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TheWnt/β-catenin signaling pathway plays important roles in embryonic development and
tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with
the development and progression of renal fibrosis. Wnt/β-catenin controls the expression
of various downstream mediators such as snail1, twist, matrix metalloproteinase-7,
plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-
angiotensin system components in epithelial cells, fibroblast, and macrophages. In
addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote
renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal
fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several
antagonists of Wnt signaling that negatively control Wnt activation, and these include
soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory
factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be
ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing
on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting
the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent
advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin
signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of
targeting this pathway to treat renal fibrosis; this may shed new insights into effective
treatment strategies to prevent and treat renal fibrosis.
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INTRODUCTION

Chronic kidney disease (CKD) is an increasingly serious public health problem due to its high
prevalence and mortality and greatly increases the risk of end-stage renal disease (ESRD), and
cardiovascular disease (Webster et al., 2017). Renal fibrosis is the final pathological, dynamic,
progressive, and irreversible process common to any ongoing CKD or maladaptive repair (Djudjaj
and Boor, 2019). Renal fibrosis is the accumulation of scars in the parenchyma that is a pathological
expansion of the normal wound healing process, characterized by inflammation, myofibroblast
activation, migration, and matrix deposition and remodeling, leading to the replacement of
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functional parenchyma by fibrotic tissues (Humphreys, 2018;
Distler et al., 2019). Renal interstitial fibrosis is mainly driven by
various pro-fibrotic growth factors, forming a fibrotic micro-
environment in the interstitial space (Chen et al., 2018c; Tang
et al., 2019). In other words, the major pathological events of renal
fibrosis include inflammatory cell infiltration, fibroblast
activation and proliferation, and abnormal increase and
excessive deposition of extracellular matrix (ECM)
components, mainly composed of collagen, fibronectin, and
proteoglycans (Liu et al., 2021). With the ECM continuous
deposition, scar tissue replaces normal tissue, tubules, and
peritubular capillaries are lost, resulting in disruption of tissue
architecture and loss of renal function (Xing et al., 2021).
Additionally, there is growing evidence that ECM-derived
components could be used as danger-associated molecular
patterns (DAMPs). As an important promoter of fibrogenesis,
as long as the inflammatory stimulation persists, these DAMPs
are generated and release signals during the phase cell activation
and damage, ultimately promoting inflammation to fibrosis and
kidney disease (Nastase et al., 2018).

The Wnt/β-catenin signaling pathway is an evolutionarily
conserved developmental signaling pathway, playing an
extremely important role in organogenesis, tissue homeostasis,
and disease progression of multicellular organisms (Schunk et al.,
2021). There are 19 identified encoding Wnt genes in the
mammalian genome, all of which are cysteine-rich proteins
(Langton et al., 2016). Wnt protein induces β-catenin-
dependent signaling through Wnt receptor coiled Frizzled
(FZD) and co-receptors low-density lipoprotein receptor-
related protein-5/protein-6 (LRP5/6) (Janda et al., 2017). In
addition, there are other receptors and co-receptors, including
the tyrosine kinase receptors RYK, single transmembrane
receptor tyrosine kinase, G-protein coupled receptor, etc., that
trigger various downstream signaling pathways (Foulquier et al.,
2018). Continuous accumulation of intracellular β-catenin
signaling plays a crucial role in developing renal fibrosis,
podocyte injury, proteinuria, persistent tissue damage during
acute kidney injury, and cystic kidney diseases (Miao et al.,
2019; Schunk et al., 2021). The latest research shows that
given the crucial role of Wnt/β-catenin signaling in renal
fibrogenesis, blocking this signaling may be beneficial to
alleviate renal fibrosis (Xie et al., 2021; Yiu et al., 2021).
Recent studies have shown that apigenin (API) could
effectively relieve renal fibrosis via co-inhibiting uric acid
(UA) reabsorption and the Wnt/β-catenin signaling pathway
(Li et al., 2021). In addition, ischemia-reperfusion injury (IRI)
could increase indoleamine-2,3-dioxygenase (IDO) expression to
activate the Wnt/β-catenin pathway leading to renal fibrosis.
Prostaglandin E2 (PGE2) could ameliorate kidney fibrosis via
inhibiting IDO expression and reducing β-catenin resulting in
lower expressions of α-smooth muscle actin (α-SMA), fibronectin
(Pan et al., 2021). In vivo and in vitro, it has proved that the
abnormally expressed cannabinoid receptor type 2 (CB2) is
closely related to renal fibrosis via β-arrestin 1-induced
β-catenin activation, and β-catenin could promote the
activation and expression of CB2, and finally forms the vicious
circle in the CB2/β-catenin pathway (Zhou et al., 2021).

Therefore, it is of great significance to clarify the cellular and
molecular mechanisms of the Wnt/β-catenin signaling pathway
in tubulointerstitial fibrosis and provide a new treatment strategy
for antifibrosis and delaying CKD progression. In this review, we
summarize recent advances on the involvement ofWnt/β-catenin
in the pathogenesis of tubulointerstitial fibrosis and the
intervention effect of natural products targeting the Wnt/
β-catenin signaling pathway.

