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Abstract

Background: Computational analysis of protein-protein interaction provided the crucial information to
increase the binding affinity without a change in basic conformation. Several docking programs were used
to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for
discriminating the near-native pose are not available since there are several classes of recognition protein.
Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have
not been reported yet.

Results: In this study, we established an ensemble computational model for discriminating the near-native
docking pose of APKs named “AnkPlex”. A dataset of APKs was generated from seven X-ray APKs, which
consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of
669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven
informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of
a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native
complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained
six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the
dominant near-native pose out of the potential ankyrin-protein docking poses.

Conclusion: The AnkPlex model achieved a success at predicting near-native docking poses and led to the
discovery of informative characteristics that could further improve our understanding of the ankyrin-protein
complex. Our computational study could be useful for predicting the near-native poses of binding proteins
and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at
http://ankplex.ams.cmu.ac.th.
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Background
Generally, antibodies have several applications in therap-
ies and diagnostics due to the fact that they can be de-
signed to have high affinity with a targeted protein [1, 2].
Due to the complications involved in generating specific
antibodies and their large size, alternative scaffolds have
been developed to overcome these limitations. One of
those novel scaffolds is comprised of Designed Ankyrin
Repeat Proteins (DARPins). These ankyrin-proteins have
been used more frequently in medical applications [3–5]
because of their stability and high affinity for protein
targets [6–8]. Moreover, modification of the residues at
the variable part of ankyrin allows for increased binding
affinity towards the target protein without changes in
the basic protein conformation [9]. The high affinity of
ankyrin-proteins could be achieved due to random
modifications at variable residues in vitro [9] and in
silico prediction of the residues based on the structure of
3-dimensional (3D) complexes [4, 10]. The 3D protein
complexes could be determined by X-ray crystallography
or NMR spectroscopy, yet few 3D structures of ankyrin-
protein complexes have been reported. Most of the
structures were monomeric structures or genomics
surveys. Therefore, a computational approach, called
protein–protein docking, can be used to generate pro-
tein complex structures because there were no available
reports on the protein complex.
Protein–protein docking is a well-known method for

generating protein–protein complexes (poses) using
computational methods. The challenging task of identi-
fying the exact bound state of a pair of proteins must
consider the following factors: (i) there are several
potential ways that a pair of proteins can interact, (ii)
the flexibility of the protein, and (iii) changes in the
protein conformation after binding [11]. Currently,
several software programs have been developed, such as
Gramm-X, DOT, ClusPro, and ZDOCK, that provide a ra-
tional complex for a pair of proteins, [12]. The ZDOCK
program includes initial-stage docking (ZDOCK algo-
rithm) and refinement methods (RDOCK algorithm). The
initial-stage docking is designed for searching all possible
docking poses [13, 14]. In the refinement stage, the side
chains of the docking poses from the ZDOCK algorithm
are minimized [15]. The scoring functions (features) of
the docking poses are energy terms, such as pairwise
shape complementarity (PSC), desolvation (DE), electro-
statics (ELEC), and van der Waals. This program has been
demonstrated to be one of the most accurate prediction
programs in the Critical Assessment of Predicted Interac-
tions (CAPRI) [16].
ZDOCK has successfully predicted several near-native

complexes (poses) of antibody-antigen, enzyme-inhibitor
and other pairings via assessing the CAPRI criteria in
the 10 top-rankings based on the features of ZDock,

ZRank, or E_RDock. However, successful predictions do
not occur for all cases [17–20]. Moreover, the near-
native predictors are not selected from an easy ranking
of those features, and manual inspections are often
needed as well. Note that manual inspections include
cluster, density, favourable contact, charge complemen-
tarity, buried hydrophobic residues, and overall agree-
ment with the biological data in the literature.
Importantly, all protein–protein cases do not agree with
the manual inspections. Similar to other reports, the
complex-type-dependent combinatorial scoring function
was introduced and indicated that the weights of the
scoring function were different between protease-
inhibitor, antibody-antigen, and enzyme-inhibitor pair-
ings [21]. Therefore, a complicated strategy has to be
adopted for obtaining a near-native complex based on
certain types of protein–protein complexes.
The near-native docking pose of Ankyrin-Her2 was

successfully predicted using ZDOCK and an extra scor-
ing function [10]. Recently, the universal criteria for
obtaining the near-native complex of ankyrin-proteins
have not been reported, and there was only a computa-
tional method that was applied to identify the repeat
number of ankyrin-proteins [22]. According to different
types of protein-protein complexes, the ankyrin-protein
complex requires an individual strategy. Therefore, we
aimed to search for explicit criteria to obtain a near-
native pose using a set of features generated from one
program to avoid using complicated methods or com-
bining scores from several software programs.
In this study, we made a systematic attempt to develop

