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Biallelic loss-of-function mutation in NIK causes
a primary immunodeficiency with multifaceted
aberrant lymphoid immunity
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Primary immunodeficiency disorders enable identification of genes with crucial roles in the

human immune system. Here we study patients suffering from recurrent bacterial, viral and

Cryptosporidium infections, and identify a biallelic mutation in the MAP3K14 gene encoding

NIK (NF-kB-inducing kinase). Loss of kinase activity of mutant NIK, predicted by in silico

analysis and confirmed by functional assays, leads to defective activation of both canonical

and non-canonical NF-kB signalling. Patients with mutated NIK exhibit B-cell lymphopenia,

decreased frequencies of class-switched memory B cells and hypogammaglobulinemia due to

impaired B-cell survival, and impaired ICOSL expression. Although overall T-cell numbers are

normal, both follicular helper and memory T cells are perturbed. Natural killer (NK) cells are

decreased and exhibit defective activation, leading to impaired formation of NK-cell

immunological synapses. Collectively, our data illustrate the non-redundant role for NIK in

human immune responses, demonstrating that loss-of-function mutations in NIK can cause

multiple aberrations of lymphoid immunity.
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P
rimary immunodeficiency disorders represent unique
models to identify factors essential for host defense and
immune homeostasis. In humans, development of mature B

cells from immature precursor cells is critically dependent on
signalling pathways downstream of B-cell receptor (BCR) and
on tumour necrosis factor-a (TNFa) receptor superfamily
members including BAFF receptor (BAFFR), TACI and CD40
(reviewed in ref. 1). BAFFR signals are needed to mature beyond
the transitional B-cell stage2, while lymphotoxin-a1/b2 (LTb)
and CD40 ligand (CD40L) are required for thymic and secondary
lymphoid organ structure, respectively3. CD40-mediated signalling
additionally orchestrates processes dependent on CD4þ T-helper
cells such as class-switch recombination (CSR) and somatic
hypermutation (SHM) in the germinal centre (GC) reaction and
CD8þ cytotoxic T-cell memory4.

BAFFR, CD40 and LTb receptors transmit signals through the
non-canonical nuclear factor-kB (NF-kB) pathway (reviewed in
ref. 5), which induces proteolytic processing of p100 to p52
(ref. 6). Together with RelB, p52 forms a heterodimer that upon
nuclear translocation functions as transcriptional activator of a
subset of NF-kB target genes5. Processing of p100 depends on the
phosphorylation of the serine residues 866 and 870, which is
controlled by the MAP3 kinase–kinase–kinase NIK (NF-kB
inducing kinase, MAP3K14)6 through NIK’s substrate IkB kinase
a (IKKa)7. Non-canonical NF-kB signalling is controlled by TNF
receptor associated factor (TRAF) proteins TRAF2 and NIK’s
negative regulator TRAF3, whereby a TRAF3-containing complex
continuously targets NIK for degradation under steady-state
conditions5. On receptor activation, TRAF3 is degraded and NIK
protein levels can accumulate, allowing NIK to phosphorylate and
activate downstream effectors.

To date, human patients carrying mutations in MAP3K14
have not yet been described. In Nik mutant mice (aly;
alymphoplasia)8,9 and knockout animals3, lymph nodes, Peyer’s
patches as well as splenic and thymic structures are severely
disorganized. In addition, B-cell numbers are reduced and
immunoglobulin (Ig) serum levels are decreased leading to
humoral immunodeficiency. Although the function of NIK in B
lymphocytes has been well established, the role of NIK-dependent
signalling for T and natural killer (NK) lymphocytes is less well
understood.

Here we report a combined immunodeficiency syndrome
caused by biallelic mutations in the gene encoding NIK,
encompassing B-cell lymphopenia and impaired memory B-cell
differentiation. We also identify abnormal NK-cell development
and function, as well as aberrant T-cell responses, indicating
that biallelic loss-of-function mutations in NIK cause a
hitherto unrecognized, pervasive combined immunodeficiency
syndrome.

Results
Identification of a homozygous mutation in MAP3K14.
We studied a large consanguineous pedigree with two patients
(termed P1 and P2) who showed signs of combined immuno-
deficiency including recurrent, severe bacterial and viral infec-
tions and Cryptosporidium infection (Supplementary Fig. 1a,b
and Supplementary Tables 1 and 2; see Supplementary Note for
further clinical course details). Investigation for known genetic
aetiologies of defective CSR including CD40 and CD40L
deficiencies and gain-of-function PIK3CD mutations10,11 was
performed; however, no mutation was identified.

Immunological assessment in both affected patients revealed
decreased immunoglobulin levels (Supplementary Table 1) and
decreased numbers of both B and NK cells, while T-cell numbers
were within normal age-adjusted ranges (Supplementary Table 3).

As decreased immunoglobulin levels and B-cell numbers
suggested impaired B-cell development and function, we
performed flow cytometry-based immunophenotyping to assess
the relative frequencies of CD27þ memory B-cell populations.
Both patients showed a relative reduction of total CD19þ B cells
in peripheral blood (Fig. 1a). Absolute blood cell counts revealed
B lymphopenia in P2, while B-cell numbers in P1 were in the age-
matched lower normal range (Supplementary Table 3). Patients
had decreased CD19þCD27þ IgDþ marginal zone-like/innate B
cells and CD19þCD27þ IgD� class-switched memory B cells
compared with controls12, suggesting defects in late stages of
B-cell development and activation (Fig. 1a).

Given the consanguineous background, an autosomal-recessive
inheritance mode was assumed. To unveil the presumed
monogenetic cause of disease, single-nucleotide polymorphism
(SNP) array-based homozygosity mapping of P1 and P2 (Fig. 1b
and Supplementary Table 4) was combined with exome
sequencing (ES) (Fig. 1c) of P1. Single-nucleotide variants
(SNVs) and insertion/deletion variants resulting from ES were
filtered for those present inside homozygous candidate intervals
shared between both affected patients. Synonymous and
non-coding variants were excluded. We identified a single
homozygous variant on chromosome 17q21 in MAP3K14
(c. C1694G, p. Pro565Arg) present in both patients (Fig. 1d
and Supplementary Fig. 1), which was not detected in
dbSNPbuild137, 1000Genomes, ENSEMBL, UCSC, NCBI or
EVS (Exome Variant Server) public SNP databases. The Pro565
residue of NIK is located within the kinase domain of the protein
(Fig. 1e) and is highly conserved throughout evolution (Fig. 1f).
The exchange from proline to arginine at this position was
predicted as highly deleterious using the functional prediction
algorithms Polyphen-2 and SIFT with maximum scores (1.0 and
0.0, respectively).