WNT/β-CATENIN SIGNALING PATHWAYS

The mechanisms of Wnt signaling consist of two main branches:
the canonical and non-canonical pathways (Schunk et al., 2021).
The canonical pathway is also known as the Wnt/β-catenin
pathway. Furthermore, two master non-canonical pathways
are the Wnt/planar cell polarity pathway (Wnt/PCP pathway)
and the Wnt/calcium pathway (Wnt/Ca2+ pathway) (Hu et al.,
2020). According to downstream effects, all Wnt ligands are
divided into two categories: one is canonical, Wnt ligands that
induce β-catenin-dependent pathway, including Wnt1, 2, 3, 8a,
8b, 10a, and 10b, and the other is non-canonical, Wnt ligands that
mediate β-catenin-independent pathway, includingWnt4, 5a, 5b,
6, 7a, 7b, and 11 (Acebron and Niehrs, 2016). In the canonical
Wnt/β-catenin signaling pathway, Wnt molecules transmit the
intracellular signal in the intracellular matrix through interacting
with FZD receptors and the co-receptor LRP5/6 (Figure 1). FZD
proteins have seven transmembrane receptors, with a cysteine-
rich domain responsible for the binding of Wnt proteins (Schunk
et al., 2021). Since the activation of LRP5/6 depends on the
binding of the canonical Wnt ligands to the FZD receptors, they
are considered to be the key co-receptors of the canonical Wnt
signaling pathway (Huang et al., 2019). After that, the interaction
triggers the intracellular signal cascade and promotes the
accumulation of non-phosphorylated β-catenin, which
translocates into the nucleus, and cooperates with the
transcription factors T cell factor (TCF)/lymphatic enhancer-
binding factor (LEF) to trigger the transcription of Wnt target
genes (Tessa et al., 2020). β-Catenin is an important co-factor that
binds multiple transcriptional molecules and mediates fibrogenic
signaling pathways (Yang et al., 2021). In a steady-state, β-catenin
is inactivated by a “destruction complex,” which includes the
proteins glycogen synthase kinase 3β (GSK3β), adenomatous
polyposis coli (APC), casein kinase 1 (CK1), and axin (Wang
et al., 2020a). The protein complex mediates the phosphorylation,
ubiquitinylation, and degradation of β-catenin, and through
continuous ubiquitination and degradation, the cytoplasmic
levels are kept at a low level (Schunk et al., 2021). However,
once Wnt ligands bind to co-receptors on cytomembrane, the
combination of FZD and Dishevelled (DVL) could provide a
recruitment platform for the β-catenin destruction (Gammons
et al., 2016). DVL protein is recruited, and the ‘destruction
complex’ is disrupted, protecting β-catenin from inactivation
and degradation, thus leading to the stabilization,
accumulation, and nuclear translocation of β-catenin (Nusse
and Clevers, 2017). An increasing number of studies have
demonstrated that fibroblast signaling pathways all merge on
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β-catenin to promote the β-catenin/TCF complex and mediate
fibrogenesis (Yang et al., 2021). β-Catenin integrates the inputs of
transforming growth factor β (TGF-β)/Smad, integrin/ILK, the
Wnt/β-catenin pathway and renin-angiotensin system (RAS),
which are activated in fibrotic primary and allograft kidney
diseases (Huang et al., 2019).

WNT/β-CATENIN SIGNALING PATHWAY IN
RENAL FIBROSIS

The Wnt/β-catenin pathway is one of the crucial signaling
pathways resulting in kidney disease. An increasing number of
studies have demonstrated that the activation of the Wnt/
β-catenin signaling pathway serves a key role in promoting
renal fibrosis by controlling the expression of various
downstream mediators implicated in renal fibrosis (Chen
et al., 2017b; Feng et al., 2019a; Schunk et al., 2021)
(Figure 1). The transient activation of many signaling
pathways has a beneficial effect on repairing damaged tissues.
However, their sustained activation promotes fibrosis (Edeling
et al., 2016). It has been confirmed that severe ischemia/
reperfusion injury leads to sustained and excessive activation
of Wnt/β-catenin, accompanied by interstitial myofibroblast
activation and ECM deposition, characteristics of renal fibrotic
lesions development (Xiao et al., 2016). Therefore, sustained and
exaggerated Wnt/β-catenin activation mediates fibroblast

activation. Although transient Wnt/β-catenin activation
promotes tissue regeneration and repair after kidney injury,
sustained or uncontrolled Wnt/β-catenin signaling stimulates
podocyte injury and proteinuria, ultimately leading to
irreversible renal fibrosis (Schunk et al., 2021).

Fibroblast
Fibroblasts are the main driving force for scar formation after
kidney injury (Miao et al., 2021). The continuous activation of
fibroblasts leads to the secretion of ECM components, such as
collagen, proteoglycan, and fibronectin, leading to the
development of renal fibrosis (Feng et al., 2019b). As an ECM
glycoprotein, fibronectin serves a key role in wound healing and
fibrosis by regulating the deposition of collagen and other ECM
molecules. A study confirmed that upregulated Wnt/β-catenin
signaling is related to the response of epithelial cells to wound,
renal tubular cell damage, fibrous collagen, and immunoglobulin
transcript expression (Venner et al., 2016). Thus, Wnt protein
derived from renal tubules may play a critical role in fibroblast
activation and renal fibrosis (Zhou et al., 2017). There is a
complex regulatory network between renal tubular epithelial
cells and fibroblasts, regulated by autocrine and paracrine
Wnt/β-catenin signaling (Maarouf et al., 2016). The activated
Wnt/β-catenin pathway can promote the fibroblast proliferation
and differentiation of fibroblasts towards myofibroblasts;
myofibroblasts are critical contributors to renal fibrosis. Their
characteristics are secreting fibronectin and increasing the

FIGURE 1 |Wnt/β-catenin signaling is off or on state. In steady-state, β-catenin is inactivated by a “destruction complex,” and phosphorylation, ubiquitinylated, and
degraded of β-catenin is mediated by the protein complex. Wnt on state; Wnt molecules transmit the intracellular signal in the intracellular matrix through interacting with
FZD receptors and LRP5/6. After that, the interaction triggers the intracellular signal cascade and promotes the accumulation of non-phosphorylated β-catenin, which
translocates into the nucleus, and cooperates with TCF/LEF to trigger the transcription of Wnt target genes. Once Wnt ligands bind to co-receptors on
cytomembrane, the combination of FZD and DVL could provide a recruitment platform for the β-catenin destruction. Wnt/β-catenin controls the expression of various
downstream mediators implicated in renal fibrosis, such as Snail1, MMP-7, PAI-1, Twist, and FSP1.
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expression of α-SMA (Zhou et al., 2017). In a high glucose
environment, activating the Wnt/β-catenin pathway could
promote renal mesangial cell proliferation and fibronectin
production. Interestingly, fibronectin is an important target
gene of Wnt/β-catenin (Zhang et al., 2014). Therefore,
inhibiting the activity of Wnt/β-catenin signaling in fibroblasts
may help alleviate the progression of renal fibrosis (Duan et al.,
2020).