a computational approach for achieving near-native pre-
dictors in 10 top-rankings of ankyrin-protein docking
poses, which we named AnkPlex. Moreover, this method
was generated for (i) analysing and characterizing
ankyrin-protein complexes by using a set of informative
features that have potential applications and (ii) estab-
lishing a user-friendly web server to obtain the desired
results without the need to follow complicated mathem-
atical equations generated by the research scientist. The
docking poses of seven X-ray complexes of APKs, which
had ankyrins with 3 internal domains, were generated
using the reliable docking tool ZDOCK. The construc-
tion of the docking poses calculated by PSC alone and
summation of PSC + DE + ELEC demonstrated there
were different numbers of near-native docking poses.
The steps for AnkPlex establishment included (i) bal-
ancing the near-native and non-near-native poses; (ii)
processing the dataset through machine learning of a
decision tree algorithm (DT) and a logistic regression
(LG) with a combination of 11 features; (iii) selecting
the efficient predictive models of DT and LG; and (iv)
processing the dataset by combining models of DT
and LG.
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Method
Datasets
X-ray crystal structures of ankyrin-protein complexes
(APKs) were collected from the Protein Data Bank
(PDB) database for 41 APKs reported up to May 2014.
Analyses of the 41 APKs were performed through data
pre-processing using the following steps: (i) APKs con-
taining 3-internal-domain were included; (ii) redundant
APKs were excluded; (iii) APKs were filter based on the
recognition areas [7]; and (iv) alpha, beta, and alpha–
beta proteins were selected using the SCOP database [23].
Nine X-ray crystal structures of APKs (called Ank9) were
obtained, as summarized in Additional file 1: Table S1.
Subsequently, seven of the APKs were randomly selected
as training complexes (Ank-TRN), including complex 1
(C1), complex 2 (C2), complex 3 (C3), complex 4 (C4),
complex 5 (C5), complex 6 (C6), and complex 7 (C7). At
the same time, the rest of the APKs, including unknown 1
(U1) and unknown 2 (U2), were designated the test group
(Ank-TEST). In order to avoid the distinct results from
the different selections of training and test sets, other 35
possible datasets were constructed and were used to gen-
erate the predictive models for the identification of near-
native poses.
The docking poses of Ank-TRN and Ank-TEST were

regenerated by using the protein docking software
ZDOCK [13, 14]. Two versions of the docking poses
were generated, which were different in terms of energy
calculations (especially PSC) and the combination of

PSC, DE, and ELEC (PSC +DE+ ELEC). Then, all the
generated-docking poses were superimposed with the ori-
ginal X-ray crystal structures and were calculated for the
root-mean-square deviation of the Cα atom (Cα-RMSD)
value. The docking poses that presented Cα-RMSD values
≤10 Å were designated to be near-native poses or positive
samples, whereas the docking poses that presented Cα-
RMSD values >10 Å were defined as non-near-native poses
or negative samples [24]. The numbers of near-native poses
for the two versions of the docking poses were compared.
In addition to screening near-native poses by the Cα-
RMSD value, eight binding residues of the APKs on the
second domain of ankyrin (Fig. 1) were used for filtering
near-native poses based on the recognition areas (regKp).

Feature extraction
Based on observations of the generation of the fea-
tures, ankyrin-protein docking poses were generated
for the energy features using the ZDOCK protocol
[13, 14] (a set of 5 features) and the RDOCK protocol
[15] (a set of 6 features). Five features, including ZDock,
ZRankElec, ZRnakSolv, ZRank, and ZRankVdw, were
obtained from the protein-docking protocol (ZDOCK)
using the CHARMm force field [25]. At the same time, six
features, including E_vdw1, E_elec1, E_vdw2, E_elec2,
E_sol, and E_RDock, were calculated from the docking
refinement protocol (RDOCK) using the CHARMm polar
H force field [25]. The energy equation used in RDOCK
was the same as ZDOC. However, the ankyrin-protein

Fig. 1 The molecular architecture of ankyrin and its three recognition areas, as shown in ribbon style. a Amino acid sequence of an internal
repeat [7] in which the recognition residues are shown in three colours. b The ribbon style of an internal repeat of ankyrin related to the above
sequence. c The structure of the 3 internal domains of ankyrin flanked by the N-cap and C-cap. The recognition area consisted of six variable
residues [7] (red and blue are positioned on the helix and turn, respectively) and two constant amino acids (green) on the second domain
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docking poses were minimized before calculation. The
details of the 11 features (A, B, C, D, E, F, G, H, I, J, K) are
described below:

� ZDock (A) is the Pairwise Shape Complementarity
(PSC) score and it was optionally augmented with
the electrostatics (ELEC) and the desolvation energy
(DE). In this study, the ZDock score was calculated
using the following equation:

ZDock score ¼ αPSC þ DE þ βELEC ð1Þ
where α and β have the default values of 0.01 and 0.06,
respectively.

� ZRankElec (B) is the long-range electrostatic energy
and the only fully charged side-chain, as represented
in the following equation:

ZRankElec i; jð Þ ¼ 332
qiqj
r2ij

ð2Þ

where qi and qj are the charges on ankyrin and the protein
atoms, respectively. The rij in the equation stands for the
distance between the atoms of ankyrin and the protein.

� ZRankSolv (C) is the desolvation term based on the
Atomic Contact Energy (ACE).

ZRankSolv i; jð Þ ¼ aij ð3Þ
where aij is the ACE score.

� ZRank (D) is a linear combination of ZRankVdw,
ZRankElec, and ZRankElec.