Effects of NIKPro565Arg on kinase function. Pro565 forms part
of the APE motif within a helix in the activation segment of the
kinase13. This motif is conserved in NIK from various vertebrate
phyla as well as in orthologous serine/threonine kinases (Fig. 1f).
An exchange of a non-polar, conformationally rigid amino acid
as in NIKPro565Arg may have an impact on protein folding
and function. The protein stability analysis tool CUPSAT
predicted that the overall stability of NIKPro565Arg may be
compromised (Supplementary Table 5). Coarse-grained molecular
dynamics simulation of NIKwild-type and NIKPro565Arg showed
conformational changes within the kinase domain. Notably, the
nearby Thr559 residue has been reported to form a hydrogen
bond with Lys517 in the catalytic loop (Fig. 2a) and mutation of
Thr559 has been found to reduce kinase activity14,15. In the
NIKwild-type simulation, Pro565 remains buried within the
protein in the vicinity of the ATP-coordinating centre, allowing
hydrogen bond formation between Lys517 and Thr559 (Fig. 2a).
In the NIKPro565Arg simulation, the mutated arginine residue
transitions towards the protein surface, thereby increasingly
contacting the surrounding solvent and repositioning adjacent
helices. In the simulation, Arg565 prevents Thr559 from forming
a hydrogen bond with Lys517 in the ATP-coordinating centre,
thereby impairing the kinase activity of NIK (Fig. 2b,c).

To experimentally assess the effect of the mutation, we
analysed the kinase activity of NIKPro565Arg compared
with NIKwild-type and the catalytically inactive mutant
NIKLys429Ala/Lys430Ala (ref. 16) by testing NIK-dependent
phosphorylation of IKKa. Recombinantly expressed NIKwild-type,
but not NIKPro565Arg or NIKLys429Ala/Lys430Ala, could phosphorylate
both endogenous (Fig. 2d) and co-expressed IKKa (Supplementary
Fig. 2) in HEK293 cells. These data demonstrate that NIKPro565Arg
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represents a loss-of-function mutation with respect to abolished
kinase activity towards its direct target IKKa.

Defective non-canonical and canonical NF-jB signalling.
Processing of p100 into p52 and nuclear translocation of the
p52/RelB complex is an essential step following NIK activation6.
Therefore, we studied activity of the non-canonical NF-kB
pathway in response to activation with BAFF and LTb,
respectively. In patient-derived Epstein–Barr virus-immortalized
lymphoblastoid cell lines (B-LCL), total NIK protein levels (which
are tightly controlled via proteolysis5) were unaffected (Fig. 3a).
However, levels of its immediate downstream target IKKa were

elevated and p100 accumulated already before BAFF-mediated
BAFFR ligation (Fig. 3a), possibly reflecting pre-activation of the
NF-kB pathway in B-LCL by viral proteins17. Despite p100
accumulation, p52 protein levels were decreased (Fig. 3a),
resulting in a severely reduced nuclear content of p52 and a
lower nuclear content of RelB in patient-derived cells (Fig. 3b),
demonstrating functional insufficiency of the non-canonical
NF-kB pathway in patient-derived cells.

Next, we tested the effect of NIKPro565Arg in NF-kB activation
upon LTb stimulation, which is strictly dependent on NIK18.
LTb can activate non-canonical NF-kB signalling as well as the
IKKa-IKKb-NEMO complex mediating nuclear translocation of
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Figure 1 | Identification of MAP3K14/NIK mutation in patients with defective B cells. (a) Flow cytometry plots illustrating decreased CD19þ B cells and

decreased CD27þ IgD� class-switched memory B cells in P1 and P2. Plots representative of three independent experiments. (b) SNP array based

homozygosity mapping revealed several homozygous candidate intervals shared between both patients, including an interval on chromosome 17q21,

described in the box. (c) Scheme of exome sequencing workflow and filtering strategy. SNVs, single nucleotide variants; DIVs, deletions and insertions

variants. (d) Capillary DNA sequencing of the regions adjacent to the nonsense mutation in MAP3K14 in P2 and core family members. Chromatograms

shown for a healthy sister of P2, the mother of P2 and P2. The mutated residue is indicated by a grey box. (e) Schematic representation of the
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indicates Pro565 mutated in P1 and P2; Thr559 printed in green.
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canonical NF-kB complexes19. Stimulation of patient fibroblasts
with the NIK-independent canonical NF-kB activator TNFa led
to a rapid decay of IkBa, a hallmark event of canonical NF-kB
signalling (Fig. 3c). In contrast, patient cells failed to induce IkBa
decay after LTb stimulation (Fig. 3d). Consistent with these
findings, immunofluorescent staining showed defective nuclear
translocation of both p52 and p50 in patient primary fibroblasts
upon LTb stimulation (Fig. 4a,b).

To demonstrate the causative role of NIKPro565Arg for
deficient non-canonical NF-kB signalling, we performed retro-
viral-mediated gene transfer of MAP3K14 into patient fibroblasts.
Expression of NIKwild-type reactivated non-canonical NF-kB
signalling manifesting in nuclear translocation of p52
(Fig. 4c,d), demonstrating that the presence of functional NIK
protein is the limiting factor for p100 activation.

Although NIK may have IKKa-independent functions20, the
main function of the protein comprises the catalytic activity as a
kinase and activation of the signalling cascade leading to NF-kB
translocation. As the NIKPro565Arg mutant is catalytically inactive
and therefore deleterious to these functions, the phenotype
caused by NIKPro565Arg is hereafter also referred to as functional
NIK deficiency.

