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Abstract
Large volumes of gridded climate data have become available in recent years including

interpolated historical data from weather stations and future predictions from general circu-

lation models. These datasets, however, are at various spatial resolutions that need to be

converted to scales meaningful for applications such as climate change risk and impact

assessments or sample-based ecological research. Extracting climate data for specific

locations from large datasets is not a trivial task and typically requires advanced GIS and

data management skills. In this study, we developed a software package, ClimateNA, that

facilitates this task and provides a user-friendly interface suitable for resource managers

and decision makers as well as scientists. The software locally downscales historical and

future monthly climate data layers into scale-free point estimates of climate values for the

entire North American continent. The software also calculates a large number of biologically

relevant climate variables that are usually derived from daily weather data. ClimateNA cov-

ers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year

time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last

Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of

model projections for 2011–2100. Multiple general circulation models (GCMs) were

included for both paleo and future periods, and two representative concentration pathways

(RCP4.5 and 8.5) were chosen for future climate data.

Introduction
With increasing importance of climate change related research and applications in mitigation
and adaptation, the demand for accurate and accessible climate databases is high. Historical cli-
mate data are necessary for understanding the relationships between climate and biological
response of organisms, or general patterns of ecological adaptations to local climate
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environments. Such insight can be used to build mechanistic or statistical models in ecology
and other fields of study [1, 2]. Future climate projections from general circulation models can
then be used to predict the potential impact of climate change and provide information for
developing adaptive strategies to address a changing climate.

For ecological modeling, climate data are required to represent the climate conditions as
close as possible to the locations where organisms reside [3, 4]. However, climate data gener-
ated by general circulation models (GCMs) [5] are at a coarse spatial resolution (100 ~ 300
km) and do not meet such requirements. Climate data from regional climate models (RCMs)
or Global Time Series at Climate Research Unit (CRU) [6] have higher spatial resolutions (10
~ 50 km), but they are still far too coarse to characterize climate habitat for organisms in com-
plex landscape, such as mountainous areas. For these types of applications, climate data at
moderate spatial resolutions (800 ~ 4000 m) are generated by interpolating observations from
weather stations and overlaying projections from general circulation models with the delta
method. WorldClim [7], for example, provides a large number of climate variables for the ref-
erence period 1950–2000 at various spatial resolutions generated using the ANUSPLIN inter-
polation method [8]. Another widely used database is based on the PRISM interpolation
method [9], which produces climate data for the United States and some other regions using a
combination of a statistical approach and an expert knowledge-based adjustment to consider
rain shadows, coastal effects, and winter temperature inversions in mountainous regions.
Mosier et al. [10] have recently generated global time series at 800 m for monthly total precipi-
tation and mean temperature through downscaling monthly time series data from CRU,
M&W and Global Precipitation Climatology Centre [11].

A general disadvantage of gridded climate databases such as WorldClim or PRISM is that
they are quite large, so that extracting relevant information for a set of sample points or a local
area of interest can be tedious and requires advanced skills in working with geographic infor-
mation systems (GIS). Secondly, they are fundamentally limited in characterizing sample
points that have inaccurate spatial information (for example, reported to the nearest minute).
Such errors in spatial accuracy are particularly problematic in steep mountainous terrain,
where a medium-resolution grid cell would still span climate environments with several hun-
dred meters difference in elevation. We have addressed this problem previously with a software
solution ClimateWNA [12], which builds on PRISM and ANUSPLIN data to generate scale-
free climate data through a combination of bilinear interpolation and elevation adjustments.
Bilinear interpolation interpolates the gridded baseline data into a seamless surface, while the
elevation adjustment improves the prediction accuracy at specific locations using a digital ele-
vation model or recorded sample elevation. Elevation adjustments are implemented by empiri-
cal lapse rates that vary among variables, location, and elevation. They are calculated as partial
derivative functions with respect to elevation from polynomial functions that reflect the rela-
tionship between a monthly climate variable and latitude, longitude, elevation and their trans-
formations and interactions [13, 14].