Macrophages
According to the activation mechanism and cell function,
macrophages are divided into classically activated macrophages
(M1) and alternatively activated macrophages (M2) (Wang et al.,
2014a). M1, a pro-inflammatory phenotype, releases cytokines
that inhibit the proliferation of surrounding cells and damage
contiguous tissue, while M2, an anti-inflammatory phenotype,
releases cytokines that promote the proliferation of contiguous
cells and tissue repair (Wang et al., 2014a; Cosin-Roger et al.,
2019). If macrophages fail to acquire a tissue-healing phenotype,
dysregulated signals can be drivers of disease processes, such as
sustained, exuberant inflammation and fibrosis (Smigiel and
Parks, 2018). Thus, macrophages serve a key role in immune
surveillance and in the maintenance of renal homeostasis.
Macrophages recruited from the bone marrow can transition
directly into myofibroblasts during renal injury. This process is
defined as macrophage-to-myofibroblast transition, which may
play a crucial role in the progression of chronic inflammation to
pathogenic fibrosis (Tang et al., 2019). Sustained accumulation
and activation of macrophages in kidney tissue could lead to the
production of multiple pro-fibrotic cytokines and ultimately
induce renal fibrosis. Additionally, as key inflammatory cells,
macrophages could promote ECM synthesis and deposition,
resulting in renal fibrosis by releasing inflammatory cytokines,
TGF-β, and matrix-degrading enzyme inhibitors (Yang et al.,
2019). Activation of Wnt/β-catenin signaling stimulates renal
inflammation, comprising macrophages infiltration, pro-
inflammatory cytokines release, and cell adhesion molecules
expression in renal injury. Moreover, tubular cell-derived Wnt
ligands mediate pro-inflammatory activation of renal
macrophages during fibrosis (Wong et al., 2018). Previous
studies have shown that the hyperactive of Wnt/β-catenin
signaling could promote renal fibrosis by stimulating
macrophage M2 polarization and promoting the proliferation
and accumulation of macrophages. The continuous accumulation
and activation of macrophages may lead to various fibrotic
cytokines and ultimately lead to kidney fibrosis (Feng et al.,
2018). Therefore, as an important source of Wnt protein in
adult tissues, macrophages proliferate and accumulate in
kidney tissues through the activation of the Wnt/β-catenin
signal, considered a key factor in renal fibrosis (Cosin-Roger
et al., 2019).

Snail1
Snail family zinc finger 1 (Snail1) is a transcription factor
expressed during embryonic renal development and is widely
expressed in various kidney injury models, including unilateral
ureteral obstruction (UUO), 5/6 nephrectomy, and hypoxia. It is

involved in regulating fatty acid metabolism, cell cycle arrest, and
inflammatory response, major biological processes responsible
for renal fibrogenesis (Simon-Tillaux and Hertig, 2017). Snail1 is
a key transcription factor driving epithelial-mesenchymal
transition (EMT); the stabilized β-catenin enters the cell
nucleus, forms a complex with TCF, and activates the
transcription of Snail1 to drive EMT. Moreover, the up-
regulation of TGF-β1 promotes Snail1-mediated EMT of
renal tubular epithelial cells during renal fibrosis. Not only
that, but also Snail1 is a critical transcription target of
β-catenin that upregulates β-catenin transcriptional
activity; as such, both β-catenin and Snail1 may be
activated simultaneously to produce an additive or
synergistic effect in promoting EMT (García de Herreros
and Baulida, 2012). Thus, the Snail1-induced EMT process is
a key mechanism that initiates the reaction cascade leading to
fibrosis (Bai et al., 2016). Additionally, it has been found in a
modern study that the Snail1/β-catenin signaling pathway
may be involved in promoting renal fibrosis related to
diabetes (Kim et al., 2017). Furthermore, it has been
demonstrated that Snail1s could interact with β-catenin
functionally, thereby increasing the expression of Wnt-
dependent target genes (Stemmer et al., 2008).

Matrix Metalloproteinase-7
MMP-7, also known as matrilysin, is a secreted zinc- and
calcium-dependent endopeptidase, a transcriptional target of
classic Wnt/β-catenin signaling, a pathological mediator, and
therapeutic target of renal fibrosis (Wozniak et al., 2021).
Under normal physiologic conditions, MMP-7 is almost not
expressed in adult kidneys but upregulated in various renal
diseases, including AKI and CKD (Wozniak et al., 2021).
MMP-7 can degrade ECM components and cleave various
substrates, such as E-cadherin, Fas ligand, and nephrin.
Therefore, it plays a key role in regulating various
biological processes, such as cell proliferation, apoptosis,
EMT, and podocyte damage (Tan et al., 2019).
Furthermore, MMP-7, via its proteolytic activity, mediates
proteolytic degradation of E-cadherin, resulting in β-catenin
liberation and activation, leading to renal fibrosis in a Wnt-
independent fashion. It is worth noting that the release of
β-catenin mediated by MMP-7 further induces the expression
of MMP-7, eventually forming a vicious circle (Liu et al.,
2020). In other words, on the one hand, activation of Wnt/
β-catenin promotes the occurrence of fibrosis by upregulating
pro-fibrotic mediators, including MMP-7, PAI-1. On the
other hand, MMP-7, as the most powerful β-catenin
downstream target, can activate the Wnt/β-catenin
signaling pathway after renal injury (Tan et al., 2019). In
summary, renal MMP-7 levels correlate with Wnt/β-catenin
activity, and urinary MMP-7 may be a noninvasive
biomarker of pro-fibrotic signaling in the kidney.
However, in several AKI animal models (IRI, cisplatin
administration, and folic-acid induced AKI), MMP7
exerts protective effects on the kidney as an adaptive
response. Therefore, the role of MMP-7 as a therapeutic
target for kidney disease needs further study.
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Plasminogen Activator Inhibitor-1
PAI-1, as a member of the serine protease inhibitor family,
interferes with ECM and fibrin degradation, mediated by
urokinase-type plasminogen activator (uPA) and tissue-type
plasminogen activator (tPA) to suppress fibrinolysis and
contribute to interstitial fibrosis in the kidney injury (Flevaris
and Vaughan, 2017). Increasing evidence shows the role of PAI1
in renal fibrosis (Zhou et al., 2015a). PAI-1 promotes fibrosis by
participating in various cellular processes, such as inflammation,
cell adhesion, and migration. Conversely, some specific factors
that promote fibrosis, such as oxidative stress and hypoxia, could
also affect the expression of the PAI-1 gene (Rabieian et al., 2018).
And depleting PAI-1 can alleviate interstitial fibrosis by
decreasing fibroblast activation and proliferation in the renal
interstitium (Yao et al., 2019). Therefore, PAI-1, a key molecule in
renal fibrosis progression, has increased expression in various
kidney disease models (Hamasaki et al., 2013). In addition, a
recent study indicated that PAI-1 could promote cell migration
through LRP1-dependent β-catenin activation (Kozlova et al.,
2015). Since the promoter region of PAI-1 contains a TCF/LEF
binding site, PAI-1 is an important target gene of β-catenin
signaling in renal injury (Malik et al., 2020).