Reduced survival of mature B cells. The spontaneous Map3k14
mouse aly mutant8,9 and Map3k14 knockout mice3 show reduced
mature B-cell numbers and decreased Ig serum levels, resulting in
defects in both antibody and cellular immune responses. In
addition, non-canonical NF-kB signalling mediated by Nik
controls CSR, in particular to IgA isotype21. Accordingly,
patients bearing NIKPro565Arg had severely reduced total B-cell
counts and impaired generation of CD27þ IgD� class-switched
memory B cells in the peripheral blood (Fig. 1a), leading to
chronically reduced IgA titres in both patients and to reduced IgG
levels in P1 at the age of 10 months (Supplementary Table 1)

prompting intravenous immunoglobulin substitution. This led us
to test whether NIK is involved in CSR and SHM, processes
essential for the generation of high-affinity antibodies.

To study the occurrence of SHM in B cells, we analysed the
mutation frequency in rearranged variable regions of the Ig heavy
chain (IGHV) genes by cloning and sequencing the IGHV3 and
IGHV4 rearranged gene families of both g- and a-chain
immunoglobulin transcripts (Cg and Ca). The percentage of
mutations within the analysed IGHV regions was significantly
reduced in NIKPro565Arg-bearing patients compared with age-
matched healthy donors, although not as severely as in CD40L-
deficient patients who showed near-complete absence of muta-
tions in IGHV Ca and completely lacked Cg transcripts (Fig. 5a)22.

Next, we investigated activation and CSR capacity of
NIKPro565Arg B cells by stimulating peripheral blood mono-
nuclear cells (PBMCs) with a range of stimuli. Patient B cells were
able to respond to stimulation with CD40L and IL4 by
upregulating the activation markers CD95 and CD69, as well as
the costimulatory molecule CD86, although to a lesser extent than
B cells from a healthy donor (Fig. 5b). Notably, patient B cells
were only partially able to upregulate the activation marker
CD25, suggesting impaired IL2-mediated survival and prolifera-
tion23. As NIKPro565Arg B cells were largely able to upregulate the
aforementioned activation markers, we further tested their
proliferation capacity and ability to undergo CSR in response to
CD40L and IL4 stimulation. Indeed, we observed a progressive
increase in the percentage of DAPI (40,6-diamidino-2-
phenylindole)-negative blasts in NIKPro565Arg mutant cells
(Supplementary Fig. 3a) over a course of 9 days, consistent
with activation and proliferation of cells upon stimulation with
CD40L and IL4 (ref. 24). Furthermore, B cells with mutated NIK
underwent CSR to IgG in vitro, albeit with reduced frequency at
day 6 when compared with controls (Fig. 5c), probably due to
delayed lymphocyte proliferation (Supplementary Fig. 3a).
Concomitant to proliferative outgrowth of lymphocytes at day 9,
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CSR to IgG was restored to levels comparable to control cells
(Fig. 5c). NIKPro565Arg mutant B cells did not proliferate after
in vitro stimulation with CD40L/IL21 (Fig. 5d and Supplementary
Fig. 3b), despite intact expression of IL21 receptor on patient B
cells (Supplementary Fig. 4a) nor after in vitro stimulation
with anti-IgM/CpG or anti-IgM/CpG/BAFF-Fc (Supplementary
Fig. 3c,d). These data demonstrated the inability of NIKPro565Arg

B cells to respond to BCR, TLR9, IL21R and/or BAFFR
stimulation. Only CD40L/IL4 stimulation, known to mediate
survival and proliferation of primary B cells25,26, could induce cell
proliferation (Fig. 5d and Supplementary Fig. 3a), suggesting that
intact NIK is required to relay signals essential for survival and
proliferation of activated mature B-cell populations.

Given the partial phenotypic overlap of functional NIK
deficiency and IL21 (receptor) deficiency27,28 (for example,
colitis, susceptibility to Cryptosporidium infection, hypogamma-
globulinemia and decreased frequencies of class-switched B cells,
defective antigen-specific T-cell proliferation and impaired NK-
cell cytotoxicity), we sought to exclude an involvement of NIK in
IL21-mediated signalling in B cells. Indeed, although classical
signalling via STAT3 (signal transducer and activator of
transcription 3) phosphorylation was readily observed after
stimulating sorted B cells with IL21, no activation of p100
processing could be detected (Supplementary Fig. 5).

As NIK is an integral component of the non-canonical NF-kB
pathway downstream of the BAFFR, which plays a key role in
mature B-cell survival29, we investigated whether functional NIK
deficiency resembles phenotypes found in BAFFR deficiency2,30.

Similar to findings in Baffr� /� mice30, B cells of both patients
showed lower cell surface expression of CD21, involved in pro-
survival signalling on B cells31 (Fig. 5e). This observation
prompted us to investigate whether the NIKPro565Arg mutant
affects the expression of anti-apoptotic genes BCL2, BCL2L1 and
MCL1 by quantitative reverse transcriptase–PCR in sorted naı̈ve
mature CD19þCD27� IgDþ B cells. From the transcripts tested,
BCL2 expression was markedly downregulated in patient naive B
cells compared with heterozygous parent and healthy donor
controls (Fig. 5f and Supplementary Fig. 4b). To exclude that
functional NIK deficiency ablated BAFFR expression, we analysed
surface BAFFR levels by flow cytometry on PBMCs stimulated
in vitro with CD40L and IL4 for 9 days. BAFFR expression on B
cells from P1 was comparable to B cells from control parent or
healthy donor (Supplementary Fig. 4c).