Our lapse rate adjustment approach is applied to 36 basic climate variables that are widely
available and measured according to standardized methods at weather stations worldwide.
These variables include average monthly minimum and maximum temperature and monthly
precipitation. Most biological or ecological modeling applications do not rely on those primary
monthly climate variables directly [15–17]. We therefore also provide 24 climatic variables that
are relevant in ecology (bioclimatic variables) or that are relevant for other applications, such
as infrastructure planning. Some important derived climate variables, such as growing season
precipitation, can easily be calculated from monthly data, but others such as growing degree-
days and frost-free period require daily climate data to calculate. Rather than including daily
data in the software package, which would increase its size by two orders of magnitude, we
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found that it is possible to estimate variables that summarize daily data (such as growing degree
days over the course of a year) from monthly data with high accuracy [12]. These algorithms
are also included in the ClimateWNA software package.

Like other datasets, we make use of the delta method to overlay a medium resolution (4km)
baseline dataset with historical anomaly data that are provided at about 50km resolution, and
projections from GCMs that range from 100 to 300km resolution. The advantage of our
approach is that the software executes these overlays on demand for sample points or local
areas. Consequently, the comprehensive climate database of more than 20,000 spatial layers of
historical and future data that is included with the software package remains small and can be
queried instantly (or within seconds or minutes for complex queries) on a regular personal
computer. Our implementation of the delta method is slightly different from others in that we
replace the medium resolution baseline with scale-free data generated by ClimateWNA while
the anomaly is bilinearly interpolated to match the scale-free baseline data, so that the output
of ClimateWNA for historical or future period is also scale-free (i.e. not gridded but directly
estimable for any location). The approach has been shown to considerably improve the statisti-
cal accuracy of climate estimates when compared to regular climate grids, when tested against
original weather station data [12].

Our previous software packages have been extensively used in ecology, hydrology, forestry,
agriculture, and urban planning in western North America. Notably, users include university
researchers, consultants, government planners and industry managers with sizable portion of
citations for data use in the “gray literature” such as government publications, extension publi-
cations, internal and consultant reports. Here, we contribute an extension of our data coverage
to the entire North American continent. We also developed algorithms to improve accuracy
and to extend the functionality of the new ClimateNA software package. Specifically, this
release includes the following new developments: 1) a new 4km resolution baseline climate
layer for 36 basic variables for the entire contiguous North American continent; 2) new
dynamic local downscaling algorithms, which are broadly applicable and sensitive to local-
scale variations in lapse rates; 3) additional biological relevant climate variables at monthly and
seasonal scales; and 4) an integration of downscale gridded climate data for historical, paleo
and future years and periods. In this paper, we also validate the effectiveness of the improved
downscaling approaches and the accuracy of new climate variables against observations from
weather stations.

Data and Methods

Baseline climate data
We used the monthly temperature and precipitation data for the normal period of 1961–1990
as a baseline data for the development of ClimateNA. The baseline dataset was compiled from
several data sources listed in Table 1, which were resampled to a uniform 2.5 arcmin (approxi-
mately 4 km) resolution grid, and adjusted to 1961–1990 normal period as explained below.

Table 1. Sources of climate data used to generate the baseline climate normal (1961–1990) grids for the ClimateNA software package.

Region Data source Spatial resolution Period Reference

British Columbia in Canada PRISM* 800 x 800 m 1971–2000 [9]

Prairie provinces in Canada PRISM 4 x 4 km 1961–1990 [29]

United States except Alaska PRISM 800 x 800 m 1971–2000 [9]

The rest of North America (Northern and eastern Canada and Mexico) ANUSLIN interpolated 4 x 4 km 1961–1990 [8]

* Data were provided by Faron Anslow at the Pacific Climate Impacts Consortium.

doi:10.1371/journal.pone.0156720.t001
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The original datasets were at various spatial resolutions and for two different normal periods.
Unifying the data to a lower resolution (4 x 4 km) was necessary due to the size of the dataset
for such a large region and has ultimately little effect on the accuracy of climate estimates
because our lapse-rate based downscaling methodology is designed to recover elevation-driven
spatial variation from lower resolution grids. We use the standard normal period from 1961–
1990 defined by the World Meteorological Organisation (WMO) as baseline data for three rea-
sons. First, spatial weather station coverage is the best for this period to allow for the develop-
ment of a reliable interpolated baseline dataset. Second, to keep the reference period
unchanged from our previous packages and to serve as the anchor for the observation of the
long-time climate development. Third, the period is a useful reference in ecological research
because it precedes a significant anthropogenic warming signal [18]. However, our software
packages allow users to generate climate data for other normal periods including 1981–2010.