Components of the Renin-Angiotensin
System
The RAS serves a vital role in maintaining renal hemodynamics
and the occurrence of hypertension and kidney disease (Navar,
2014). Unanimously, renal tissue RAS has various
pathophysiological functions in regulating blood pressure,
growth of kidney cells, and glomerular sclerosis, leading to
renal fibrosis development (Urushihara et al., 2012). The (pro)
renin receptor ((P)RR), consisting of 350 amino acids, has been
considered as a single-transmembrane protein encoded by
ATP6AP2, an X chromosome-located gene, and the
transmembrane receptors enhance the tissue RAS by binding
to their ligands renin and/or prorenin; therefore, it is initially
considered to be an important part of the RAS and is ubiquitously
expressed in the human body (Ramkumar and Kohan, 2016;
Ichihara and Yatabe, 2019). The receptor plays crucial roles in
various pathways, involved in extensive physiological and
pathological processes, such as the cell cycle, autophagy, acid-
base balance, energy metabolism, T cell homeostasis, blood
pressure regulation, cardiac remodeling, and maintaining
podocyte structure (Ichihara and Yatabe, 2019; Wang et al.,
2020a). The Wnt-RAS signaling serves a vital role in the
development and progression of CKD (Zhou et al., 2020).
There are putative TCF/LEF binding sites in the RAS
promoter region through bioinformatics analyses, and
β-catenin could trigger LEF-1 to bind to these sites in renal
tubular cells (Zhou et al., 2015b). In addition, (P)RR is necessary
for signal transduction through FZD-LRP5/6 (Li et al., 2017).
Moreover, accumulating evidence has demonstrated that (P)RR is
a downstream target and a crucial element in Wnt signal
transmission, promoting kidney damage and fibrosis through
amplifying Wnt/β-catenin signaling transduction. In addition,
Wnt/β-catenin, as the main upstream regulator, controls the

expression of multiple RAS genes. In other words, the
overactivity of β-catenin or different Wnt ligands leads to the
expression of all RAS genes (Zhou and Liu, 2015; Zhao et al.,
2018). Hence, targeting Wnt/β-catenin would concurrently
inhibit all RAS genes, accordingly suppressing inflammation
and alleviating renal fibrosis (Zhou and Liu, 2016). Studies
have demonstrated that the fibrogenic action of Wnt/β-catenin
is dependent on RAS activation, and Wnt/β-catenin regulates
multiple RAS genes. At the same time, RAS can induce the
expression of multiple Wnt genes in vivo and in vitro; as such,
the Wnt/β-catenin-RAS axis can be known as a vicious circle in
aggravating the renal injury (Xiao et al., 2019).

Transient Receptor Potential Canonical 6
TRPC6 has been implicated in the pathogenesis of kidney
diseases, including focal segmental glomerulosclerosis (FSGS),
diabetic nephropathy (DN), immune-mediated kidney disease,
and renal fibrosis. As a result, TRPC6 has become a critical target
of therapeutic agents to prevent and treat various kidney diseases
(Hall et al., 2019). TRPC6 is another transcriptional target of the
Wnt/β-catenin signaling cascade, and the Wnt/β-catenin
signaling pathway may potentially be active in the
pathogenesis of TRPC6-mediated diabetic podocyte injury
(Zhang et al., 2013; Kim and Dryer, 2021). TRPC6 knockout
shows protection on UUO-triggered kidney tubulointerstitial
injury, interstitial fibrosis, and α-SMA expression (Gu et al.,
2020). Mutations and over-activation in TRPC6 channel
activity play an important role in podocyte damage in
DN(Staruschenko et al., 2019; Wang et al., 2020c), However
its role in renal fibrosis and the interaction with the Wnt
signaling pathway in renal fibrosis still need further study.

In summary, the Wnt/β-catenin signaling pathway could
activate renal fibrosis-related cytokines and up-regulate the
expression of downstream target genes, eventually inhibit the
main pathological process in the fibrosis process, and improve
renal fibrosis. Therefore, we can further explore the downstream
targets of the Wnt/β-catenin signaling pathway on this basis to
further improve the mechanism of the Wnt/β-catenin signaling
pathway in renal fibrosis.

THE CROSSTALK BETWEEN WNT/
β-CATENIN AND OTHER SIGNALING
PATHWAYS ON RENAL INTERSTITIAL
FIBROSIS

Various pathways intersect and regulate each other to induce
appropriate responses to a series of complex stimuli. Therefore,
the synergy between other pathological signaling pathways and
Wnt may play an important role in promoting renal fibrosis.
RNA sequencing showed that deleting TGF-β receptors in
proximal renal tubular cells regulated many growth factor
pathways, but Wnt/β-catenin signaling is the most affected
pathway due to the activity of β-catenin that is impaired in
vivo and in vitro (Nlandu-Khodo et al., 2017). The participation
of the Wnt signaling pathway enhances the pro-fibrotic effect of
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the TGF-β signaling pathway (Yang et al., 2020). In hypoxic
pathological damage of organs, overactivation hypoxia-inducible
factor-1α (HIF-1α) activates the Wnt/β-catenin signaling
pathway, thereby aggravating renal interstitial fibrosis
development (Qi et al., 2017). Although the Hedgehog (HH)
signaling pathway is considered upstream of the Wnt/β-catenin
signaling pathway, there is overlap between the two phenotypic
results, suggesting a synergistic effect. Wnt and Notch interact
mostly synergistically in the stem cell and epithelial cell
compartment to trigger fibrosis development via suppressing
epithelial differentiation; Notch, as a negative regulator of the
Wnt/β-catenin signaling pathway, promotes β-catenin
degradation by establishing a complex with β-catenin (Edeling
et al., 2016; Chatterjee and Sil, 2019). However, the mechanism of
the interaction between the signaling pathways is still unclear,
and the studies on the mechanism of their synergy with the Wnt/
β-catenin signaling pathway should be further explored.

TARGETING WNT/β-CATENIN SIGNALING
AS A THERAPEUTIC POTENTIAL FOR
RENAL FIBROSIS
Accumulating evidence has demonstrated that inhibiting theWnt
signaling pathway could alleviate renal interstitial fibrosis by
attenuating apoptosis and expression of fibrosis-associated
markers in renal cells (Ren et al., 2019; Cai et al., 2020; Huang
et al., 2020). Endogenous Wnt inhibitors can negatively regulate
the Wnt signaling pathway by binding to Wnt ligands
competitively with Wnt receptors or co-receptors, such as
Dickkopf1 (DKK1), secreted frizzled protein 1 (Sfrp1), Wnt
inhibitor 1 (Wif-1), Klotho (Kawazoe et al., 2021). In addition,
exogenous Wnt signaling inhibitors accompanied by natural
products cannot be ignored to prevent and treat renal fibrosis.
Collectively, the Wnt/β-catenin signaling pathway may serve as a
potential treatment strategy for renal fibrotic disorders.