BAFFR-deficient patients display a partial block in develop-
ment beyond the transitional CD19þCD21low/intermediate

B-cell stage2. As NIKPro565Arg patient peripheral B cells had
overall a CD19þCD21low/intermediate phenotype, we tested the
expression of the alternative transitional B-cell markers IgM, CD10,
CD38 and CD5. Transitional B cells (defined as CD19þ IgMhiIgDþ

and CD19þCD23�CD27�CD5þ IgMhi, respectively) were
increased, in particular the CD19þCD38þCD10� transitional
T2 population, indicating a partial block in B-cell maturation
(Supplementary Fig. 4d,e). Taken together, the NIKPro565Arg loss-
of-function mutant causes a partial block of B-cell development
between transitional and naive mature B-cell stages accompanied
by impaired survival of mature peripheral B cells.
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Aberrant T-cell phenotype and antigen-specific proliferation.
Next, we assessed the effect of NIKPro565Arg on T cells. Overall
CD3þCD4þ helper T-cell and CD3þCD8þ cytotoxic T-cell
subset distribution was unaffected (Supplementary Fig. 6a), T-cell
receptor Vb repertoires were polyclonal (Supplementary Fig. 7)
and regulatory T cells were unaltered (Supplementary Fig. 6b).
Upon stimulation of PBMCs with T-cell proliferation stimuli
such as anti-CD3 antibody (clone OKT3), phorbol 12-myristate
13-acetate, Staphylococcal enterotoxin A, Staphylococcal enter-
otoxin B or phytohaemagglutinin, normal proliferative responses
were observed (Fig. 6a). In contrast, when the antigen-specific
stimuli tetanus toxoid or purified protein derivatives of Myco-
bacterium tuberculosis were used, proliferative responses were
severely reduced (Fig. 6b) despite prior tetanus and Bacillus
Calmette–Guérin vaccination. These observations prompted us to
assess the presence of naive and memory T-cell subsets in both
patients. The relative proportions of CD4þ effector memory
T cells (TEM) (markers CD4þCD45RA�CCR7� or CD4þ

CD45RA�CD27� , respectively) were comparable between
patients and healthy controls and were within the normal age-
matched range32 (Supplementary Fig. 6c,d and Supplementary
Table 3). Relative numbers of CD8þ memory T cells from both

patients were also within the highly variable normal range32.
However, P1 exhibited a remarkable expansion of CD8þ

TEM cells and terminally differentiated effector memory
T cells (TEMRA, identified as CD8þCD45RAþCD27� or
CD8þCD45RAþCCR7� ; Supplementary Fig. 6c,d), possibly
attributable to the persistent cytomegalovirus (CMV) viremia in
P1 (Supplementary Table 2). Increased IL7R/CD127 expression
on CD8þ T cells identifies long-lived memory cells33,34. Similar
to Nik-deficient mice35, we found dramatically reduced CD127
expression on CD8þ memory T cells, on CD8þ TCM and on
CD8þ TEM in both P1 and P2 (Fig. 6c), pointing towards
impaired memory responses to viral infections observed in P1
(Fig. 6b and Supplementary Table 2).

Interaction of inducible co-receptor ICOS with ICOS ligand
(ICOSL) is important for the differentiation of follicular helper
TFH cells and for memory responses of both T and B cells36. TFH

cells localize to GC reactions within secondary lymphoid organs
where they interact with B cells to aid antibody production and
maturation37. TFH cell numbers are reduced in ICOS-deficient
common variable immunodeficiency and in CD40L or CD40
deficiency37. Indeed, we found decreased proportions of TFH cells
(identified as CXCR5þCD45RA� ) in both patients compared
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with an age-matched healthy donor (Fig. 6d) and with previously
reported healthy donors38. As TFH cell development is dependent
on ICOSL expression on B cells which is controlled by non-
canonical NF-kB signalling39, we hypothesized that NIKPro565Arg

causes reduced ICOSL expression leading to impaired TFH

generation. Thus, we stimulated PBMCs with CD40L for 36 h
and monitored ICOSL expression by flow cytometry. Patient,
control parent and healthy donor B cells responded to CD40L
stimulation by inducing CD69 expression; however, although
control cells were able to upregulate ICOSL, the patient cells
failed to do so (Fig. 6e). In summary, NIKPro565Arg patients
exhibit defective differentiation into TFH and impaired function
of memory T-cell subsets.

Decreased numbers and functional impairment of NK cells.
Consistently low NK-cell numbers in both patients
(Supplementary Table 3) along with the susceptibility to CMV,
for which NK-cell-mediated defense is relevant, prompted a
detailed phenotypic analysis of NK cells. Both patients bearing the

NIKPro565Arg mutant had low numbers of NK cells in the
peripheral blood, particularly P1 (Fig. 7a). Despite their low
frequency, NK cells showed normal expression of the cell-surface
markers perforin, CD16, CD69, CD57 and NKG2C, hallmarks of
acquisition of cytotoxic function (Supplementary Fig. 8). Both
CD56bright and CD56dim NK cells, representing subsequent stages
of NK cell development, were present (Fig. 7a and Supplementary
Fig. 8). In addition, patients expressed markers associated with
pre-terminal NK-cell developmental stages, including CD117,
CD27, CD11a, KIR2DL4 and CD94, at levels comparable to
healthy donors (Supplementary Fig. 8). The notable exception
was CD62L, which was expressed by a markedly lower proportion
of NK cells with NIKPro565Arg (Fig. 7b).

To determine whether the NK cells present were able to
exert cytolytic function and cytokine secretion, we performed
activation with phorbol 12-myristate 13-acetate and ionomycin.
Notably, production of interferon-g and TNFa were markedly
reduced in patient NK cells, in comparison with stimulated
healthy donor cells (Fig. 7c). Although patient NK cells
expressed comparable levels of perforin compared with
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healthy donor cells (Supplementary Fig. 8), they degranulated at
a significantly lower frequency as measured by the expression of
CD107a (LAMP1) on the cell surface after stimulation (Fig. 7c).

To further define the cytolytic potential of these cells, we
evaluated key components of cytotoxicity by quantitative confocal
microscopy. Patient-derived NK cells failed to accumulate F-actin
at the immunological synapse following incubation with
susceptible targets (Fig. 7d,e). In addition, lytic granules failed
to polarize to the lytic synapse (Fig. 7e). In concert with the flow
cytometric analyses, these data suggest a marked inability of
NIKPro565Arg NK cells to become activated and exert cytolytic
function.

Discussion
TNFa receptor family signalling is essential for B-cell immunity
in humans as illustrated by deficiencies in CD40L, CD40 and
BAFFR40. NIK is an integral component of the non-canonical
NF-kB pathway downstream of these receptors5.