ZRank score ¼ ZRankElec þ ZRankSolv þ ZRankVdw ð4Þ

� ZRankVdw (E) is the van der Waals and short-range
electrostatics energy with a distance between the
atom pair being less than 5.0 Å. This calculation was
based on the parameters of the CHARMm 19 polar
hydrogen potential. The ZRankVdw score was
calculated as follows:

ZRankVdw i; jð Þ ¼ εij
σ ij
rij

� �12
−2

σ ij
rij

� �6" #
ð5Þ

where εij and σij are the depth and the width, respect-
ively, of the coefficient for the CHARMm 19 polar H.

� E_vdw1 (F) and E_vdw2 (H) are the van der Waals
energy, as presented in Equation (5), of the 1st and
the 2nd minimized structure of the ankyrin-protein
docking poses, respectively.

� E_elec1 (G) and E_elec2 (I) are the electrostatic
energy, as presented in Equation (2), of the ankyrin-
protein docking poses processed for the 1st and the
2nd minimization, respectively.

� E_sol (J) is the desolvation energy, as shown in
Equation (4), of the 2nd minimization of the
ankyrin-protein docking poses.

� E_RDock (K) is the summation of E_sol and
(0.9 × E_elec2).

Construction of learning method
Several learning models were constructed including de-
cision tree (DT), logistic regression (LG), artificial neural
network (ANN), and support vector machine (SVM)
using Ank-TRN (C1-C7). As shown in Additional file A1:
Table S5, SVM yielded 100% near-native poses in the
internal testing sets but could not obtain any near-native
pose in the external testing sets. The DT and ANN
provided the near-native poses from both internal and
external testing sets. According to a dataset of C5, the
DT was superior in achieving the near-native poses of
internal testing sets than the ANN. The LG provided a
weighted summation that could rank the docking poses
to achieve the near-native poses in the 10 top-rankings.
As a consequence, the DT and the LG were selected to
construct an ensemble model.
To identify the near-native docking poses of APKs, a

learning method named AnkPlex was established by
combining a decision tree (DT) and a logistic method
(LG). The decision trees and the logistic regression
methods were selected due to the fact that they provide
a high number of predicted positive values (true near-
native poses). The logistic regression especially provided
a weighted summation that was finally ranked to search
for near-native poses in 10 top-rankings. All 11 features
and all datasets were used to build the DT and LG
models. The Ank-TRN (7 APKs) and the Ank-TEST (2
APKs) were evaluated by AnkPlex using the following
steps, as shown Fig. 2:
1. The number of near-native poses and non-near-

native poses were balanced. ZDOCK using PSC + DE +
ELEC and regKp provided 699 near-native poses and
44,334 non-near-native poses of Ank-TRN. The non-
near-native poses were randomly clustered into 65
groups (≈44,334/669). Therefore, each training set was
composed of the same near-native poses and different
groups of non-near-native poses.
2. A predictive model using the DT and the LG models

was established. All 11 features were combined and gen-
erated as feature subsets (i.e., A, B, C, D, E, F, G, H, I, J,
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K, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, BC, BD,
…, ABCDEFG). The total number of feature subsets was
calculated to be 4,095 by following this equation:

L ¼
X11
r¼1

11!
r! 11−rð Þ!: ð6Þ

The DT model was established from 4,095 feature
subsets and 65 training sets using the J48 algorithm
[26, 27]. The parameters of the DT model were set
with the confidence factor, the minimum number of
objects, and the number of folds for reduced error
pruning of 0.25, 2, and 3, respectively. Additionally,
the LG model was constructed from the same feature
subsets and training set with a ridge estimator [28] in
which the maxis and the ridge were defined as −1
and 1.oE-8, respectively. Subsequently, the learning
methods were generated by implementation of the DT
and the LG models using the WEKA program [27].
3. An efficient predictive model of the DT and the LG

models was selected. Ank-TRN consisted of 7 APKs and
was submitted to the learning method for predicting the
near-native poses. True positive rates (TPrate) greater
than 50% were used as the cut-off value for an efficient
learning method. The learning methods that demon-
strated a TPrate greater than 50% were selected to fur-
ther establish an ensemble learning model.
4. Ensemble methods were established. The ensemble

learning method, named AnkPlex, was constructed by
randomly integrating the DT-based learning models
(OLMDT) and the LG-based learning models (OLMLG)
from Step 3 for reducing the number of non-near-native
docking poses. The main process of the proposed

method, AnkPlex, for increasing the number of TPs
(reducing non-near-native poses) consisted of the fol-
lowing steps: (i) only predicted positive samples (PPVDT)
derived from OLMDT were select, (ii) a logistic score
(LGS) on PPVDT using the LG model was calculated,
and (iii) PPVDT was ranked according to LGS and the 10
top-ranking poses that demonstrated the highest LGS
were selected. The near-native pose(s) or the true posi-
tive (TP) in the 10 top-ranking poses were our targets.
The summation score of AnkPlex was defined in the
equation given as Equation (7) on Ci, where i = 1, 2, …,
7, and Yi would be set as 1 in case TP was found in the
10 top-ranking poses. Otherwise, Yi would be set as 0.
Finally, the score of AnkPlex was the summation prod-
uct, as defined in the following equation:

# PP ¼
X7
i¼1

Y i ð7Þ

where # PP belongs to Ank-TRN containing seven com-
plexes (C1, C2, …, C7) and Yi would be set as 1 when TP
appears in the 10 top-ranking poses. Otherwise, Yi would
be set as 0. The number of #PPTRN indicated the sample
of Ank-TRN in which the LGS score was among the 10
top-ranking near-native poses. The number of #PPTEST
showed the LGS score of the Ank-TEST was among the
10 top-ranking poses.