Endogenous Wnt Inhibitors
Secreted Frizzled-Related Protein1
Humans have five secreted frizzled-related proteins (Sfrp1-5)
with cysteine-rich domains (CRD), and these Sfrps have a
strong homology with FZD receptors, therefore compete with
FZD receptors for Wnt binding. In other words, Sfrps act as a
Wnt inhibitor. The Sfrp family consists of secreted glycoproteins
that can competitively bind to Wnt, inhibiting the canonical and
non-canonical Wnt signaling pathways (Cruciat and Niehrs,
2013). Studies have confirmed that Sfrp1 regulates cell
proliferation and differentiation by regulating Wnt/β-catenin
signaling, showing low expression in various tumor tissues
(Qiao et al., 2017). Thus, Sfrp1 is a Wnt antagonist that acts
as a negative regulator of Wnt/β-catenin signaling and serves a
key role in fibrotic diseases. In the mouse model of UUO,
knockout of Sfrp1 significantly increases the expression of
α-SMA and the protein level of vimentin; meanwhile, it
decreases the protein level of E-cadherin, which enhances the
epithelial to mesenchymal transition (Matsuyama et al., 2014).
Additionally, down-regulation of Sfrp1 activates the Wnt/

β-catenin signaling pathway, increased ECM deposition,
eventually lead to renal fibrosis. Therefore, Sfrp1 acts as a
negative regulator of the Wnt signaling pathway and
suppresses renal fibrosis via inhibiting the Wnt/β-catenin
signaling pathway.

Klotho
Klotho, an anti-aging protein, reduces renal fibrosis after AKI.
Klotho serves a key role in regulating various cellular processes by
interacting with multiple signaling molecules, including oxidative
stress, fibrosis, inflammation, autophagy, and apoptosis (Hu et al.,
2013). Therefore, Klotho is a critical gene, controlling aging and
kidney homeostasis, and an ideal intervention target for various
kidney diseases and even extrarenal complications (Xia and Cao,
2021). Furthermore, Klotho plays an important role in anti-
fibrotic activities by inhibiting oxidative stress and excessive
inflammation. Hence, Klotho deficiency enhances renal fibrosis
(Lindberg et al., 2014). It has been shown that the extracellular
domain of Klotho inhibits Wnt signaling via binding to multiple
Wnt ligands (Muñoz-Castañeda et al., 2020). Thus, Klotho is a
critical negative regulator of canonical Wnt signaling and
suppresses renal fibrosis in the obstructed kidney model by
simultaneously suppressing multiple growth factor signaling
pathways such as fibroblast growth factor-2 (FGF-2), Wnt,
and TGF-β1 (Guan et al., 2014). A study has found that
Klotho represses the Wnt/β-catenin pathway in renal tubular
epithelial cells (TECs) to exert a stronger anti-fibrotic effect
(Zhang et al., 2018a). Wnt/β-catenin activation is considered
to be the key factor resulting in Klotho downregulation (Muñoz-
Castañeda et al., 2017). In addition, the upregulation of Klotho
prevents Wnt activation, thereby inhibiting the deposition of
ECM and reducing the transcription of cytokines, ultimately
improving renal fibrosis (Zhou L. et al., 2013). Therefore,
Klotho is termed an antagonist of endogenous Wnt/β-catenin
activity, and increasing Klotho levels could be a strategy to reduce
the morbidity and mortality of kidney-related diseases (Muñoz-
Castañeda et al., 2020).

Dickkopf 1
DKK1 is an important member of the DKK family (DKK1,
DKK2, DKK3, DKK4) and is widely expressed in many fields.
It has been considered a secreted protein that can suppress the
Wnt signaling transduction pathway (Huang et al., 2018). DKK1
may play a crucial role in the fibrotic process in several organs
such as the liver, lungs, and kidneys (Klavdianou et al., 2017).
Gene therapy using DKK1 significantly suppresses fibroblast-
specific protein 1(fsp1), a marker for fibroblasts and
myofibroblasts, type I collagen, and fibronectin mRNA in the
model of obstructive nephropathy, thereby repressing the
activation of myofibroblast and improving renal fibrosis (He
et al., 2009). In vivo, DKK1 effectively inhibited inflammation
and fibrosis associated with ureteral obstruction (Johnson et al.,
2017). DKK1 can inhibit the canonical Wnt signaling pathway
through binding to LRP5/6, as well as interrupting the formation
of the LRP and Wnt protein complex. (Hou et al., 2021),
Therefore, DKK1 is termed an inhibitor of canonical Wnt/
β-catenin signaling (Lipphardt et al., 2019). As a Wnt
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antagonist, DKK1 blocks Wnt-mediated fibrosis and also down-
regulates its expression under fibrotic conditions. Therefore, it is
termed a comprehensive regulator of the Wnt signaling pathway
and has been proven to participate in renal fibrosis, glucose
metabolism, and inflammation (Huang et al., 2018). Overall,
there is no doubt that the outlook for DKK1 target therapy is
promising. DKK1, DKK2, and DKK4 act as Wnt antagonists by
directly binding to LRP5/6, thereby inhibiting Wnt/β-catenin-
dependent signaling (Joiner et al., 2013). However, in UUO rat
models and adenine-induced nephropathy, DKK3 is a major
driver of renal fibrosis (Federico et al., 2016), and the exact
role of DKK3 on Wnt/β-catenin signaling remains poorly
unclear.

Wnt Inhibitor Factor 1
Wif-1 is an antagonist of the Wnt signaling pathway, inhibiting
the Wnt signaling pathway by binding to the Wnt ligand.
Hypermethylation of the Wif-1 promoter leads to down-
regulation of Wif-1 expression, which activates the Wnt
signaling pathway, further promotes cell proliferation, and
induces cell apoptosis (Lin et al., 2017). On the contrary, the
recovered Wif-1 expression level inhibits the Wnt signaling
pathway. In fibroblasts from Systemic sclerosis (SSc) patients,
an autoimmune disease characterized by extensive visceral organ
and skin fibrosis, expression of Wif-1 is decreased. And
knockdown of Wif-1 in normal fibroblasts induces Wnt

signaling and collagen production (Svegliati et al., 2014). In
the prevention and treatment of various diseases, Wif-1 plays
an important role in inhibiting cell proliferation andmigration by
inhibiting the Wnt/β-catenin signaling pathway, but its role in
renal fibrosis needs further study.