Studies in the mouse aly mutant8,9 and Nik knockout mice3

described B-cell deficiency due to disorganized lymph nodes,
Peyer’s patches and splenic architecture, accompanied by B-cell
lymphopenia and low serum Ig levels due to compromised CSR
and SHM41. We here identify patients with biallelic mutation in

NIK, leading to loss-of-function of the kinase function of NIK.
We show that human functional NIK deficiency recapitulates
phenotypes described in the mouse studies including B-cell
lymphopenia, impaired CSR and SHM, decreased marginal zone
and memory B cells, and hypogammaglobulinemia. Although
ethic considerations prevented us from obtaining patient biopsies
to further investigate secondary lymphoid organ structures, the
absence of lymph nodes on repeated clinical examinations
suggests that secondary lymphoid organs may be disturbed on
loss-of-function of NIK, similar to the observations in mouse
models3,8,41.

To extend the murine studies on NIK function in B cells, we
investigated the survival properties of patient peripheral blood B
cells. In vitro stimulation of BAFFR together with BCR and TLR9
resulted in absence of B cells, suggesting a profound survival
defect. This is supported by earlier studies showing that Nik
overexpression or expression of the NikDT3 mutant in mice
(resistant to Traf3-mediated degradation) leads to increased
survival of B cells42. Here we find significantly decreased
expression of the anti-apoptotic gene BCL2 in peripheral
NIKPro565Arg B cells, leading to reduced survival. This is most
probably the result of impaired BAFF signalling, as NIK is an
integral molecule downstream of BAFFR required for B-cell
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survival2,29,30. Recently, a common variant in BAFFR has been
shown to modulate NF-kB signalling albeit without effects on
survival and subset composition of B cells43. Although we
identified this variant in our patients, its presence could not
explain the B-cell defects described in this study. BAFFR
signalling also activates the expression of the B-cell maturation
marker CD21 on transitional B cells2,30,44. CD21-deficient mice
display severely impaired GC B-cell development and T-cell-
dependent B-cell responses45 due to reduced GC B-cell survival46.
CD21 deficiency in humans leads to reduced class-switched
memory B cells and hypogammaglobulinemia47. Therefore, the
reduced CD21 expression on peripheral patient B cells we
observed may provide an additional explanation for B-cell
survival defects in NIKPro565Arg patients.

Stimulation with CD40L and IL4, a cytokine with potent anti-
apoptotic activity mediated by Stat6-dependent upregulation of
Bcl-xL26, led to CSR with nearly normal frequency, but delayed
kinetics, indicating that at least a proportion of patient B cells was

responsive to these stimuli, and that the CSR process itself is
largely functional. As CD40 stimulation can signal both via
canonical and non-canonical NF-kB pathways leading to AID
expression and Igg germline transcription48, our findings indicate
that CD40L-mediated, NIK-independent NF-kB signalling
contributes to CSR. Delayed CSR kinetics might also be
explained by an increased proportion of transitional B cells in
patient PBMCs, which reacted more slowly to the B-cell
activation stimuli, similar to BAFF-deficient B cells2.

As the clinical phentoype suggested a combined immuno-
deficiency and because recent studies have focused on the role of
NIK in T cells35,49,50, we aimed at investigating T-cell functions
and T-cell interplay with B cells in patients carrying
NIKPro565Arg. Previous studies indicate that NIK-dependent
NF-kB signalling is required for ICOSL expression on activated
B cells, directing TFH differentiation via interaction with ICOS39.
TFH cells in turn stimulate B-cell differentiation by expressing
CD40 and IL21 (ref. 37). This intimate cell–cell communication
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leads to the formation of GCs, structures essential for generation
of high-affinity antibody responses. Abrogated ICOSL upregulation
on B cells and reduced TFH cells in the here described patients
probably contribute to impaired GC formation; however, in situ
analysis of GCs were precluded by ethical constraints.

Another lymphocyte communication process dependent on
CD40 signalling via CD4þ T-cell help is CD8þ T-cell memory
maintenance. Subsequent stimulation of IL7R expression is
characteristic and essential for CD8þ memory T-cell survival4.
Therefore, lack of IL7R expression on both Nik-deficient mouse35

and human (this study) CD8þ memory T cells may contribute to
the inability of T cells with NIKPro565Arg to respond to tetanus
toxoid and tuberculin despite prior vaccination. Recently,
data from ICOSL-deficient patients has implicated ICOSL
costimulation in maintenance of memory populations51,
possibly providing an additional explanation for memory
defects in patients carrying NIKPro565Arg.

Patients exhibiting defects in canonical NF-kB signalling such
as NEMO52,53 or IKKb deficiency54 and IkBa hypermorphism55

also show antibody deficiencies. Consistent with multiple roles of
canonical NF-kB signalling, they show pleiotropic defects
throughout the adaptive and innate immune system and
developmental defects. Patients with heterozygous mutations in
NFKB2/p100 have recently been described with B-cell deficiency
and autoimmunity56. Although showing similar manifestations,
functional NIK deficiency is more severe than the heterozygous
NFKB2 mutation in humans (this study) and mice5. This may be
due to the increased p100 levels in NIKPro565Arg B-LCL that
we detected, potentially caused by compensatory increase of NIK-
independent canonical NF-kB signalling, which can upregulate
p100 expression19. In line with this, unprocessed p100 is known
to specifically sequester and inhibit RelB5, leading to a severe
signalling defect.

CD40-dependent IL12 secretion by monocytes is crucial in the
defense against mycobacteria. The disseminated Bacillus Calm-
ette–Guérin infection observed in P1 illustrates mycobacterial
susceptibility similar to NEMO57 and IKKb-deficient patients54.
As NIK can signal via both non-canonical and canonical pathway,
NF-kB response to mycobacteria may depend on NIK, suggesting
that functional NIK deficiency causes defective CD40 signalling in
monocytes as well.

Recently, impaired NK-cell function has been recognized for
several primary immunodeficiencies (reviewed in ref. 58) most
often manifesting in susceptibility to infection by herpesviruses
(for example, CMV). NK-cells were persistently decreased in
patients carrying NIKPro565Arg. Interestingly, CD62L expression,
a marker linked to mature NK-cell subsets with stronger cytolytic
functions59, was downregulated on patient NK cells. Indeed,
although they acquired appropriate developmental and
maturity markers, including perforin, patient cells failed to
become activated as shown by impaired cytokine secretion,
degranulation and polarization of lytic granules towards
targets. NIK has not been linked to NK-cell function so far.
As canonical NF-kB signalling has been implicated in NK-cell
activation60, these signals may depend on NIK and therefore
mirror NK-cell phenotypes such as those found in CD40L or
NEMO deficiencies.