Validation
The prediction performance of the AnkPlex method was
evaluated by using 10-fold cross-validation (10-fold CV).
The method validation parameters, including accuracy

Fig. 2 The flowchart system for the proposed AnkPlex
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(ACC), sensitivity (SEN), and precision (PRES), were
calculated using the following equations:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FNð Þ � 100 ð8Þ

Sensitivity ¼ TP
TP þ FNð Þ � 100 ð9Þ

Precision ¼ TP
TP þ FPð Þ � 100 ð10Þ

where TP, TN, FP, and FN are the numbers of true posi-
tive, true negative, false positive, and false negative
results, respectively.

Results and discussion
Analysis of ankyrin-protein docking dataset
There were a few ankyrin-protein complexes (APKs)
reported in the PDB database. Forty-one ankyrin com-
plexes, with the number of internal domains ranging
from 2–7, have been reported (up to May, 2014). The
highest number, 19 complexes, of ankyrin-proteins con-
tained 3 internal domains. Furthermore, the APKs that
reacted with the target using recognition areas were
selected. Focusing on target proteins, only proteins with
common folding structures, i.e., alpha-, beta- and alpha-
beta structures, were considered. Therefore, nine com-
plexes, which included 1SVX, 4ATZ, 3Q9N, 1AWC,
2BKK, 2Y1L, 4DRX, 2P2C, and 4HNA, were used in this
study. These nine complexes were randomly divided into
two groups, i.e., 7 complexes as Ank-TRN and 2 com-
plexes as Ank-TEST.
To optimize the ZDOCK calculation, X-ray crystal

structures of APK-TRN, including seven APKs, were cal-
culated with different feature calculations, including the
PSC and the PSC + DE + ELEC. The total number of
docking poses, including near-native and non-near-
native poses, was 54,000 poses (54Kp). Subsequently, the
numbers of near-native poses calculated by PSC and
PSC + DE + ELEC were compared. As shown in Table 1,
the average number of near-native poses calculated by
PSC + DE + ELEC (116.57 ± 51.05) was twice as high as
the number calculated using PSC (63.29 ± 41.43). To in-
crease the predictive accuracy, binding sites on the sec-
ond domain of Ank-TRN defined by Bintz et al. [7] were
used for filtering near-native poses based on the recogni-
tion areas (regKp). The number of regKp calculated by
PSC + DE + ELEC was observed to be slightly reduced
(95.57 ± 52.58). According to the ZDOCK program sug-
gestion, the near-native poses were identified in the top
2,000 poses (2Kp) ranked by the ZRank feature [13, 14].
The 2Kp were selected from the total docking poses of
regKp compared to the near-native poses from regKp.
The near-native poses of 2Kp (47.14 ± 31.49)

substantially decreased two-fold compared to regKp.
Thus, it can be concluded that 2Kp ranked by the ZRank
feature was not suitable for screening near-native poses
because of the exclusion of some near-native poses.
Interestingly, screening by regKp resulted in a high
number of near-native poses and an extremely reduced
number of non-near-native poses. The results suggested
that the ZDOCK calculation using PSC + DE + ELEC
and the screening based on the recognition areas
(regKp) were the optimal calculations because this pro-
cedure was capable of incorporating near-native poses
and eliminating non-near-native poses. However, the
number of non-near-native poses generated with regKp
still remained high, which indicated that an alternative
learning method is necessary for ruling out non-near-
native poses.

Establishing learning methods
According to the ZDOCK calculations of Ank-TRN, 11
features of near-native poses and non-near-native poses
were generated. Univariate statistical approaches were
employed to perform exploratory data analysis using
average and standard deviations for summarizing im-
portant patterns. As shown in Table 2, five features that
were generated by the ZDOCK protocol demonstrated
the significant differences between the near-native poses
and the non-near-native poses with a p-value <0.001. As
presented in Table 2, the five top-ranked features in-
cluded E_RDock (−11.96 ± 9.40/1.72 ± 12.10), ZRankElec
(8.22 ± 16.56/29.17 ± 22.41), ZRank (−54.03 ± 25.84/
−21.82 ± 31.33), E_elec2 (−18.21 ± 8.85/−8.18 ± 10.25),
and E_sol (4.43 ± 6.26/9.07 ± 8.87). Almost all the

Table 1 Number of docking poses classified as near-native and
non-near-native in Ank-TRN (C1-C7) and Ank-TEST (U1 and U2)

