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Abstract
Purpose: We consider an existing clinical cohort with events but limited resources 
for the investigation of a further potentially expensive marker. Biological material of 
the patients is stored in a biobank, but only a limited number of samples can be ana-
lyzed with respect to the marker. The question arises as to which patients to sample, 
if the number of events preclude standard sampling designs.
Methods: Modifications of the nested case-control and the case-cohort design for the 
proportional hazards model are applied, that allow efficient sampling in situations 
where standard nested case-control and case-cohort are not feasible. These sampling 
designs are compared to simple random sampling and extreme group sampling, the 
latter including only patients with extreme outcomes, ie either with an event early in 
time or without an event until at least a point later in time.
Results: The modified nested case-control design and the modified case-cohort de-
sign provide powerful methods for sampling in a clinical cohort with many events. 
The simple random sampling usually is less efficient. If focus is on precise estima-
tion of a potential effect in terms of a hazard ratio, extreme group sampling is not 
competitive. If focus is on screening for important biomarkers, extreme group sam-
pling markedly outperforms the other sampling designs.
Conclusions: When it is not feasible to sample all events, a modified nested case-
control design or case-cohort design leads to efficient effect estimates in the propor-
tional hazards model. If screening for important biomarkers is the primary objective, 
extreme group sampling is preferable.
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1  |   INTRODUCTION

In clinical cancer research, we are often faced with the fol-
lowing situation: baseline and follow-up data (such as over-
all survival or disease-free survival) of a clinical cohort 
are available and tissue or blood of the patients is stored 
in a biobank. Yet the measurement of additional markers 
of interest is constrained by limited resources. As a conse-
quence, only a subset of patients can be included when an-
alyzing the association of these markers and the available 
time-to-event data.

In epidemiologic research, standard approaches in such a sit-
uation are sampling designs, such as nested case-control (NCC) 
or case-cohort (CC) designs. These outcome-dependent sampling 
designs include all the patients with an event, but only a subset of 
the patients without the event. These sampling designs have been 
motivated from situations when the event of interest is rare.1,2

Our situation is fundamentally different in that the 
event of interest is usually common, such as deaths, re-
currences, or progressions of the disease. Due to cost re-
strictions, it is then often not possible to include all events 
making standard NCC and CC infeasible. Consequently, 
modifications of these sampling designs are needed, that 
are partially available in the statistical literature(p.75),3,4 
but rarely used in practice.

In addition, ad-hoc approaches for sampling in the situation 
of nonrare events are proposed such as simple random sampling 
and extreme group sampling.5,6 Simple random sampling just 
draws a random sample of the entire cohort without considering 
the event status of the individuals. The rationale behind the ex-
treme group sampling is that individuals with extreme outcomes 
are compared: individuals that experience the event within an 
early time interval are compared to those individuals that do not 
experience the event before a given time point later in time.

Our aim is to evaluate different sampling designs in the 
case of a (clinical) cohort where the total number of events 
excludes standard approaches such as an NCC or CC design. 
We consider modifications of NCC and CC, as well as simple 
random sampling and extreme group sampling. These cohort 
sampling designs are evaluated both in terms of their poten-
tial for precise estimation (eg. a hazard ratio) as well as their 
ability to detect relevant biomarkers in a screening procedure.

The manuscript is structured as follows: In Section  2 
‘Materials and Methods’, the clinical cohort data examples 
(2.1), the different cohort sampling designs under consider-
ation (2.2) as well as the methods of the statistical analysis are 
presented. In Section 3 we provide the results of analyzing the 
original full cohort (3.1) as well as those after applying the dif-
ferent sampling designs (3.2). Additionally, we provide results 
on the power of the designs when the focus is on testing (3.3) 
and on the inflation of the standard error that is coming along 
with a strongly decreased sample size (3.4). We finish the man-
uscript with a discussion of the obtained results in Section 4.

2  |   MATERIALS AND METHODS

2.1  |  Data examples

2.1.1  |  DACHS study

In this paper, we use the data of the DACHS study (DACHS: 
Darmkrebs: Chancen der Verhütung durch Screening/
Colorectal cancer: chances for prevention through screen-
ing) to illustrate the application of various sampling designs. 
The patient cohort consists of the cases from a population-
based case-control study on colorectal cancer (CRC) in 
Germany where cases had undergone an additional long-
term follow-up (median follow-up 4.97 years) with regard 
to relapse-free and overall survival. In this article, we focus 
on the relapse-free survival of cases. Further details on the 
study can be found elsewhere.7-9 Basic patient and tumor 
characteristics such as age, gender, UICC stage, and adju-
vant chemotherapy (yes/no) are available for all patients; in 
addition, various specific factors have been measured for a 
large proportion of patients in routinely stored tumor tissue. 
One of these factors is the so-called Microsatellite instabil-
ity (MSI) that is defined as hypermutability of microsat-
ellite sequences. MSI occurs in many human cancers and 
results from an inactivation of the DNA mismatch repair 
system.10 This factor is classified as MSI-high or MSI-low 
and MSS (microsatellite stable) combined (in the following 
“MSI low/no”).11