Interestingly, despite the potential defects in secondary
lymphoid organ organization discussed above, allogeneic haema-
topoietic stem cell transplantation (aHSCT) improved the overall
condition of patient P1, suggesting that functional NIK deficiency
is amenable to aHSCT to at least partially correct the disease. The
fatal outcome for P2 (who had received aHSCT without prior
conditioning and succumbed shortly after a second aHSCT
including conditioning) suggests that at least reduced-intensity
conditioning is indicated for successful treatment using aHSCT.

In sum, we identify functional NIK deficiency as a novel,
pervasive combined primary immunodeficiency syndrome.
Our data revealed an unexpectedly broad range of phenotypic
aberrations affecting B-, T- and NK-lineages, and thus highlight
essential roles for NIK and adequate control of non-canonical
NF-kB signalling for generation and maintenance of the human
immune system.

Methods
Patient and ethics. This study has been approved by the ethics committee at the
Medical University of Vienna, Austria. Biological material was obtained on
informed consent in accordance with the Declaration of Helsinki. Clinical
data from the patients was provided in anonymized form by the responsible
physician(s). The patients were evaluated, followed up and treated at the
Department of Immunology at Ankara University in Turkey, covered by the
local ethics agreement.

Homozygosity mapping. Affymetrix 6.0 SNP-based homozygosity mapping
was performed in both patients and in both parents of P1, to map homozygous
intervals common to both patients but not present in the parents.

Ten microlitres of 50 ng ml� 1 DNA from the patients were used. The protocol
was carried out according to the Affymetrix Genome-Wide Human SNP Nsp/Sty
6.0 protocol. The results were analysed using the Affymetrix Genotyping Console
software and PLINK whole genome data analysis toolset (http://pngu.mgh.
harvard.edu/Bpurcell/plink/) as previously described61.

Exome sequencing. A multiplexed 50-bp paired-end read ES was carried out for
P1 on Illumina HiSeq2000 Sequencer running on HiSeq Control Software 1.4.8,
Real Time Analysis Software 1.12.4.2. The sample preparation used 1 mg of
genomic DNA fragmented using Illumina TruSeq DNA Sample Preparation Guide
and the Illumina TruSeq Exome Enrichment Guide version 3. The DNA fragment
clusters generated ran in a multiplexed pool with five other samples distributed on
three lanes of the flow cell.

The data analysis was carried out as previously described62 using Burrows–
Wheeler Aligner to align the reads to the human genome 19. Insertion/deletion
realignment was performed as well as GATK (Genome Analysis Toolkit) base
quality score recalibration. For SNV and insertion/deletion calling, Unified
Genotyper and GATK Variant quality score recalibration was performed. SNV and
insertion/deletion lists were uploaded to SeattleSeq Annotation database. Known
variants (present in 1000Genomes or dbSNP build 137, date of accession: 2 January
2012) were excluded and the lists were filtered for nonsense, missense and splice-
site variants present within the homozygous regions detected in both patients and
absent in the parents. In addition, ENSEMBL, UCSC, NCBI and EVS public SNP
databases (date of accession: 20 February 2012) were interrogated for presence of
the variant.

The validation and segregation of the variants found in the final hit list from ES
were performed using capillary sequencing on genomic DNA from both patients
and family members as described below.

Variant validation by capillary sequencing. Primers for the variants detected
with whole ES were designed using ExonPrimer software from the Helmholtz
Center Munich (http://ihg.gsf.de/ihg/ExonPrimer.html) and PrimerZ63,
respectively, and ordered from Sigma Aldrich, Austria. PCR amplification of the
detected variants was performed using Expand High Fidelity PCR System
(Roche, Basel, Switzerland).

Capillary sequencing of amplicons was performed on the Applied Biosystems
3130xl Genetic Analyzer capillary sequencer running 3130xl Genetic Analyzer Data
Collection Software v3.0, using Big Dye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, Germany). Sequence Analysis Software Version 5.2 was used
for analysis of the sequences and heterozygous signals with ambiguity code were
indicated when 25% of the signal intensity was exceeded. Reads were aligned to
reference sequences using the Sequencher software, version 4.10.1.

In silico analyses and modelling of NIK protein structure. The algorithms
SIFT64, PolyPhen2 (ref. 65) (website accessed: 27 March 2012) and CUPSAT66

(website accessed: 9 December 2013) tools were used to predict the effect of the
identified mutation on protein function.

To obtain a hypothesis about the change in protein structure and dynamics
of the NIK variant compared with the wild-type, molecular dynamics (MD)
simulations of NIKwild-type and NIKPro565Arg were performed using the coarse-
grained model FREADY67 implemented in MOIL68 molecular modelling package.
We initiated the MD simulations from the crystal structure of NIK (PDB ID 4G3D,
chain A14) and let it run for 50 ns at 300 K. In the MD simulations, residues farther
than 9 Å from the mutated residue were fixed to the experimental structure. Protein
structures were aligned and visualized using MacPyMol (The PyMOL Molecular
Graphics System, Version 1.3 Schrödinger, LLC).
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Flow cytometry-based immunophenotyping and cell sorting. Immuno-
phenotyping characterization was performed on a BD LSR Fortessa, BC FACS
Canto or BD FACS Calibur. In brief, PBMCs from the patients, parents and healthy
donors were isolated using Ficoll density gradient centrifugation and either stored
frozen in liquid nitrogen and thawn at a later time point or immediately stained for
20 min at 4 �C with mouse anti-human antibodies using the following volumes
for one million cells in 100 ml: 2 ml CD3-APC-H7 (SK7), 3 ml CD4-APC (RPA-T4),
5 ml CD8-V500 (RPA-T8), 5 ml CD8-APC-H7 (SK1), 3 ml CD21-PE (B-ly4),
10ml CD25-PE (M-A251), 1 ml CD27-BV421 (M-T271), 10 ml CD27-FITC (L128),
2.5 ml CCR7-PE-CF594 (150503), 3 ml IgD-FITC (IA6-2), 10ml CD86-FITC
(2331, FUN-1), 5 ml CD95-PECy7 (DX2), 20ml IL21R-PE (17A12) (all from BD
Biosciences); 3 ml CD56-PE (N901) (from Beckman-Coulter); 2 ml CD3-BV711
(OKT3), 1.5 ml CD4-BV510 (OKT4), 0.2 ml CD45RA-BV605 (HI100), 5 ml CD127-
BV421 (A019D5) (all from BioLegend); 2 ml CD3-APC (SK7), 3 ml CD4-PerCP-
Cy5.5 (RPA-T4), 3 ml CD19-PerCPCy5.5 (HIB19), 5 ml CD69-APC (FN50),
3 ml ICOSL-PE (B7-H2; clone MIH12), 2.5 ml Foxp3-FITC (PCH101) (all from
e-Bioscience); and 10ml CXCR5-APC (51505; R&D Systems).