Complex Near-native Non-near-native

PSCa PSC + DE + ELECb PSC + DE + ELECb

54Kp 54Kp regKp 2Kp 54Kp regKp

C1 81 157 136 83 53,843 6,626

C2 4 72 53 19 53,921 4,865

C3 125 194 179 54 53,806 7,055

C4 83 131 104 74 53,869 4,450

C5 31 101 59 8 53,891 8,565

C6 84 42 28 18 53,958 6,177

C7 35 119 110 74 53,881 6,596

Total 443 816 669 330 384,169 44,334

Mean 63.29 116.57 95.57 47.14 53,881 6,333.43

std. 41.43 51.05 52.58 31.49 49.74 1,377.39

U1 NDc 83 83 57 NDc 6,833

U2 NDc 183 32 13 NDc 7,183
aZDOCK was calculated by PSC alone. bZDOCK was calculated by combining
PSC, DE, and ELEC. cThe data were not used for analysis
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features that were calculated using the RDOCK protocol
were significantly different, except E_elec1 (p = 0.178)
and E_vdw2 (p = 0.010). Subsequently, 11 features calcu-
lated with the ZDOCK calculation were applied to estab-
lish the learning methods.
Eleven features of each of the near-native poses (669)

and non-near-native poses (44,334) calculated from
Ank-TRN based on the recognition areas (regKp) were
used to establish the learning methods. Based on the un-
balanced number of docking poses, training sets were
generated by clustering the non-near-native poses and
the near-native poses into 65 sets (44,334/669). Eleven
features were calculated from each training set and were
ordered to generate 4,095 feature sets. The DT-based
learning models (OLMDT) and the LG-based learning
models (OLMLG) were established using the 4,095 fea-
ture sets. The learning methods demonstrated the aver-
age of the true positive rate to be greater than 50%
(TPrate ≥ 50%), and consisted of 4,762 OLMDT and
2,688 OLMLG. The learning models that represented
TPrate ≥ 50% with the 10 top-ranking poses of %ACC
are shown in Table 3 (10 top-rankings of OLMDT) and
Table 4 (10 top-rankings of OLMLG). As a result, ABDE-
HIJK_g14 of OLMDT exhibited the highest %ACC with
%TPrate ≥ 50%. This learning method consisted of se-
quential combination feature sets that included ZDock
(A), ZRankElec (B), ZRank (D), ZRankVdw (E), E_vdw2
(H), E_elec2 (I), E_sol (J), and E_RDock (K) calculated
from non-near-native dataset number 13. In addition,
CDFGJ_g10 of OLMLG also demonstrated the highest
%ACC with %TPrate ≥ 50%. The percentage of precision
(%PRES) for all the 10 top-ranking poses of OLMDT and
OLMLG was low, which indicated that there was a high
number of false positive results (FP). To diminish the
number of FP, only the 10 top-ranking poses based on
the ZRank score were selected to represent the true
positive poses (TP). If the TP were found in 10 top-

ranking poses from each Ank-TRN, #PP was designated
1. Thus, the #PP-values of seven Ank-TRN (#PPTRN)
were in the range of 0 to 7. As shown in Tables 3 and 4,
the maximum values of the #PPTRN of OLMDT and
OLMLG were only 6. Therefore, the individual learning
method of OLMDT or OLMLG was not capable of pro-
viding the maximum value for #PPTRN.

Ensemble learning method to generate AnkPlex
To enhance the prediction efficacy of the generated
learning methods, 4,762 of the DT-based learning
models (OLMDT) and 2,688 of the LG-based learning
models (OLMLG) were randomly combined to generate
an ensemble model. Interestingly, the combination of
the ensemble model from ABEHIJ_g56 of OLMDT and
CDFGHJ_g30 of OLMLG demonstrated superior predic-
tion efficiency due to the fact that this ensemble model
(ABEHIJ_g56- CDFGHJ_g30) achieved maximum values

Table 3 Comparison of performances of 10 top-ranking OLMDT

among various types of features and datasets in terms of
10-fold cross-validation

Rank OLMDT PRES(%) REC(%) ACC(%) #PPTRN

1 ABDEHIJK_g14 82.10 ± 8.49 70.58 ± 15.03 6.96 ± 4.82 6

2 ADEFHIK_g25 81.64 ± 9.08 72.05 ± 14.65 7.05 ± 5.06 6

3 ABDEGHIJK_g14 81.14 ± 8.83 73.66 ± 16.61 6.83 ± 4.68 6

4 BCEGHIJK_g13 81.04 ± 8.37 72.88 ± 14.37 6.03 ± 3.31 6

5 AEFGHJK_g36 81.03 ± 8.71 73.85 ± 13.05 6.91 ± 5.17 6

6 ABFIJK_g16 80.84 ± 8.48 69.17 ± 14.68 6.33 ± 4.32 6

7 ABDEFGIJK_g25 80.84 ± 7.98 75.54 ± 8.88 6.41 ± 3.80 6

8 ABIJK_g16 80.82 ± 8.43 69.17 ± 14.68 6.31 ± 4.31 6

9 ABCGHJK_g13 80.80 ± 7.86 73.55 ± 12.44 6.30 ± 3.98 6

10 ABDEFGIK_g25 80.78 ± 8.09 75.67 ± 9.12 6.38 ± 3.73 6

11 feathers (A, B, C, D, E, F, G, H, I, J, K) are ZDock, ZRankElec, ZRank,
ZRankSolv, ZRankVdw, E_vdw1, E_elec1, E_vdw2, E_elec2, E_sol, E_RDock

Table 4 Comparison of performances of 10 top-ranking
OLMLG among various Types of features and datasets in
terms of 10-fold cross-validation