For adjusting the period from 1971–2000 to 1961–1990, we first developed anomalies for
1971–2000 relative to 1961–1990 using CRU data (described below) and bilinearly interpolated
to the same spatial resolution as the target baseline dataset. The adjustment was achieved by
subtracting the anomalies from the 1971–2000 normal data. The 1961–1990 dataset is a mosaic
of 5 datasets covering the lower 49 states (PRISM), British Columbia and the Yukon Territories
(PRISM), Alaska (PRISM), Alberta, Saskatchewan, and Manitoba below 55° latitude (PRISM),
Northern and eastern Canada (WorldClim) and Mexico (WorldClim). The coverages were
trimmed to an overlap of 50km, and were then merged with a gradient tool. An equal weight
(50%) was allocated to each of the two overlapping datasets at the center of the overlap, and the
weight was gradually reduced to 0 at the boundary of each dataset. The complete baseline data-
set comprised average monthly maximum and minimum temperatures and monthly total pre-
cipitation for a total of 36 primary monthly climate variables, plus the mean elevation of each
grid cell (see Table 1).

Historical and future anomaly data
Monthly temperature and precipitation data for recent years were obtained from historical time
series data generated at the Climate Research Unit (CRU) at the University of East Anglia [6].
The version incorporated in the current ClimateNA package is CRUTs3.23 [19]. The spatial reso-
lution of the data is 0.5 x 0.5° and covers the period of 1901–2014 (to be updated when available).
The original data were developed based on anomalies relative to the reference period 1961–1990,
but absolute values were subsequently derived for each individual year [6]. We recover the origi-
nal anomalies by subtracting the 1961–1990 CRU average from the annual climate layers.

The monthly temperature and precipitation data for future periods were from General Cir-
culation Models (GCMs) of the Climate Model Intercomparison Project 5 (CMIP5) corre-
sponding to the Fifth Assessment Report of the Intergovernmental Panel for Climate Change
[18]. Fifteen GCMs were selected that represent all major clusters of similar AOGCMs [20].
We included two greenhouse gas concentration trajectories or Representative Concentration
Pathways (RCP): RCP 4.5 and RCP 8.5 [5]. In RCP 4.5, emissions peak in the 2040s and then
decline. RCP 8.5 assumes that emissions continue to increase throughout the century. We
omitted an optimistic and intermediate scenario with a peak in emissions around 2020 and
2080. When multiple runs were available for each GCM, an ensemble average was taken over
the available runs (but limited to a maximum of five). We summarized annual GCM projec-
tions into 30-year time periods that we hereafter referred to as 2020s (2011–2040), 2050s
(2041–2070), and 2080s (2071–2100). Time-series of annual projections were also included for
the years between 2011–2100 for six of the selected 15 GCMs and the two RCPs. For the time-
series, we only used the first run for each model and RCP to keep its original variability.
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General circulation models are routinely tested for their realism through their hindcasting
abilities. For paleoecological research, such hindcasts provide valuable climate information
that we have also included. For paleoclimate, monthly data were obtained for the Last Glacial
Maximum (LGM, 21,000 years ago), Mid-Holocene (6,000 years ago) and Last millennium
(1,000 years ago) from four GCMs of the CMIP5. We took the averages of monthly climate
projections over the first 50 years of each paleoclimatic period (essentially a point sample in a
paleoclimatic context), which was the minimum period available among the four GCMs.

As GCM data are available at various spatial resolutions, ranging from 0.75 x 0.75° through
2.85 x 2.85°, we interpolated the GCM data to the resolution of 1 x 1° using bilinear interpola-
tion for simple integration into ClimateNA. To implement the delta method just as described
for overlaying the monthly historical anomalies, we also converted GCM projections to anoma-
lies by subtracting the average of GCM projections for the 1961–1990 reference period.

