the 92 proteins under study and 

tested all reported pQTLs in our dataset. If a pQTL was significant at FDR 0.05 level and 

had the same allelic direction, we reported it as replicated. For each pQTL, we calculated the 

power for replication at significance level 0.009 (the least significantly replicated pQTL), 
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estimating non-centrality parameters of Chi-squared distributions reconstructed from P-

values and sample sizes reported in the aforementioned studies.

pQTL effects for variants associated with coronary artery disease—We then 

assessed the genetic effects of SNPs associated with coronary artery disease (CAD) reported 

by Nelson et al.7. The paper reported 422 unique CAD-associated SNPs, including 73 SNPs 

for 72 established loci and 366 SNPs for 304 suggestive loci. In addition to single SNP 

association, we also tested the correlation between the combined CAD risk score with 

protein levels using Spearman rank correlation analysis. To calculate the genetic risk score 

we multiplied risk allele counts (for imputed genotypes we converted dosages to genotypes) 

by log odds ratios provided in the paper and summed that for all reported SNPs. The FDR 

was controlled using the Benjamini-Hochberg approach.

Microbial association analysis—Association with alpha-diversity

Alpha diversity is the diversity of a community’s taxonomic composition, in this case the 

intra-individual gut microbiome 80. We calculated alpha diversity using the Shannon 

diversity index, using the function diversity() from the R package vegan (see URLs section), 

based on the abundances of 164 species that passed filtering in the LLD cohort. We used 

Spearman correlation to test associations. FDR was controlled at 0.05 using Bonferroni 

correction 81.

Association with beta-diversity

Beta diversity is the degree of differentiation of taxonomic communities between individuals 

(i.e. inter-individual gut microbiomes) and is usually defined by a between-community 

dissimilarity matrix. We calculated beta diversity using Bray-Curtis (BC) dissimilarity, using 

the function vegdist() from the R package vegan (see URLs section).

To quantify the variation in BC dissimilarity explained by an individual protein, 

Permutational Multivariate Analysis of Variance (PerMANOVA) was carried out with the 

function adonis() from the R package vegan using 10,000 permutations, and FDR was 

controlled at 0.05 using Bonferroni correction 81. PerMANOVA is a non-parametric test that 

allows us to perform association between vector data (the abundance of a specific protein of 

n subjects) and matrix data (pairwise n x n dissimilarity matrix). This test partitions the 

variation across a multivariate data cloud in response to one or more factors and uses 

permutations to determine P-value.

Association analysis with taxa and bacterial pathways

Pathway and taxa datasets were corrected for factors that can significantly alter the 

microbiome composition, including age, sex, read depth, antibiotic usage, irritable bowel 

syndrome and diarrhea. The cohort has <1% antibiotics users and 10% irritable bowel 

syndrome patients. Diarrhea was assessed by Bristol stool type. To correct for these factors, 

we first removed all antibiotic users and further adjusted other factors using a linear 

regression model.
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To explore the association between 92 circulating proteins and microbiome features (267 

unique taxa and 438 unique pathways), we performed pairwise Spearman rank correlation 

tests. Meta-analysis across the LLD and LLD2 cohorts was conducted using the weighted z-

score method. Both Benjamini-Hochberg 82 and Bonferroni corrected P-values are reported. 

This association analysis was performed on 999 samples from LLD and LLD2.

Variance explained by genetics and microbiome

To estimate the variance explained by genetic and microbial features, we confined our 

analysis to 926 participants in the LLD cohort who have microbiome, proteomics and 

genetics data available.

First, all significant SNPs from cis- and trans-pQTL analyses were chosen to represent 

genetic influence and their separate contributions to protein variance explained (Vcis and 

Vtrans) were estimated. Together, they make up variance explained by genetics (Vg = Vcis + 

Vtrans). We also calculated the combined variance explained by genetics by putting all cis- 
and trans-pQTLs in one model. The difference between the R2 of the latter model and Vg is 

negligible (not shown), which confirms the expected independence contribution of cis- and 

trans-pQTLs.

Unlike the genetic data, the microbiome data has a high degree of collinearity. We therefore 

first performed a feature selection procedure to extract only those microbial features that 

independently contributed to the variance of each protein. For this, we used a Lasso 

shrinkage model 83 that included all microbial pathways and species significantly associated 

with the respective protein, together with the Shannon diversity index and the first 5 PCs of 

Bray-Curtis dissimilarity as predictors. The independent and most dominant microbial 

features were selected automatically by L1-norm regularized quantile regression (the 

coefficients for non-informative features were automatically shrunk to 0). A Lambda 

regularization parameter was selected using ten-fold cross-validation for each protein 

independently, choosing from 100 lambdas. The variation of each protein explained by 

selected microbial features (Vm) was then estimated using a linear model.

The total variance explained by genetics and microbiome (Vt) was calculated using a 

combined regression model that includes predictor-dependent shrinkage. No penalty was put 

on genetic predictors since we assumed genetic control to be primary and indispensable, 

while microbiome features went through automatic Lasso selection as described above.