Rank OLMLG PRES(%) REC(%) ACC(%) #PPTRN

1 CDFGJ_g10 74.76 ± 11.62 67.83 ± 14.80 4.91 ± 3.75 6

2 CDFJ_g10 74.75 ± 11.59 67.66 ± 15.08 4.90 ± 3.75 6

3 CDJ_g10 74.74 ± 11.55 67.83 ± 14.80 4.91 ± 3.76 6

4 CDGJ_g10 74.72 ± 11.55 67.83 ± 14.80 4.91 ± 3.76 6

5 BCDEFGJ_g10 74.64 ± 10.30 68.06 ± 17.77 4.47 ± 2.86 4

6 BCDEGHJ_g10 74.60 ± 10.41 68.27 ± 17.78 4.48 ± 2.86 4

7 BCDEFGHJ_g10 74.54 ± 10.17 68.45 ± 17.85 4.46 ± 2.85 4

8 BCDEFHJ_g10 74.51 ± 10.20 68.69 ± 17.58 4.47 ± 2.84 4

9 ACDGJ_g36 74.48 ± 11.91 68.96 ± 15.52 4.94 ± 3.80 5

10 BCDEGJ_g41 74.48 ± 10.78 67.93 ± 16.77 4.57 ± 3.21 4

11 feathers (A, B, C, D, E, F, G, H, I, J, K) are ZDock, ZRankElec, ZRank,
ZRankSolv, ZRankVdw, E_vdw1, E_elec1, E_vdw2, E_elec2, E_sol, E_RDock

Table 2 Summary of statistical analysis of near-native and
non-near-native poses of ankyrin-target complexes

Feature Near-native Non-near-native p-value

ZDock 36.73 ± 6.32 33.41 ± 4.87 <0.001

ZRankElec 8.22 ± 16.56 29.17 ± 22.41 <0.001

ZRank −54.03 ± 25.84 −21.82 ± 31.33 <0.001

ZRankSolv 3.66 ± 6.99 7.88 ± 10.10 <0.001

ZRankVdw −65.91 ± 20.44 −58.87 ± 20.98 <0.001

E_vdw1 −56.21 ± 57.81 −47.46 ± 101.79 <0.001

E_elec1 -1.05 ± 2.18 -0.94 ± 2.37 0.18

E_vdw2 −70.01 ± 42.72 −74.33 ± 43.00 0.01

E_elec2 −18.21 ± 8.85 −8.18 ± 10.25 <0.001

E_sol 4.43 ± 6.26 9.07 ± 8.87 <0.001

E_RDock −11.96 ± 9.40 1.72 ± 12.10 <0.001
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for #PPTRN and #PPTEST of 7 and 2, respectively. There-
fore, the ensemble model, ABEHIJ_g56- CDFGHJ_g30,
was designated to be an ensemble computational model
for predicting the near-native docking pose of APKs or
“AnkPlex” (Fig. 3). To compare the prediction efficiency
of the ensemble model, AnkPlex with the single learning
models, the total number of TP and the first TP of each
Ank-TRN were used for the evaluation. As shown in
Table 5, the single learning models of OLMDT (ABE-
HIJ_g56) and OLMLG (CDFGHJ_g30) provided a
#PPTRN value of 6. The first TP of C5 predicted by ABE-
HIJ_g56 and the C6 predicted by CDFGHJ_g30 were
found at pose numbers 14 and 19. This result indicated
that a single learning model could not produce all the
true positive poses. In the case of the Ank-TEST,
OLMDT could not provide the value for the #PPTEST,
whereas the #PPTEST of OLMLG was comparable to
AnkPlex. Consequently, it can be concluded that the
ensemble model, AnkPlex, was capable of including a
#PPTRN value of 7 and a #PPTEST value of 2, which sug-
gested that the prediction efficacy of AnkPlex was super-
ior to the single learning model. In addition, the
predictive models generated from other 35 possible data-
sets demonstrated the average number of #PPTRN and

#PPTEST value of 6.78 ± 0.42 and 2 ± 0.00, respectively.
This indicated that different selections of training and
test sets had no effect in the generation of the learning
models for predicting the near-native poses.
According to the ZDOCK program recommenda-

tions, near-native docking poses could be found in
2Kp, as indicated by a high ZDock score, low
E_RDock, or low ZRank [15, 17–20]. Particularly, the
ZRank score provided a #PPTRN value of 6, which
was higher compared to the values for other features
(Table 6). Thus, 2Kp ranked by the ZRank score was
selected to identify #PP. As shown in Table 5, the
#PPTRN and the #PPTEST of 2Kp could not reach the
maximum value. In addition, the first TP of 2Kp was
found to be a lower order number compared to
AnkPlex. These results indicated that ZRANK was
able to identify the most accurate near-native poses.
Nevertheless, it would not be applied for all cases.
Thus, the combined feature, AnkPlex, could be used
to adjust this solution.
To apply the AnkPlex for investigating the ankyrin-

protein complex, AnkGAG1D4 was used to study this
learning model. AnkGAG1D4 is an artificial ankyrin that
contains 3 internal domains and was designed as an