MSI status is available in N = 1550 patients, and since 
this factor will play the role of an “expensive” covariate in 
our illustration, these 1550 patients form the “full cohort” 
in the sequel. We report the basic characteristics of the pa-
tients in this cohort in Table 1. The outcome of interest is 
relapse-free survival (RFS), which is defined as the length 
of time after primary treatment for a cancer until new signs 
or symptoms of that cancer or death, whatever occurs first. 
Relapse or death is observed for a total of 569 patients 
(569/1550 = 36.7%). We fit a Cox proportional hazard re-
gression for the association of the MSI status with RFS and 
adjust for age, gender, UICC stage, and administration of 
chemotherapy.

2.1.2  |  German breast cancer study

Our second example is a data set provided by the German 
Breast Cancer Study Group (GBSG).12 The data set contains 
686 patients with primary node positive breast cancer. The 
event of interest is relapse-free survival (RFS). Relapse or 
death is observed for 299 patients. The median follow-up in 
the GBSG dataset is 4.5 years. For illustration we consider the 
progesterone receptor status (pgr) as the ‘expensive’ covariate. 
We fit a Cox proportional hazards model for the association of 
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the pgr (pgr ≥ 20 fmol vs pgr < 20 fmol) with RFS and adjust 
for hormonal treatment with tamoxifen, age, estrogen recep-
tor status, menopausal status as well as for the Nottingham 
Prognostic Index (NPI) that is defined as.

where lymph node stage is equal to 1 for node-negative patients, 
2 for patients with one to three positive lymph nodes, and 3 if 
four or more lymph nodes were involved.

2.2  |  Sampling designs

2.2.1  |  Nested case-control and case-
cohort design

In the sequel, we pretend that there are not sufficient resources 
available to measure MSI status in the DACHS cohort and pgr 

in the GBSG data for all patients, but only for a certain por-
tion (we have therefore called MSI and pgr status an “expen-
sive covariates”). Then the question arises which sample from 
the cohort of patients to take and how this can be done in an 
efficient way. In epidemiology, the nested case-control study 
(NCC) design and the case-cohort study (CC) have been pro-
posed.1,2 Briefly, in the NCC design all patients with events are 
included (the “cases”) and for each “case”, one or more “con-
trols” are sampled from the corresponding risk sets, ie all pa-
tients that have not yet experienced an event at the event time of 
the “case” (so-called incidence density sampling13).

The CC design consists of two steps: first, a randomly 
chosen subset of the cohort (the “subcohort”, usually of the 
same size as the set of “cases”) is sampled which consists of 
patients with, as well as without, an event. The subcohort is 
extended by the remaining cases in the second step. These 
two designs are schematically displayed in Figure 1A and 
C and can lead to considerable savings of resources when 
the event of interest is rare.1,2

NPI=0.02×size (in mm)+ lymph node stage+ tumor grade

T A B L E  1   Results of a Cox analysis of all covariates considered in the original DACHS study (upper table A) and in the original GBSG data 
(lower table B)

DACHS cohort (N = 1550) log (HR) SE HR 95% CI

(A)

Age, 1-year increase Mean (range) 68.6 (33.0-94.0) 0.019 0.004 1.02 [1.01,1.03]

Sex Female 889 (57.4%) 0 — 1 —

Male 661 (42.6%) −0.002 0.086 1.00 [0.84,1.18]

UICC Cancer Stage 1 289 (18.6%) 0 — 1 —

2 vs 1 511 (33.0%) 0.490 0.168 1.63 [1.17,2.27]

3 vs 1 533 (34.4%) 1.150 0.182 3.16 [2.21,4.51]

4 vs 1 217 (14.0%) 2.776 0.197 16.05 [10.91,23.62]

Adjuvant chemotherapy No 830 (53.5%) 0 — 1 —

Yes 720 (46.5%) −0.224 0.126 0.80 [0.63,1.02]

Microsatellite instability Low/no 1404 (90.6%) 0 — 1 —

High 146 (9.4%) −0.229 0.179 0.80 [0.56,1.13]

GBSG cohort (N = 686) log (HR) SE HR 95% CI

(B)

Age, 1-year increase Mean (range) 53 (21.0-80.0) −0.005 0.009 0.99 [0.98,1.01]