Exogenous Wnt Inhibitors
The Wnt/β-catenin signaling pathway can be therapeutically
targeted at several steps (Figure 2). Firstly, blocking the
production of all active Wnts. Porcupine (PORCN) is a
membrane-bound O-acyltransferase required for Wnt
palmitoylation, secretion, and biologic activity, and PORCN
inhibitors prevent the release of Wnt ligands, such as Wnt-
c59, LGK974(Wnt-974), IWP2, and IWP-L6 (Moon et al.,
2017). Secondly, inhibitors of GSK3β, axin, DVL, and CK1
interfere with Wnt/β-catenin downstream signaling. Numerous
studies have shown that GSK-3β activation plays a wide spectrum
of important roles in tissue fibrosis (Zhuang et al., 2018; Zeng
et al., 2019). SB-216763, a GSK-3β inhibitor, protects against
Aldo-induced renal injury by activating autophagy and might be
a therapeutic option for renal fibrosis (Zhang et al., 2018b).
Substrate competitive inhibitors (SCIs), a novel small molecule
GSK-3 inhibitor, is considered to be highly selective and more
suitable for clinical practice (Rippin et al., 2020). In addition,
CHIR99021 (Ng-Blichfeldt et al., 2019), L807mts, (Licht-Murava
et al., 2016) and LY2090314 (Tu et al., 2017) have been produced

FIGURE 2 | Potential therapeutic targets in theWnt/β-catenin signaling. Numerous small molecules inhibit Wnt/β-catenin signaling at different steps of the pathway.
Porcupine inhibitors prevent Wnt ligands secretion. Receptor or co-receptor inhibitors prevent the receptor actions of Wnt ligands. Inhibitors of GSK3β, axin, DVL, and
CK1 interfere with Wnt/β-catenin downstream signaling. Inhibitors of TCF/LEF suppressWnt/β-catenin-dependent gene transcription. Several natural products alleviate
renal fibrosis by regulating the Wnt/β-catenin signaling pathway.
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as emerging small molecule inhibitors of GSK-3β. Tankyrase
(Tnks) is a transferase that targets axin for proteasome
degradation, and loss of Tnks activity leads to accelerated
β-catenin destruction. XAV939 and inhibitors of Wnt
response (IWR) act as Tankyrase inhibitors, which ultimately
promote β-catenin degradation and inhibit Wnt/β-catenin
signaling transcription (Kulak et al., 2015). In addition, E-7449
(Plummer et al., 2020) and K-476 (Kinosada et al., 2021), as new
inhibitors of Tnks, have been widely used in anti-tumor therapy,
and their anti-fibrotic mechanism needs to be further studied.
BMD4722 specifically inhibits DVL by inhibiting the protein-
protein interaction approach (Ma et al., 2018). IC261 is
discovered as an ATP-competitive inhibitor of CK1 (Xian
et al., 2021). Finally, inhibitors of TCF/LEF prevent Wnt/
β-catenin-dependent gene transcription. CREB-binding protein
(CBP) acts as a co-activator of multiple transcription factors for
Wnt signal transduction formed with TCF. ICG-001, a small-
molecule β-catenin inhibitor, inhibits the canonical Wnt/
β-catenin signaling pathway by binding to CBP and blocking
the interaction between β-catenin and CBP (Akcora et al., 2018).
It inhibits renal tubular EMT by suppressing the transcription of
a series of β-catenin-driven genes, such as Snail1, PAI-1, collagen
I, fibronectin, and RAS, thereby ameliorates interstitial
myofibroblast activation, represses matrix deposition, relieves
proteinuria, ameliorates kidney inflammation, and alleviates
fibrosis and exerts renal protection (Xiao et al., 2019). In a
UUO murine model, ICG-001 could reduce the macrophage-
to-myofibroblast transition of bone marrow-derived
macrophages in renal fibrosis by inhibiting the β-catenin/TCF
interaction (Yang et al., 2019). Therefore, ICG-001 not only
prevents but reverses established fibrosis (Henderson et al.,
2010). Moreover, PRI-724, as a selective inhibitor of CBP/
β-catenin interaction, specifically destroys the interaction
between β-catenin and CBP and has an encouraging effect in
anti-liver fibrosis (Nishikawa et al., 2018).

Specific Inhibition of Wnt/β-Catenin
Signaling by Natural Products
Modern clinical pharmacological studies have confirmed that
Chinese herbal medicines (CHMs) have a wide range of biological
activities and play a broad and important role in regulating
immune function by exerting their anti-cancer, anti-
inflammatory, and anti-fibrosis effects (Zhao, 2013; Chen
et al., 2016; Chen et al., 2018a; Wu et al., 2021). Clinical trials
and experimental studies have shown that CHMs have great
advantages in reducing proteinuria and improving renal function,
by focusing on the anti-inflammatory, anti-oxidative, anti-
apoptotic and anti-fibrotic effects (Chen et al., 2019a; Miao
et al., 2020; Wang et al., 2020b; Wang et al., 2021a; Wang
et al., 2021b). In addition, CHMs play a vital role in
alleviating renal fibrosis by regulating the Wnt/β-catenin
signaling pathway (Liu et al., 2019; Dai et al., 2020).

“Concept of holism” and “treatment based on syndrome
differentiation” are the basic principles of traditional Chinese
medicine (TCM) throughout the treatment of diseases. A study
confirmed thatQishen Yiqi dripping pill (QYDP) reduces the renal

Wnt1, β-catenin, TGF-β1, and Smad2 gene expression and
downregulates collagen I, α-SMA, and fibronectin expression
significantly in diabetic rats. The study results showed that
QYDP ameliorates kidney function and renal fibrosis in
diabetic rats by repressing the Wnt/β-catenin and TGF-
β/Smad2 signaling pathways (Zhang et al., 2020). Qingshen
Buyang Formula significantly reduces the expression of
collagen I and fibronectin, the main components of ECM.
Furthermore, by inhibiting EMT and Wnt/β-catenin signaling
pathway, it improves renal injury and relieves renal fibrosis
(Zhang et al., 2019). Zhen-Wu-tang alleviates adenine-induced
chronic renal failure (CRF) by regulating the canonical Wnt4/
β-catenin signaling, associated with improvement of renal fibrosis
because it suppresses the overexpression of collagen IV and
fibronectin, two key components of fibrosis (La et al., 2018).
Huang Gan Formula is a new prescription developed and
simplified based on uremia clearing granule and the theoretical
basis of TCM. HGF inhibits the Wnt/β-catenin signaling
pathway, significantly reducing glomerulosclerosis and tubular
interstitial fibrosis and improving residual renal function (Mo
et al., 2015).