Estimate additive or co-founding effect between genetics and microbiome

As host genetics can affect the gut microbiome, we further estimated how likely it was that 

the combined genetic and microbial effects on proteins deviates from an additive model. To 

do this we compared the total variation explained by genetic and microbial factors using the 

combined model (Vt) to the sum of the variation explained by genetics and the variation 

explained by microbiome estimated using two separated models (Vg+Vm). If Vt=Vg+Vm, 

the genetic and microbial factors were independent and exerted additive effect on proteins. If 

Vt < Vg+Vm, genetic and microbial effects were in part dependent.
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If genetic and microbial effects were independent, we hypothesized that the power to detect 

microbial association would increase or remain similar after regressing out genetic effects. If 

genetic and microbial effects were not independent, we hypothesized that the microbial 

association would vanish or decrease after regressing out the genetic effects. Therefore, for 

each of the 73 proteins under genetic control (having significant pQTLs) and each of the 26 

microbiome traits with mbQTLs (previously reported in Bonder et al. 84), we repeated 

microbial association analysis after regressing out genetic factors and compared the 

association strength before and after correcting for the genetic effect. As with the variance 

explained model, this analysis was confined to 926 participants from the LLD cohort, hence 

the FDR was calculated using the according P-value, not the combined P-value from LLD 

and LLD2.

Genetic and microbiome interaction analysis

To consider the relationship between genetic predisposition and the gut microbiome for 31 

proteins significantly associated with both, interaction analysis was done for each protein as 

follows. For all possible combinations of each microbiome feature picked up by Lasso in the 

variance explained model (except for alpha and beta diversity) and each SNP (cis or trans), 

we compared two models:

Model 1(no interaction term):Protein = SNP + MB feature
Model 2(no interaction term):Protein = SNP + MB_feature + SNP * MB feature

We utilized ANOVA (analysis of variance) to compare Model 1 and Model 2, testing 

whether the addition of the interaction term had a significant effect on the variability of pre-

existing model.

For the protein models with significant interactions identified by ANOVA (P < 0.05), we 

reassessed the all interaction terms, translating imputed SNP dosages to genotypes to 

identify non-additive effects of genetic-microbiome interactions.

Protein network

Proteins from the same pathways often exert protein-protein interactions and/or form co-

abundance networks. To visualize protein-protein relationships, we plotted the protein 

network combining the experimentally validated protein-protein interactions (PPIs) from 

STRING 85 and the protein co-abundance network that was constructed using the function 

bnfit() from the R package for Bayesian Network Structure Learning, Parameter Learning 

and Inference (bnlearn) 86. The network was visualized using the program Cytoscape 87. 

Node size reflected the amount of variance explained by genetics and microbiome together 

and the pie chart showed the percentage variance explained for cis-pQTLs, trans-pQTLs and 

microbiome.

Partial correlation and mediation analysis between Ep-CAM, FUT2 genetic variants and 
Blautia

To explore the relation between FUT2 secretor status, Ep-CAM level and Blautia genus 

abundance, we used partial Spearman correlations (R package ppcor 88). Specifically, we re-
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estimated the associations between each pair of traits while controlling for the third. Ep-

CAM level was considered as a mediator of the effect of FUT2 secretor status on the level of 

Blautia. We estimated the proportion of FUT2 secretor effect on Blautia that mediated Ep-

CAM level using package mediation for R 89. The significance of mediated and direct 

effects of FUT2 secretor status on Blautia was estimated using heteroskedasticity-consistent 

standard errors for quasi-Bayesian simulations and 10,000 permutations.

Microbial association analysis after correcting for BMI

A group of metabolism-related proteins, including PAI and PON3, were associated to the gut 

microbiome. We hypothesized that BMI might be a confounding variable. To further assess 

whether these microbial associations were related to or independent of BMI, we repeated 

microbial association analysis including BMI as a covariate.
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Fig. 1. Study analysis workflow.
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Fig. 2. Proportion of inter-individual variation explained by genetic and microbial factors.
Each bar represents a protein. Y-axis is the explained variation. Proportion of variation is 

separated into cis-pQTLs (blue), trans-pQTLs (green) and microbiome (red).
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Fig. 3. Association of FUT2, Ep-CAM and Blautia.
On all plots, level of Ep-CAM and log-transformed abundance of Blautia genus are scaled to 

mean=0/SD=1. A. Association between plasma level of Ep-CAM and secretor/non-secretor 

status of ABH antigens encoded by a genetic variant rs601338 within FUT2 gene. B. 

Association between Blautia and secretor/non-secretor status in two independent cohorts. C. 
Association between plasma levels of Ep-CAM and abundance of Blautia. Each circle 

represents an individual sample: secretor individuals (blue) and non-secretors (red). D. 
Partial correlation analysis among FUT2, Ep-CAM and Blautia. Partial correlation 

coefficient and P-value are labeled at each edge.
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Fig. 4. Network of protein co-abundance and protein-protein interactions.
Each circle represents a protein. Circle size indicates the proportion of total explained 

variation. Large circles suggest a large amount of variation could be explained by genetic 

and/or microbial factors. Small circles suggest a small proportion of variation explained. The 

pie chart in each circle reflects the relative contributions of cis-pQTLs, trans-pQTLs and gut 

microbiome to the total explained variation. Blue edges refer to co-abundance of Bayesian 

network analysis. Red edges refer to experimentally verified protein-protein interaction. Two 

sub-networks are highlighted: a group of proteins involved in metabolism (pale green area) 

and a group of genes functioning in neural system (light gray area).
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Fig. 5. Genetic-microbiome interaction for CNTN1.
A. Trans-pQTL effect of CNTN1 at SNP rs61261356 in the TMEM8A/AXIN1 locus. B. 
Association between plasma level of CNTN1 and the bacterial chorismate biosynthesis 

pathway. C. Genetic-microbiome interaction in CNTN1. Association strength between 

CNTN1 and chorismate biosynthesis is different and significantly lower in homozygous 

individuals.
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