Fig. 3 Characteristics of the optimal AnkPlex
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antiretroviral agent. AnkGAG1D4 was able to bind to the
N-terminal domain of the capsid protein (CANTD) of
HIV-1 [3]. Recently, the X-ray structure AnkGAG1D4
was already constructed. However, the complex struc-
ture of AnkGAG1D4-CANTD was not detected [4]. Thus,
we generated the docking poses of AnkGAG1D4-CANTD

and performed re-scoring with AnkPlex. The results
revealed that three near-native structures of
AnkGAG1D4-CANTD were found in the 10 top-rankings.
The recognition residues of AnkGAG1D4-CANTD interac-
tions were further investigated by observing interacting
distances ≤ 5 Å. As a result, one docking pose showed
that residue R18 was located on the recognition areas of
CANTD and two docking poses demonstrated residues
R132 and R143 played key roles in the interaction with
AnkGAG1D4 (data not shown). This result correlated
with previous ELISA results. A point mutation of R18A
on helix 1 and R132A and R143A on helix 7 of CANTD

showed negative binding to AnkGAG1D4. Thus, R18,
R132 and R143 were the key residues of CANTD bind-
ing to AnkGAG1D4 [4]. According to computational
analysis of AnkGAG1D4 using this learning model,
AnkPlex could not only discriminate the near native
docking poses of AnkGAG1D4-CANTD complex but
also demonstrated the correct orientation of the rec-
ognition area to CANTD.

Feature importance analysis
Identification of informative features among the 11 fea-
tures was critical for designing a powerful learning
model and for understanding and obtaining insights into
the ankyrin-protein docking poses. Based on the six fea-
tures (CDFGHJ) used in the calculation of the LGS in
AnkPlex, the Pearson correlation coefficients (R values)
were used to identify the correlation between LGS and
the weights of the six features to obtain the near-native
poses. As shown in Fig. 4 and Additional file 1: Table S3,
the three top-ranked R values of the six features con-
sisted of ZRank (R = 0.60), ZRankSolv (R = −0.56), and
E_sol (R = 0.54), which indicated that these three fea-
tures played an important role in the AnkPlex model for
distinguishing near-native poses.
The ZRank score was ranked as the 1st informative

feature according to the highest R values (0.60). The
characteristics of the ZRank score between the near-
native and the non-near-native poses were signifi-
cantly different, with p < 0.001, as shown in Table 2.
To confirm the important roles of the ZRank score in
AnkPlex, the ensemble learning method based on
AnkPlex was constructed without ZRank (C). As a re-
sult, as demonstrated in Additional file 1: Table S2,
the AnkPlex lacking ZRank (OLMDT(ABEHIJ_g56)–
OLMLG(DFGHJ_g30) was able to obtain #PPTRN = 1

Table 6 Number of near-native poses in 10 top-ranking poses obtained from ZDOCK program with 2Kp

Feature Number of near-native poses in 10 top-ranking poses

C1 C2 C3 C4 C5 C6 C7 #PPTRN U1 U2 #PPTEST

ZDock 0 0 0 3 0 0 4 2 0 0 0

ZRankElec 2 0 0 0 0 0 0 1 0 0 0

ZRank 0 1 6 7 1 1 8 6 0 0 0

ZRankSolv 0 0 0 7 1 0 0 2 0 0 0

ZRankVdw 0 0 4 0 0 3 1 3 0 0 0

E_vdw1 0 0 0 0 0 0 0 0 0 0 0

E_elec1 0 0 0 0 0 7 0 1 0 0 0

E_vdw2 0 0 0 0 0 0 0 0 0 0 0

E_elec2 0 0 0 0 0 6 0 1 0 0 0

E_sol 0 0 0 9 1 0 0 2 0 0 0

E_RDock 8 0 0 4 0 0 5 3 0 0 0

Table 5 Comparison of performances of AnkPlex with single learning method and ZDOCK programa

Method Number of TP docking poses (rank)

C1 C2 C3 C4 C5 C6 C7 U1 U2

2Kp(ZDOCK) 0 (13) 1 (10) 6 (1) 7 (1) 1 (10) 1 (10) 8 (1) 0 (14) 0 (104)

OLMDT (ABEHIJ_g56) 1 (4) 1 (4) 8 (1) 7 (1) 0 (14) 2 (1) 7 (1) 0 (13) 0 (160)

OLMLG (CDFGHJ_g30) 2 (1) 1 (3) 8 (1) 10 (1) 1 (9) 0 (19) 7 (1) 1 (6) 1 (5)

AnkPlex 2 (1) 1 (3) 8 (1) 10 (1) 1 (9) 3 (2) 7 (1) 1 (6) 1 (5)
aThe number of TP docking poses is the summation of the TP docking poses found in 10 top-ranking poses, where the maximum and the minimum are 10 and 0,
respectively. The rank is denoted by the order in which the first TP docking poses are found. For example, on C6, AnkPlex yields three TP docking poses on the
top 10 ranking poses, and the orders of the three TP docking poses are 2, 8, and 9. Thus, the rank of AnkPlex on C6 is 2
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and #PPTEST = 0. However, AnkPlex (OLMDT(ABE-
HIJ_g56)–OLMLG(DFGHJ_g30) achieved success with
#PPTRN = 7 and #PPTEST = 2. Therefore, ZRank was
concluded to be an important feature of AnkPlex due
to the fact that it could enhance the predictive per-
formance of near-native poses.
Since ZRank is a linear combination of van der Waals