Several compounds isolated from natural products promote
urination and eliminate edema, which greatly benefits renal
disease and fibrosis (Zhao et al., 2009; Zhao et al., 2012a; Zhao
L. et al., 2013; Zhao Y.-Y. et al., 2013; Tian et al., 2014; Zhao et al.,
2014). As an edible mushroom, Poria Cocos is widely used for
diuretic, anti-inflammatory, antioxidant, lipid-lowering, and
anti-fibrotic effects (Zhao et al., 2012b; Feng et al., 2013;
Wang et al., 2013b; Miao et al., 2016; Chen et al., 2019b; Feng
et al., 2019c). Poricoic acid A (PAA), as the main triterpenoid
compound of Poria Cocos, exhibits renoprotective effects, (Chen
et al., 2019c; Feng et al., 2019a; Chen et al., 2020a) and PAA
showed anti-fibrotic effects via regulating the Wnt/β-catenin
pathway (Chen et al., 2019d). In the HK-2 cell and UUO
model, poricoic acid ZC (PZC), poricoic acid ZD (PZD), and
poricoic acid ZE (PZE) could alleviate renal fibrosis by effectively
blocking RAS by simultaneously targeting multiple RAS
components, correlated with activation of Wnt/β-catenin
pathways (Wang et al., 2018a). Additionally, poricoic acid ZG
(PZG) and poricoic acid ZH (PZH) significantly suppress the
activation of Wnt/β-catenin signaling and relieve renal fibrosis
(Wang et al., 2018b). 25-O-methylalisol F is a new tetracyclic
triterpenoid compound isolated from the Alismatis rhizome that
exhibits renoprotective effects (Chen et al., 2014; Feng et al., 2014;
Tian et al., 2014; Dou et al., 2018), and is a novel RAS inhibitor by
simultaneously targeting multiple RAS components (Chen et al.,
2018b). Ergone, alisol B 23-acetate, and pachymic acid B inhibit
ECM accumulation, suppress oxidative stress and inflammation,
and regulates the Wnt/β-catenin signaling pathway (Zhao et al.,
2011; Chen et al., 2017a; Chen et al., 2019e; Chen et al., 2020b).

Curcumin alleviated ECM accumulation in diabetic
nephropathy by down-regulating Wnt/β-catenin signaling and
rescued diabetic renal injury (Ho et al., 2016). Salvia miltiorrhiza
extracts relieve renal injury by suppressing the relative expression
levels of wnt4, β-catenin, and TGF-β in renal tissue (Xiang et al.,
2019). Salidroside protects against T1DM-induced kidney injury
and renal fibrosis by ameliorating TGF-β1 and the Wnt1/3a/
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β-catenin signaling pathway (Shati and Alfaifi, 2020). It has been
demonstrated that Tripterygium wilfordii treatment inhibits the
upregulation of Wnt1 and β-catenin expression in
hyperglycemia-induced kidney tissue and attenuates the renal
injury in rats caused by diabetes (Chang et al., 2018). Triptonide
can effectively inhibit canonical Wnt/β-catenin signaling by
targeting the downstream C-terminal transcription domain of
β-catenin or a nuclear component associated with β-catenin
(Chinison et al., 2016). Astragaloside IV has been shown to
have possible inhibitory effects on renal interstitial fibrosis by
effectively inhibiting the upregulation of proteins in the Wnt/
β-catenin signaling pathway in UUO model rats (Wang et al.,
2014b). Quercetin inhibits β-catenin signaling transduction,
thereby inhibiting the activation of fibroblasts and renal
fibrosis (Ren et al., 2016).

In short, based on the findings described above, the Wnt/
β-catenin signaling pathway can be therapeutically targeted at
several steps. Lots of emerging small molecule inhibitors that
target Wnt and/or β-catenin are under development (Table 1).
Additionally, the natural products, active ingredients, crude

extracts, and traditional Chinese medicine formulas play an
important role in anti-kidney fibrosis by inhibiting the Wnt/
β-catenin signaling pathway. However, the specific molecular
mechanisms of numerous inhibitors still need in-depth study,
and more inhibitors need to be further developed.

CONCLUDING REMARKS

In summary, Wnt/β-catenin signaling plays a role in the
pathogenesis of renal interstitial fibrosis, and targeting this
pathway to treat renal fibrosis could yield positive results.
Accumulating evidence has demonstrated that the role of
Wnt/β-catenin signaling in the process of kidney repair and
regeneration after AKI cannot be ignored (Kuure et al., 2007;
Lasagni et al., 2015; Zhou et al., 2016; Jiao et al., 2017), and
activating Wnt/β-catenin signaling could alleviate AKI (Li et al.,
2020). A moderate increase in Wnt/β-catenin signaling is
beneficial, but excessive activation of this pathway could
trigger renal fibrosis (Guo et al., 2019; Sun et al., 2020). In

TABLE 1 | Summary of small molecular inhibitors of Wnt/β-catenin signaling.

Inhibitors Targets Effect Reference(s)