Downscaling of climate data
Instead of using the midpoint values of each grid cell to represent its entire area, we used a
combination of bilinear interpolation and local elevation adjustment approaches to downscale
the baseline monthly grid data (4 × 4 km) to scale-free point data. The program first uses bilin-
ear interpolation to estimate values between midpoints of the four neighbor grids to generate a
seamless surface for each monthly climate variables, avoiding step-artifacts at grid boundaries.
The algorithms then retrieve monthly climate data and elevation values for a location from the
corresponding grid cell plus eight surrounding cells. The climate and elevation values of the
nine cells are used to calculate differences in a climate variable and in elevation between all 36
possible pairs. A simple linear regression of the differences in the climate variable on the differ-
ence in elevation is then established, and the slope of the regression is used as the empirical
lapse rate for each climate variable at each specific location. As the local regressions are dynam-
ically developed along with locations of inquiry, we call this downscaling method a “dynamic
local downscaling” approach. To avoid over-adjustments due to a weak linear relationship,
each lapse rate was weighted by the R-square value of the local linear regression.

Historical, paleo and future anomaly data are also downscaled prior to applying the delta
method, using bilinear interpolation to create seamless surfaces. The interpolated anomalies
were then added onto the downscaled baseline monthly climate normal data (scale-free) to
arrive at the final climate surface at a specified resolution or for point data. With this approach,
the original baseline portion (i.e., absolute values for the 1961–1990 normal period) of the his-
torical and future climate data were replaced by the scale-free climate data generated by Clima-
teNA. Because elevation-adjusted baseline data generated by ClimateNA typically has much
higher spatial resolution than the historical and future climate data, this process preserves the
accuracies for both historical and future climate data with respect to accurately representing
climate gradients that are driven by local topography (assuming that they will have similar
effects in the past and future). However, the approach does not change or improve GCM
anomaly projections or the historical anomalies data per se.

Development of additional climate variables
The baseline dataset contains 36 primary monthly climate variables. For applications in ecol-
ogy, we provide many additional biologically relevant climate variables. Many of these addi-
tional variables need to be calculated using daily climate data, which are not available in
ClimateNA. We estimated these variables based on empirical or mechanistic relationships
between these variables calculated using daily observations and monthly climate variables from
weather stations across the entire North America. We called these variables “derived climate
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variables”. Some of them have been developed in previous studies for smaller regions at the
annual scale [12, 13]. In this study, we developed the derived climate variables at monthly
scale, then summed up to seasonal and annual scales. The steps included: 1) calculating derived
climate variables for each month (e.g., degree days) from daily weather station data; 2) building
relationships (or functions) between the derived climate variables and observed (or calculated)
monthly climate variables; 3) applying the functions in ClimateNA to estimate derived climate
variables using monthly climate variables generated by ClimateNA.

Observed daily climate data were obtained from 4,891 weather stations in North America
from the Daily Global Historical Climatology Network (http://www.ncdc.noaa.gov). The distri-
bution of the weather stations is shown in Fig 1. Due to the wide range of variation in climate
in North America, no single linear, polynomial or nonlinear function was found to adequately
reflect the relationships between degree-days and monthly climate variables. We therefore
applied piecewise functions, which combine a linear function and a nonlinear function, to
model these relationships between various forms of monthly degree-day variables and monthly
temperatures. The degree-day variables include degree-days below 0°C (DD< 0), degree-days
above 5°C (DD>5), degree-days below 18°C (DD<18) and degree-days above 18°C (DD>18).
The general form of the piecewise functions of all degree-days (DDm) is:

DDm ¼

(
if Tm > k;

a

1þ e
�

Tm � T0

b

� �

if Tm � k; cþ bTm

ð1Þ

where, Tm is the monthly mean temperature for themmonth; k, a, b, T0, c and β are the six
parameters to be optimized.

For number of frost-free days (NFFD) and precipitation as snow (PAS), a sigmoid function
was used to model the relationship between these monthly variables and monthly tempera-
tures:

NFFDmðor PASÞ ¼
a

1þ e�
Tm�T0

bð Þ ð2Þ

where, Tm is the monthly minimum temperature for themmonth; a, b and T0 are the three
parameters to be optimized.