(ZRankVDW), electrostatics (ZRankElec), and desolva-
tion energy (ZRankSolv), one of them had to be identi-
fied as the most important. From Additional file 1: Table
S3, it is evident that the ZRankVDW (van der Waals
interaction) was more dominant than the ZRankElec
and the ZRankSolv. Recently, ZRank was developed by
correcting the weight of the energies and combining a
pairwise interface potential in which the weight of van
der Waals was higher than the original ZRank [29]. This
result supports the theory that van der Waals is an im-
portant property for near-native docking poses of
ankyrin-protein pairings.
ZRankSolv and E_sol were the desolvation energies

estimated by the summation of the Atomic Contact
Energy (ACE) in which the difference between the two
features was in the force field calculation and side chain
orientation. ZRankSolv and E_sol were the 2nd and the
3rd informative features with R values of −0.56 and 0.54,
respectively. Moreover, these two features showed differ-
ences in their characteristics between near-native and
non-near-native poses, with p < 0.001, as shown in

Table 2. Our experimental results (see Additional file 1:
Table S2) demonstrated that AnkPlex lacked ZRankSolv
(D), i.e., OLMDT(ABEHIJ_g56)–OLMLG(CFGHJ_g30) pro-
vided #PPTRN = 6 and #PPTEST = 1. Similar to E_sol, the
performance of AnkPlex lacked E_sol, i.e., (OLMDT(ABE-
HIJ_g56)–OLMLG(CDFGH_g30)) yielded #PPTRN = 6 and
#PPTEST = 1. This result indicated that the absence of
ZRankSolv and E_sol slightly reduced the predictive per-
formance of AnkPlex. However, these two features were
required for predicting near-native poses. ZRankSolv was
a component of ZRank. This outcome emphasized that
desolvation was important for obtaining near-native poses
in the ankyrin-protein interaction. Additionally, it was also
required for the accuracy of other protein–protein com-
plexes [30–32].
The LGS score was a combination of the energy

determined in the interaction area between ankyrin
and proteins of ≤5 Å. In AnkPlex, the interaction
area on ankyrin was located on variable and con-
served residues of the L-shaped repeat belonging to
the internal repeats, the N-terminal repeat and the
C-terminal repeat [7]. The functional variable resi-
dues on ankyrin were required for the recognition of
the target protein by using the available solvent-
accessible surface [7, 33, 34]. To observe the variable
area used for calculating the energy, analysis of the
first TP of the near-native of Ank9 was carried out
to count the variable and conserved residues in the

Fig. 4 The correlation coefficients between the dot products of the features and their weights of the best-ranking LGS for the near-native poses
in the nine ankyrin-protein complexes
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interaction area. The result, which was presented in
Additional file 1: Table S4, showed that there was
43.75 ± 12.90% of the interaction area on ankyrin be-
longing to the variable residues, and 58.50 ± 11.36%
of this area represented the hydrophobic residues.
This result indicated that the interaction energy was
calculated on both the variable and the conserved
residues. Therefore, computing the energy term at
the interface of the variable residues could provide a
score to distinguish between the near-native and the
non-near-native docking poses. As a consequence,
the calculation for evaluating the score based on the
desired area could be applied in the docking
algorithm.
According to the hydrophobicity on the interface in

AnkPlex (see Additional file 1: Table S4), the interac-
tions between ankyrin and proteins were comprised
of 18.05 ± 6.32%, hydrophobic–hydrophobic, 43.25 ±
13.70%, hydrophobic–hydrophilic and 38.70 ± 4.48%.
hydrophilic–hydrophilic interactions. Moreover, the
percentage of hydrophobic–hydrophobic interactions
in the non-near-native pose was observed to be re-
duced by 12.69 ± 7.31%, as shown in Additional file 1:
Table S4. However, the percentage of hydrophobic–
hydrophilic interactions in the near-native pose
increased to 50.32 ± 8.89%. This outcome indicated
that the recognition site on ankyrin for the target
protein was adopted to have hydrophobic and hydro-
philic interactions, which promoted the solvent-
accessible property [35]. Because LGS is modified
from atom-based potential without considering the
type of the hydrophobicity scale, the high LGS of the
non-near-native docking pose could be calculated
from the hydrophobic–hydrophilic interaction instead
of the hydrophobic–hydrophobic interaction.

Conclusions
An ensemble method, named AnkPlex, was constructed
for fast prediction of near-native states of ankyrin-
protein complexes. The AnkPlex model was constructed
based on a combination of features generated from the
ZDOCK program without using manual inspections.
AnkPlex successfully obtained the near-native poses of
nine ankyrin-protein complexes in the 10 top-ranking
poses. ZRank, which is a combination of electrostatic,
desolvation, and van der Waals energy, was the most im-
portant feature in AnkPlex. In addition, van der Waals
was the dominant feature for obtaining the near-native
docking poses. To develop the method for predicting
near-native poses of protein complexes, we have imple-
mented easy access to the best models for the scientific
community on a web server. AnkPlex (http://ankplex.
ams.cmu.ac.th) is freely available online.
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