T and NK cells were evaluated using around 1� 106 PBMCs. The analysis of the
B-lymphocyte compartment was performed using around 4� 106 cells as
previously described2,69,70. NK cells were stained as described previously71. For
intracellular staining, PBMCs were activated for 3 h with 50 mg ml� 1 ionomycin
and 5 mg ml� 1 phorbol myristate acetate in the presence of Brefeldin A and
antibodies to CD107a and cell surface markers72. Cells were then fixed and
permeabilized with Cytofix/Cytoperm solution (BD Biosciences).

All analyses were performed using FlowJo X (TreeStar Inc.) and data were
graphed with Prism 6.0 (GraphPad Software).

Flow cytometry-based sorting of peripheral B-cell populations stained with
anti-CD19-PerCP-Cy5.5, anti-CD27-BV421, anti-CD3-APC-H7 and anti-IgD-
FITC as described above was performed on ultra-high-speed six-way digital cell
sorter from Beckmann Coulter at the Medical University Vienna Flow Cytometry
Core Facility.

Magnetic microbeads based sorting of peripheral B cells was performed using
anti-CD20 paramagnetic labelling according to the manufacturer’s instructions
(130-091-104, Miltenyi Biotec, Bergisch-Gladbach, Germany).

Quantitative real-time PCR analysis. Extraction of RNA from sorted B cells was
performed using RNeasy kit from Qiagen, first-strand complementary DNA
synthesis was done using Expand Reverse Transcriptase from Roche using both
oligo-dT and random hexamer primers, and gene expression was analysed by
quantitative PCR using Kappa Sybr Fast qPCR MasterMix ABI Bioprism from
Kappa Biosystems on 7900HT Fast Real-Time PCR System from Applied
Biosciences according to manufacturers’ instructions.

Intron-spanning primers were used for the gene expression analysis. The primer
sequences are as follows: BCL2-forward 50-CCGGGAGATGTCGCCCCTGGT
GGA-30 , BCL2-reverse 50-AGGCCGCATGCTGGGGCCGTA-30 ; MCL1-forward
50-TCGTAAGGACAAAACGGGAC-30 , MCL1-reverse 50-ACCAGCTCCTACT
CCAGCAA-30 ; BCL2L1-forward 50-GAATGACCACCTAGAGCCTTGG-30 ,
BCL2L1-reverse 50-TGTTCCCATAGAGTTCCACAAAAG-30 ; GAPDH-forward
50-TGATGGCATGGACTGTGGTC-30 , GAPDH-reverse 50-TTCACCACCATGGA
GAAGGC-30 .

Cell culture and stimulation conditions. Healthy donor, patient and family
members PBMCs (isolation as above) and Epstein–Barr virus transformed B-cell
line were maintained in RPMI-1640 medium supplemented with 10% of inacti-
vated FCS (Life Technologies, Gibco), 50 U ml� 1 penicillin, 50mg ml� 1 strepto-
mycin and 292 mg ml� 1 L-glutamin (all from Gibco) at 37 �C in a humidified
atmosphere with 5% CO2. PBMC stimulation conditions and reagents were
trimeric human CD40L and human BAFF-Fc, both produced as described2, and
human recombinant IL21 (ebiosciences) used at 20 ng ml� 1; B-LCL stimulation
conditions were hBAFF (R&D Systems; 2149-BF-010) used at 50 ng ml� 1 for
6–12 h; and primary fibroblast stimulation conditions were Lymphotoxin a1/b2
(R&D Systems, 678-LY-010) used at 50 and 100 ng ml� 1 from 15 min to 4 h and
TNFa (14-8329-62; eBioscience) used at 20 ng ml� 1 from 15 min to 4 h.

Primary fibroblasts and HEK293 cells were cultured in glucose-rich DMEM
(PAA), supplemented and cultured as above.

B-cell activation assays were performed by stimulating PBMCs with CD40L and
IL21 as described2 or using CD40L and IL4 (100 ng ml� 1, ImmunoTools) in
Iscoves’s modified DMEM medium (Invitrogen), supplemented with 10% heat-
inactivated FCS (Biowest), 100 U ml� 1 penicillin (Invitrogen), 100 mg ml� 1

streptomycin (Invitrogen), 1 mg ml� 1 insulin (Sigma-Aldrich), 1 mg ml� 1 reduced
glutathione (Sigma-Aldrich), 2.5 mg ml� 1 apo-transferrin (Sigma-Aldrich), 2 mM
glutamine (Life Technologies, Gibco) and 1% non-essential amino acids (Gibco).
Culture was started with equal number of cells and samples were analysed at days
3, 6 and 9 by flow cytometry.