To estimate the length of the frost-free period (FFP), the beginning the frost-free period
(bFFP) and the end of the frost-free period (eFFP), we used the same polynomial functions as
ClimateWNA [12] for bFFP and eFFP while the parameters were estimated based on observa-
tions from all weather stations in North America.

For extreme minimum temperature (EMT) and extreme maximum temperature (EXT)
expected over a 30-year period, polynomial functions were used as follows:

EMT ¼ aþ bTmin01þ cTmin012 þ dTmin122 þ eTD2 ð3Þ

EXT ¼ aþ bTmax07þ cTmax072 þ dTmax08þ eTmax082 þ fTD ð4Þ
where, a, b, c, d, e and f are the parameters to be optimized; Tmin01 and Tmin12 are monthly
minimum temperature for January and December; Tmax07 and Tmax08 are monthly maxi-
mum temperature for July and August, respectively; and TD is continentality (the difference
between the mean temperatures of the warmest and coldest months).

Monthly average relative humidity (RH%) is calculated from the monthly maximum and
minimum air temperature following [21]. Monthly reference evaporation (Erefm mm) is
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calculated from the monthly air temperature using the Hargreaves 1985 method [12, 22]. It
was evaluated against the ASCE Standardized Reference Evapotranspiration (ASCE EWRI
2005). If the monthly average air temperature is less than 0°C then Erefm = 0. The monthly cli-
matic moisture deficit (CMDm mm) is 0 if Erefm < Pm, where Pm is the monthly precipitation
(mm), otherwise

CMDm ¼ Erefm � Pm ð5Þ

Fig 1. Distribution of 4891 weather stations and the baseline data sources (PRISM andWorldClim) within the coverage of ClimateNA.

doi:10.1371/journal.pone.0156720.g001
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Validation of climate variable estimates
The accuracies of the climate variables generated by ClimateNA were evaluated against
observations from 4,891 weather stations shown in Fig 1. Observed monthly normals of the
primary climate variables for the reference period (1961–90) were calculated based on the daily
climate data from the weather stations. The prediction errors, defined as the mean absolute
error (MAE), were used to evaluate the accuracy of the climate variables generated by Clima-
teNA for the baseline data. We also compared the prediction accuracies between ClimateNA
output and the original PRISM (800 x 800 m) for areas with the PRISM data available (US and
BC) against 4,257 weather stations within the coverage. It should be noted that these assess-
ments are not truly independent validations of the original data layers, as many of these station
data were included in the development of the original PRISM andWorldClim grids. Rather,
the accuracy assessments evaluate the relative improvements achieved by our downscaling
algorithms.

Results

Effects of local downscaling algorithms
The regressions of climate variables as a function of elevation, on which dynamic local linear
downscaling approach relies, typically explained around 65% of the variance in monthly mini-
mum temperature (Tmin), 75% in monthly maximum temperature (Tmax), and 35% in
monthly precipitation (PPT) (Fig 2). The amount of variance explained varied from location to
location, being greater in mountain areas, where elevation adjustment is needed, and smaller in
flat areas, leading to a wide range of local R2 values as indicated by the box plots (Fig 2). This
approach allows for high flexibility to model spatial and temporal changes of lapse rates. As an
illustration of how they may vary, Fig 3 shows the changes in the lapse rate (the slope of the
regression line) from January through March for a grid cell in a mountain valley, where the
positive slope for Tmin01 reflects temperature inversions in mid-winter.

The dynamic lapse rate adjustment implemented by ClimateNA considerably reduced the
prediction errors for monthly maximum temperatures by 5–18% (Table 2). However, the
improvements for monthly minimum temperature (2–5%) and precipitation (0–3%) variables
were smaller. The prediction accuracy of ClimateNA was comparable to the original PRISM
(800 x 800 m), being almost identical for monthly temperatures, while the former was slightly
better than the latter for monthly precipitation variables (data not shown).

Accuracy of derived climate variables
The relationships between monthly data and biologically relevant climate variables derived
from daily weather station data could generally be well described by the piecewise functions or
nonlinear functions (Figs 4 and 5). However, the relationships showed distinct patterns
between the west and the east for growing degree days (DD>5°C) and between the southwest
and the rest for DD>18°C. Thus, the functions for these two variables were built separately by
region to better capture relationships as illustrated in Fig 5.