Sfrp1 FZD Ameliorates renal fibrosis Henderson et al. (2020)
Klotho Wnt ligands Ameliorates renal fibrosis Zhang et al. (2018a)
DDK1 LRP5/6 Ameliorates renal fibrosis Lipphardt et al. (2019)
Wif1 Wnt ligands Ameliorates fibrosis Lin et al. (2017)
Wnt-c59 PORCN Prevents Wnt ligands secretion Proffitt et al. (2013)
LGK974 PORCN Prevents Wnt ligands secretion Moon et al. (2017)
IWP2 PORCN Prevents Wnt ligands secretion Wang et al. (2013a)
IWP-L6 PORCN Prevents Wnt ligands secretion Wang et al. (2013a)
SB-216763 GSK-3β Inhibits Wnt signaling Zhang et al. (2018b)
SCIs GSK-3β Inhibits Wnt signaling Rippin et al. (2020)
CHIR99021 GSK-3β Inhibits Wnt signaling Ng-Blichfeldt et al. (2019)
L807mts GSK-3β Inhibits Wnt signaling Licht-Murava et al. (2016)
LY2090314 GSK-3β Inhibits Wnt signaling Tu et al. (2017)
XAV939 Tnks and axin Inhibits Wnt signaling Kulak et al. (2015)
IWR Tnks and axin Inhibits Wnt signaling Kulak et al. (2015)
E-7449 Tnks and axin Inhibits Wnt signaling Plummer et al. (2020)
K-476 Tnks and axin Inhibits Wnt signaling Kinosada et al. (2021)
BMD4722 DVL Inhibits Wnt signaling Ma et al. (2018)
IC261 CK1 Inhibits Wnt signaling Xian et al. (2021)
ICG-001 CBP Inhibits Wnt signaling Akcora et al. (2018)
PRI-724 CBP Inhibits Wnt signaling Nishikawa et al. (2018)
PAA Wnt/β-catenin signaling Ameliorates fibrosis Chen et al. (2019a)
PZC Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2018a)
PZD Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2018b)
PZE Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2018a)
PZG Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2018a)
PZH Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2018b)
MAF Wnt/β-catenin signaling Inhibits RSA Chen et al. (2018a)
Ergone Wnt/β-catenin signaling Repress ECM accumulation Chen et al. (2017a)
Alisol B 23-acetate Wnt/β-catenin signaling Repress ECM accumulation Chen et al. (2017b)
Pachymic acid B Wnt/β-catenin signaling Repress ECM accumulation Chen et al. (2017a)
Curcumin Wnt/β-catenin signaling Repress ECM accumulation Ho et al. (2016)
Salvia Wnt/β-catenin signaling Relieve renal injury Xiang et al. (2019)
Salidroside Wnt/β-catenin signaling Ameliorates fibrosis Shati and Alfaifi (2020)
TW Wnt/β-catenin signaling Relieve renal injury Chang et al. (2018)
Triptonide Wnt/β-catenin signaling Relieve renal injury Chinison et al. (2016)
AS-IV Wnt/β-catenin signaling Ameliorates fibrosis Wang et al. (2014a)
Quercetin Wnt/β-catenin signaling Ameliorates fibrosis Ren et al. (2016)
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addition, early intervention, but not late with β-catenin inhibitor
significantly attenuates the apoptosis and inflammation induced
by aristolochic acid (AA) (Kuang et al., 2021). Therefore, the dual
role of Wnt/β-catenin signaling in CKD needs further study. And
more researches are required to determine whether this pathway
should be augmented in AKI to CKD. If so, the optimal treatment
duration and the safe and effective dose also need to be
determined.

At present, there are many studies on the Wnt/β-catenin
signaling pathway. However, the mechanism of the non-
canonical Wnt pathway in renal fibrosis still needs further
investigation; Additionally, there are few clinical studies
targeting Wnt/β-catenin signaling pathway to treat renal
fibrosis, which is also the direction of our future efforts. since
an FZD receptor can interact with different Wnt ligands to
activate the Wnt pathway, coupled with the presence of
several Wnt ligands. Therefore, understanding the selective
binding of each Wnt protein to a specific FZD receptor and
the resulting cascade reaction requires further research; Many
signaling pathways play an important role in the process of renal
fibrosis. However, the studies on the mechanism of their synergy
with the Wnt/β-catenin signaling pathway should be further
explored. In addition, a better understanding of the
interactions between these pathways is needed to identify key
molecules that regulate their interactions, which may serve as
potential therapeutic targets; More small molecules that inhibit
Wnt/β-catenin signaling are in development, which will explore
more strategies to regulate this signaling pathway and provide
more options for the effective therapies of renal fibrosis. The
traditional Chinese medicine compound formula for the effective
treatment of renal fibrosis is complex, and the active ingredients

of Chinese medicine monomers or extracts are unknown.
Therefore, the advantages of emerging natural products,
CHMs, or new drugs in anti-renal fibrosis still need long-term
research. Furthermore, to fully clarify the therapeutic effect of
natural products in renal fibrosis, there is an urgent need to
conduct studies that pay attention to identifying active
ingredients, exploring action mechanisms, and rigorous
pharmacological evaluation to ensure safety and accord the
standards for clinical use. In conclusion, Wnt/β-catenin
provides a broad prospect for treating renal interstitial fibrosis,
but the understanding of Wnt/β-catenin remains a significant
challenge.
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GLOSSARY

α-SMA α-smooth muscle actin

AA aristolochic acid

AKI acute kidney injury

APC adenomatous polyposis coli

API apigenin

CB2 cannabinoid receptor type 2

CBP CREB-binding protein

CHMs Chinese herbal medicines

CK1 casein kinase 1

CKD Chronic kidney disease

CRD cysteine-rich domains

CRF chronic renal failure

DAMPs danger-associated molecular patterns

DKK1 Dickkopf1

DN diabetic nephropathy

DVL Dishevelled

ECM extracellular matrix

EMT epithelial-mesenchymal transition

ESRD end-stage renal disease

fsp1 fibroblast-specific protein 1

FGF-2 fibroblast growth factor-2

FSGS glomerulosclerosis

FZD Frizzled

GSK3β glycogen synthase kinase 3β

HH Hedgehog

HIF-1α hypoxia inducible factor-1α

IDO indoleamine-2,3-dioxygenase

IRI ischemia-reperfusion injury

IWR inhibitors of Wnt response

LEF lymphatic enhancer-binding factor

LRP5/6 low-density lipoprotein receptor-related protein-5/protein-6

MMP-7 matrix metalloproteinase-7

PAA Poricoic acid A

PAI-1 plasminogen activator inhibitor-1

PGE2 prostaglandin E2

PORCN Porcupine

(P)RR (pro)renin receptor

PZC poricoic acid ZC

PZD poricoic acid ZD

PZE poricoic acid ZE

PZG poricoic acid ZG

PZH poricoic acid ZH

RAS renin-angiotensin system

SCIs Substrate competitive inhibitors

Sfrp1 secreted frizzled protein 1

Snail1 Snail family zinc finger 1

SSc Systemic sclerosis

tPA tissue-type plasminogen activator

TCF transcription factors T cell factor

TCM traditional Chinese medicine

TECs tubular epithelial cells

TGF-β transforming growth factor β

Tnks Tankyrase

TRPC6 transient receptor potential canonical 6

UA uric acid

Upa urokinase-type plasminogen activator

UUO unilateral ureteral obstruction

Wif-1 Wnt inhibitor 1

Wnt/Ca2+ pathway Wnt/calcium pathway

Wnt/PCP pathway Wnt/planar cell polarity pathway
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