Immunoblot analysis. Protein was isolated using cell lysis buffer containing
20 mM Tris (pH7.5), 150 mM NaCl, 2 mM EDTA, 1% TritonX-100 (pH7.1) and
complete protease inhibitor cocktail (Sigma Aldrich). Polyvinylidene difluoride or
nitrocellulose membranes were prepared according to standard methods. Primary

antibodies used for immunoblot analysis of NF-kB pathways were: rabbit anti-
human IKKa (2682), phospho-IKKa/b (2697), p100/p52 (4882), NIK (4994), RelB
(clone C1E4), TRAF3 (4729), p65 (clone D14E12), p105/p50 (3035) and mouse
anti-human IkBa (clone L35A5), all purchased from Cell Signaling and used at
1:1,000 dilution. For detection of tagged recombinant proteins, anti-human c-Myc
(551101, BD Biosciences) was used at 1:1,000 dilution and horseradish peroxidase-
coupled anti-HA (H6533, Sigma-Aldrich) was used at 1:3,000 dilution. For loading
controls, mouse anti-human GAPDH (clone 6C5; Santa Cruz Biotechnology) and
anti-human RCC1 (clone E-6; Santa Cruz Biotechnology) were used at 1:1,000
dilution. Horseradish peroxidase-conjugated goat anti-rabbit (Bio-rad) and goat
anti-mouse (BD Biosciences) secondary antibodies were used at 1:10,000 or
1:50,000 dilution and detected using a chemiluminescent substrate (Amersham
ECL Prime Western Blotting Detection Reagent, GE Life Sciences) together with
Hyperfilm ECL (Fischer Scientific).

Kinase assay. HEK293 cells were transfected in six-well plates with NIK- and/or
IKKa-tagged expression vectors generated by gateway recombination using the
pTO (carboxy-terminal streptavidin–haemagglutinin tag) or pCS2 (amino-terminal
6� myc tag) destination vectors73, lysed 24 h post transfection in lysis buffer
containing 20 mM HEPES (ph7.9), 20% glycerol, 50 mM KCl, 400 mM NaCl, 1 mM
EDTA, 1 mM dithiothreitol, 5 mM b-glycerophosphate, 1 mM phenylmethyl
sulphonyl fluoride, 5 mg ml� 1 apronitin, 10 mM NaF, 5 mg ml� 1 leupeptin and
5 mM Na3VO4, and subsequently subjected to SDS–PAGE and immunoblot analysis.

Amplification and sequence analysis of IGH transcripts. IgA and IgG tran-
scripts were amplified from cDNA of thawed PBMCs using subgroup-specific
forward primers in the leader sequence of IGHV3 and IGHV4 in combination with
a Ca or Cg consensus reverse primer22,74. All PCR products were cloned into the
pGEM-T easy vector (Promega) and prepared for sequencing on an ABIPRISM
3130xl (Applied Biosystems). Obtained sequences were analysed with the IMGT
database (http://www.imgt.org/) for IGHV, IGHD and IGHJ use, and mutation
analysis75.

T-cell proliferation analysis. T-cell proliferation assays were carried out as
described previously62,76.

T-cell CDR3 Vb spectratyping. TCR Vb spectratyping was performed as
previously described77 with minor modifications. The primers used were as before
with the following exceptions: Primers for variable regions, BV02-50-ACATACG
AGCAAGGCGTCGA-30 , BV04-50-CATCAGCCGCCCAAACCTAA-30 , BV07-
50-CAAGTCGCTTCTCACCTGAATGC-30 , BV17-50-TGTGACATCGGCCCAAA
AGAA-30 , BV21-50-GGAGTAGACTCCACTCTAAG-30 , BV24-50-CCCAGTTT
GGAAAGCCAGTGACCC-30 ; primers for constant regions (used for BV05,
BV06BC, BV20), CbB1- 50-CGGGCTGCTCCTTGAGGGGCTGCG-30 ; FAM-
marked constant primer-50-ACACAGCGACCTCGGGTGGG-30 .

Sequences were acquired using an ABI 3130xl Sequencer (ABI Applied
Biosystems) and analysed using GeneMapper software version 4.0.

Immunostaining of lymphotoxin-stimulated fibroblasts. Fibroblasts of patient
(P2) and healthy donor were stimulated with 100 ng ml� 1 of lymphotoxin a1/b2
(R&D Systems, 678-LY-010) for 4 h. After stimulation, cells were fixed with 4%
formaldehyde in PBS for 30 min and then blocked and permeabilized with solution
containing 10% FCS plus 0.1% Triton X-100. Cells were immunostained with
DAPI and rabbit antibodies against NFkB2 (p100/p52) (Cell Signaling, 3017) and
NF-kB (p105/p50) (Cell Signaling, 3035) at a dilution of 1:100, respectively, and
afterwards with anti-rabbit Alexa Fluor 546-conjugated antibody at a dilution of
1:500 (Life Technologies, A10040). Images were acquired on a Leica AF6000
fluorescent microscope using Leica LASAF software for acquisition. Images were
taken at � 64 magnification.

Reconstitution assay. cDNA encoding for wild-type human MAP3K14 was
cloned into a bicistronic retroviral pMMP vector coexpressing MAP3K14 and
enhanced green fluorescent protein (eGFP) marker gene via IRES sequence.
RD114-pseudotyped retroviral particles were generated by transfection into
HEK293 cells using the calcium chloride transfection method (8 mg retroviral
vector DNA, 12mg gag/pol DNA, 5 mg RD114 DNA) in the presence of 25 mM
chloroquin (Sigma-Aldrich, C6628) for 12 h. Supernatants containing viral parti-
cles were collected after 24, 36 and 48 h. Viral titration was performed on HT-1080
cells. Patient and normal donors fibroblast cells were transduced with retroviral
particles in the presence of 8 mg ml� 1 polybrene (Santa Cruz, sc-134220) for 12 h.
Transduction efficiency was determined by eGFP expression by FACS analysis and
was between 45% and 70%. After transduction, immunofluorescence studies were
performed as above with additional staining against GFP used at a dilution of 1:100
(antibody sc-69779, Santa Cruz). Slides were visualized as above. Data was graphed
using Prism 6.0 (GraphPad Software).
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Confocal microscopy of immunological synapses. Cell conjugates were formed
for the evaluation of the immunological synapse by confocal microscopy as
previously described78. Following fixation and permeabilization, conjugates were
incubated with anti-perforin Alexa Fluor 488 (Biolegend) at a dilution of 1:50 and
Phalloidin Alexa Fluor 568 at a dilution of 1:100. Images were acquired on a Leica
SP8 laser scanning confocal microscope. Excitation was by tunable white light laser
and detection of emission by hybrid gallidium (HyD) detectors. Acquisition was
controlled by Leica LASAF software and images were subsequently exported to
Volocity software (PerkinElmer) for analysis. Data were graphed using Prism 6.0
(GraphPad Software).
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