The amount of variance explained and the prediction errors for all biologically relevant cli-
mate variables derived from observed daily climate data are listed in Table 3. The functions (S1
File) and their parameters as well as the results of evaluations (S1–S6 Tables) are listed in the
Supporting Information. In most cases, the predictive accuracy of monthly variables for
derived variables is very high with R2 values larger than 0.95 (S1–S5 Tables). We expect that
accuracies for derived variables that are derived for individual months is somewhat lower than
for annual derived variables, and that is generally confirmed (note that the annual MAEs must
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be divided by 12 to be directly comparable with the monthly MAEs). Our lowest R2 values are
for precipitation as snow (PAS) at a monthly time scale (S6 Table).

Discussion

Benefits of local downscaling
Elevation is the dominant factor affecting temperature at a local scale, but the effect of elevation
on temperature and precipitation varies with latitude, local terrain and other factors. Tempera-
ture inversions (i.e., temperature is cooler at lower elevations) can also occur in some areas,
typically in winter months. Therefore, it remains a challenge to develop global functions that

Fig 2. Proportions of variance explained (R square values) by local linear regression in total variation
among the nine neighbor pixels for monthly minimum andmaximum temperatures, andmonthly
precipitation across the entire North America. The extent of the box indicates the 25th and 75th

percentiles. The horizontal solid lines inside the boxes indicate the medians.

doi:10.1371/journal.pone.0156720.g002
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accurately reflect lapse rates across a large region [12]. We found that the dynamic local regres-
sion approach developed in this study is effective for monthly temperature and precipitation
variables in downscaling the baseline climate data at a moderate spatial resolution. In most
cases, over 60% of the total variation in temperature among the nine neighbor tiles of the base-
line climate can be explained by elevation, and it is more effective in mountain areas (>90%)
where elevation adjustment is more critical than in flat areas. This approach is able to capture
the elevation effect in case of temperature inversion. The amount of variation explained by ele-
vation in monthly precipitation is smaller (~30% for most cases,>40% in mountain areas),
and elevation adjustment is not possible at all using the partial derivative functions used in Cli-
mateWNA (up to version 4.85), so the dynamic downscaling still provides a significant
improvement for precipitation over previous versions of the software.

Bioclimatic variables
New derived climate variables are an important addition to the ClimateNA software package.
Climate-driven ecological and hydrological models require driving variables that represent

Fig 3. Relationships between differences in minimum temperatures in January (Tmin01), February (Tmin02) and March
(Tmin03) and the change in elevation among the nine neighbor cells at a randomly pickedmountain area in British
Columbia (latitude = 53.88° and longitude = -125.1°).

doi:10.1371/journal.pone.0156720.g003

Table 2. Comparisons in prediction standard errors between ClimateNA and the baseline climate data for primarymonthly climate variables
based on evaluations against observations from 4891 weather stations in North America.

Monthly minimum temperature Monthly maximum temperature Monthly precipitation

Month Baseline
(°C)

ClimateNA
(°C)

Improved
(%)

Observed
(°C)

ClimateNA
(°C)

Improved
(%)

Observed
(mm)

ClimateNA
(mm)

Improved
(%)

1 1.06 1.04 2 0.91 0.86 5 11.1 10.8 3

2 1.04 1.02 2 0.89 0.83 6 8.3 8.2 1

3 0.89 0.86 3 0.86 0.78 10 8.7 8.5 2

4 0.78 0.74 5 0.78 0.65 16 9.1 9.1 1

5 0.77 0.74 4 0.76 0.64 16 7.6 7.5 0

6 0.81 0.78 4 0.77 0.64 17 7.8 7.8 1

7 0.82 0.80 3 0.73 0.61 17 7.9 7.9 1

8 0.84 0.82 3 0.75 0.62 18 7.8 7.8 0

9 0.87 0.84 3 0.74 0.61 17 12.9 12.9 0

10 0.90 0.87 3 0.72 0.61 16 9.3 9.3 0

11 0.81 0.79 3 0.70 0.62 11 9.5 9.4 1

12 0.96 0.93 3 0.74 0.69 7 10.5 10.2 3

Average 0.88 0.85 3 0.78 0.68 13 9.2 9.1 1

doi:10.1371/journal.pone.0156720.t002
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periods longer than a month, or derived climate variables that represent summaries of daily
data over a longer period. These variables are usually referred to as bioclimatic variables and
are widely used in ecological modeling. For example, the most important climate variable that
separating forest ecosystems in British Columbia is Continentality (TD) [23]. Precipitation as