NPI <5.4 385 (56.1%) 0 — 1 —

>5.4 301 (43.9%) 0.652 0.121 1.92 [1.51,2.43]

Menopausal status No 290 (42.3%) 0 — 1 —

Yes 396 (57.7%) 0.187 0.184 1.21 [0.84,1.73]

Oestrogen receptor Mean (range) 96 (0.0-1144.0) 0.0002 0.0005 1.00 [0.999,1.001]

Tamoxifen No 440 (64.1%) 0 — 1 —

Yes 246 (35.9%) −0.374 0.129 0.69 [0.53,0.89]

Progesterone receptor <20 fmol 269 (39.2%) 0 — 1 —

>20 fmol 417 (60.8%) −0.630 0.129 0.53 [0.41,0.69]

95% CI, 95% confidence interval for the HR; HR, hazard ratio; log(HR), log hazard ratio; SE, standard error of the log(HR).
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2.2.2  |  Modified nested case-control and 
modified case-cohort design

In the DACHS study, however, the number of events is 569 (for 
a total of 1550 individuals); so with a CC design one samples 
at least all the cases (plus a subcohort of a desired size) and a 
NCC design would lead to about twice of the number of events 
that is not much less than the full cohort. Thus, modifications 
of the two sampling designs are required to cope with the situa-
tion of a common event that is typical when clinical cohorts are 
investigated. Such modifications are available in the statistical 
literature(p.75)3,4 and we describe two of those. The NCC design 
can be modified (therefore called modNCC) in that only a certain 
portion of “cases” is randomly chosen with a pre-specified sam-
pling probability, say P. For each sampled “case” (patient with 
event) a control patient is sampled from the corresponding risk set 
as in the ordinary NCC sampling design. The modification of the 
CC sampling design (modCC) is also straightforward: a (reduced) 
subcohort is randomly chosen and only a subset of the remaining 
cases is sampled, leading to a reduced sample size. These two 
modifications are schematically illustrated in Figure 1B and D.

2.2.3  |  Simple random sampling and 
extreme group sampling

We will also consider two other sampling designs that are 
sometimes used.5,6 The first is simple random sampling (SRS) 
where just a certain fraction of patients is sampled from the 
full cohort irrespective of their event status. The second is 

called extreme group sampling (EGS) where all patients with 
an early event (smaller than some time t1) and a subset of all 
patients that are event free at some time t2 ≥ t1 are sampled; 
all patients that are censored before t2 or observe an event in 
[t1,t2) are excluded. For each “case” (event time smaller than 
t1), we will draw one “control” (event-free at t2).

We implement two different versions of EGS in our 
data examples; for the first we set t2 = t1 and for the second 
t2 = 5 years was chosen. In real applications t1 (just like t2) 
would be typically chosen as a clinically meaningful bound-
ary. In our data examples the median follow-up is about 
5 years in both cohorts. In this article, to enable a fair com-
parison, t1 needs to be varied for the single implementations 
of EGS to obtain the same sample sizes as for the other sam-
pling designs. Depending on the available resources and ver-
sion, the used values for t1 vary from 10 to 15 months for the 
DACHS data and from 14 to 18 months for the GBSG data.

SRS and EGS are illustrated in Figure 1E and F. Although 
SRS yields unbiased results, it is not efficient2 and should only 
be used in exceptional situations, eg when the conduct of other 
sampling designs is not feasible. We include SRS for comparison 
reasons and because we found that SRS is applied in practice.5

2.3  |  Statistical analysis

2.3.1  |  Analysis methods

We fit an ordinary Cox proportional hazard regression for the 
event of interest (relapse-free survival for the DACHS cohort 

F I G U R E  1   Schematic illustration of 
sampling designs
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as well as for the GBSG data) including the ‘expensive’ co-
variate (MSI status for the DACHS cohort and pgr for the 
GBSG data) and adjust for baseline covariates as described 
in Section 2.1.

For the NCC and modNCC data instead of using a strati-
fied Cox regression (the strata being the matched sets) resem-
bling a conditional logistic regression we reuse the sampled 
controls at all observed event times when they are at risk 
and hence use a weighted Cox regression including Kaplan-
Meier based weights.14 For the CC and modCC approach a 
weighted Cox regression including so-called “inverse sam-
pling probability weighting”15 is applied, that is readily im-
plemented for the analysis in a Cox regression model.

The data obtained by SRS is analyzed by a standard Cox 
regression. Straightforward application (that means without 
any weighting or further consideration of the sampling in the 
analysis step) of EGS might lead to biased results in terms 
of the hazard ratio as compared to a full cohort analysis. An 
involved likelihood-based (“conditional”) approach is pre-
sented16,17 to reduce this bias. We used this approach in our 
later data analysis.