Fig 4. Illustrations of the model fit (red line) of the piecewise function (linear and nonlinear) for monthly
degree-days DD<0 and DD<18 on monthly mean temperature for January for the base line period 1961–
1990 for 4891 locations (black points).

doi:10.1371/journal.pone.0156720.g004

Fig 5. Illustrations of the model fit (red line) of the piecewise function (linear and nonlinear) with all (4891) and split samples for
monthly degree-days DD>5 and DD>18 on monthly mean temperature for January for the base line period 1961–1990.

doi:10.1371/journal.pone.0156720.g005
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snow (PAS) and summer heat-moisture index (SMH) have been the most effective climate var-
iables to delineate the hybrid index for hybrids between white and Engelmann spruces [16].
Various forms of degree-days, frost-free days and moisture deficit index are also often found to
play important biological [24, 25], ecological [1, 26] and hydrological [27] roles. ClimateNA,
with added derived climate variables at monthly and seasonal levels, will provide more options
for modellers to test, identify, and make use of climate variables that closely represent drivers
of ecological processes.

Applications and limitations
ClimateNA makes it possible to generate climate data at any desirable spatial resolution. To
give an example for the need of downscaling in ecological research, we visualize how climate
surfaces match the topography (Fig 6A, 6C and 6E), and how well the predicted forest ecotypes
match the originally mapped ecosystem classifications (Fig 6B, 6D and 6F) at different spatial
resolutions (800 x 800 m and 80 x 80 m). For predicting forest ecotypes, we used ClimateNA to
generate climate variables for a bioclimate envelope model of forest ecosystems in British
Columbia [23]. Local climate gradients in topographically complex terrain can be a driver of
forest ecotypes at very fine spatial resolutions that the ClimateNA software package can deliver
(here, 80 x 80 m). For the predicted ecotypes in particular, the finer spatial resolution is critical
at a forest management scale (Fig 6B, 6D and 6F). The coarse resolution is not able to represent
the spatial distributions of the original ecotypes at the local scale.

Notwithstanding the need for high-resolution climate grids, we should also point out the
general limitations of the data we provide through the software package and its underlying
databases. Although climate data can be generated at very fine resolution as shown in the
above example, the data are ultimately based on interpolated data from standardized weather
stations, and therefore cannot include micro site effects that are driven by vegetation, water
bodies, or other micro-scale physiographic features.

While the dynamic lapse-rate algorithms considerably improve on regular gridded climate
data, the accuracy of the climate estimates also vary with the time period the variable represents
and the variable type. As shown in the results, errors tend to be largest in complex derived vari-
ables that are not averaged over longer time periods. For example, measurements of the degree
days for an individual month of an individual year come with larger uncertainties than a degree
day estimate that is made for the entire year or estimates for a month that are averaged over a
30-year normal period.

Table 3. The amount of variance in observed climate variables explained by ClimateNA derived variables and their prediction standard errors.

Variable Variance explained (%) Prediction standard error

Monthly Annual Monthly Annual

DD<0 (°C) 99.1–99.8 99.7 0.1–8.3 36.1

DD>5 (°C) 99.6–100.0 99.9 1.7–7.0 14.61

DD<18 (°C) 99.4–100.0 99.9 2.9–6.0 25.6

DD>18 (°C) 99.2–99.8 99.9 0.7–4.0 11.8

NFFD (day) 92.3–99.3 99.8 0.2–0.9 2.3

PAS (mm) 64.2–87.7 87.8 0.2–5.6 16.5

bFFP 96.9 5.0

eFFP 95.1 5.2

FFP 96.7 9.4

EMT (°C) 90.5 2.7

EXT (°C) 84.7 1.3

doi:10.1371/journal.pone.0156720.t003
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Lastly, we expect variable estimates with larger errors in the remote areas where the number
of weather stations is limited as shown in Fig 1. Because our validations are not independent
(i.e. the weather stations we use for validation here have likely also been used by the PRISM
andWorldClim groups for developing the baseline data), the average prediction error was
quite small with an average of 0.77°C for monthly temperatures. However, this does not neces-
sarily guarantee that estimates for areas without nearby weather stations have this level of
precision.

Fig 6. Landscape image (a) and original forest ecotype map (b) at the north end of Vancouver Island, BC, Canada (centered at Lat. =
50.362° and Long. = -126.385°). Spatial distributions of mean annual temperature (MAT) (c and e) and predicted forest ecotypes (d and f) at
the spatial resolutions of 800 x 800 m (c and d) and 80 x 80 m (e and f), respectively.

doi:10.1371/journal.pone.0156720.g006
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Data access
Three options were developed for accessing the downscaled climate data generated by the
algorisms implemented in ClimateNA: 1) ClimateNA desktop package; 2) ClimateNAMap;
and 3) a GIS raster data portal.

ClimateNA desktop package has an interactive interface for single-location and multiple-
location process. For a single location, users input latitude, longitude and elevation (op-
tional) to obtain all climate variables for a selected period (a historical, a paleo, the reference
or a future period). For multiple locations, users prepare an input dataset of columns of
two location IDs, latitude, longitude and elevation. There is no limit for the number of loca-
tions. A time-series function is available for users to obtain climate data for multiple years
and for multiple locations. This can save a tremendous amount of time. The output file is in
comma-delimited format (.CSV) and can be directly imported to ArcGIS, R, SAS or other
package for data analysis or conversion to gridded data formats. The desktop version can
be downloaded for free at http://cfcg.forestry.ubc.ca/projects/climate-data/climatebcwna/
#ClimateNA

ClimateNAMap is a web version integrated to Google Maps through Google Maps APIs. It
allows users to obtain the coordinates and elevation for the location of interest simply by click-
ing at the location on the map. The program automatically imports this information from the
Google Maps to ClimateNA. The users can then click on the “Calculate” button to get all cli-
mate variables for a selected period. The output can be saved on a local computer. The map
version also facilitates spatial visualization of major climate variables overlaid onto the Google
Maps, which can also be downloaded as raster layers to a local computer. The map version can
be accessed at http://climatewna.com/climatena_map

Finally, we provide gridded raster data layers that were generated for the entire North
America at the spatial resolution of 1000 x 1000 meter for the normal periods 1961–1990 and
1981–2010, and three future periods 2020s, 2050s and 2080s for 8 selected CMIP5 models and
two greenhouse gas emission scenarios (RCP4.5 and RCP8.5). These datasets can be down-
loaded at http://tinyurl.com/ClimateNA or http://adaptwest.databasin.org/pages/adaptwest-
climatena. The variables can also be displayed graphically, as summarized by watershed across
North America, using an interactive online data viewer (http://adaptwest.databasin.org/app/
watershed-climate-explorer). Additional variables derived from ClimateNA output, such as cli-
mate velocity [28], can also be downloaded from the portal (http://adaptwest.databasin.org/
pages/adaptwest-velocitywna).

Conclusion
In summary, we found that the dynamic local-regression approach implemented in ClimateNA
can effectively downscale the gridded baseline data into scale-free point data with improved
prediction accuracy for all climate variables. The software package facilitates access to climate
data at both large scales (e.g. for continental species ranges and regional ecosystem characteri-
zation and modeling), but also at local management unit scales (e.g. to climatically characterize
plot and sample data). Additions of derived biologically and ecologically relevant climate vari-
ables at monthly and seasonal scales provide more options for modellers to improve their bio-
logical, ecological and hydrological models. Integration of historical, future and paleo climate
data through the delta downscaling method provides convenience through integrating many
climate data sources in one package. Time-series functions, interactive map-based interface
and raster data portals may save users the considerable effort of processing large volume of cli-
mate data. We hope that ClimateNA will serve as a useful tool in climate related research and
applications across North America under changing climate.
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