For testing the association of biomarkers with survival, a 
Wald test is applied for the full cohort and all sampling designs 
except for EGS using a robust estimate18 of the variance of the 
regression coefficient. For testing the association of biomark-
ers with survival, a Wald test based on a simple logistic regres-
sion is used for the EGS design treating individuals with event 
time smaller than t1 as cases and individuals that are still alive 
at time t2 as controls.17 The variance estimate for this logistic 
regression is obtained by maximum likelihood.

2.3.2  |  Comparison of bias and variance of 
estimated hazard ratios

In order to compare the bias and variance of the estimated 
hazard ratios obtained by different sampling designs, we 
repeatedly performed these sampling processes (modNCC, 
modCC, EGS, SRS) using a resampling approach that will 
be outlined below. To obtain a fair comparison the param-
eters of the sampling designs were chosen to achieve ap-
proximately the same number of sampled patients N. Three 
different sample sizes were considered. For the DACHS 
cohort these are.

•	 high resource setting N = 924 (corresponding to a standard 
NCC design with 1:1 matching).

•	 medium resource setting N  =  418 (modNCC 1:1, case 
sampling probability P = .4).

•	 low resource setting N = 270 (modNCC 1:1, P = .25).

For quantifying the bias of the different estimators and 
the variation, which is due to the sampling procedure, we 

repeatedly (M = 10 000 times) applied each sampling design 
on the DACHS cohort and GBSG cohort respectively. For 
each repetition and sampling design, we fit a Cox propor-
tional hazard regression for relapse-free survival including 
the MSI status (always adjusted for age, gender, stage, and 
administration of chemotherapy) for the DACHS cohort and 
pgr (always adjusting for hormonal treatment with tamoxifen, 
age, estrogen receptor status, menopausal, and NPI) for the 
GBSG data and present the mean regression coefficient (col-
umn “log(HR)”) and mean hazard ratio (column “HR”). For 
quantifying the bias of the estimators, the full cohort estimate 
is considered as gold standard. For quantifying the standard 
error due to sampling, we evaluated the standard error of the 
coefficient estimates over all M runs, which is provided in the 
column “sampSE”.

For a reliable estimate of the total variation (variation in 
full cohort + variation due to sampling), we pursued a boot-
strap19 approach. This will create 10,000“bootstrapped co-
horts” of the same size as the original cohort by sampling 
with replacement from the original full cohort. Then each 
design was applied once on each of the 10 000 “bootstrapped 
cohorts”. The total empirical standard error is then evaluated 
as the standard error of the estimates based on the sampling 
designs (using the same models as described above) over all 
10 000 ‘bootstrap cohorts’ and is given in the column “to-
talSE”. The empirical error for the full cohort was obtained 
as the standard error of the estimates over all 10 000 ‘boot-
strapped cohorts’ (without applying any sampling design).

2.3.3  |  Inflation factor of the 
modNCC design

As we focus on parameter estimates with standard errors, we 
consider the loss in precision in terms of an inflation factor 
(IF) of the standard error, that is defined as

with the total empirical standard error using the sampling 
design in the nominator and the total empirical standard error 
using the full cohort in the denominator.

For the modNCC design it is possible to obtain an ana-
lytic expression as an approximation of this inflation factor, 
which is given by 1∕

√

pm∕ (m+1), where m is the number of 
controls matched to each case and p the fraction of sampled 
cases (see also2). As for the modNCC design usually m = 1, 
the inflation factor simplifies to 1∕

√

p∕2. Using a case sam-
pling probability of p = 0.5 hence yields an inflation factor 
of 1∕

√

0.5∕2=2. Using this simple formula it is possible to 
assess the loss in precision coming along with the reduced data 
set prior to analysis. To be precise, the formula for the inflation 

IF=

totalSE(sampling design)

totalSE(full cohort)
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factor actually focuses on a modNCC design analyzed by a 
stratified regression (the strata being the matched sets). Re-
using the controls at all times when they are at risk and using 
a weighted regression (as described in Section ‘2.3 Statistical 
analysis’) yields a reduced standard error as compared to a 
stratified analysis. Hence, the formula presented above can be 
considered as an upper bound for the inflation of the standard 
error using a modNCC design as compared to the full cohort.

2.3.4  |  Comparison of the power to detect an 
important covariate

While MSI is not significant for relapse-free survival, pgr is 
highly significant in the GBSG dataset (see Table 1B). We 
can thus (quite) safely conclude that pgr is indeed associated 
with relapse-free survival.

For the purpose of assessing the performance of a spe-
cific sampling design for detecting an important covariate, 
we tested for the association of pgr with relapse-free survival 
in all M = 10 000 subsamples obtained by repeatedly apply-
ing the same sampling design on the original cohort (see first 
paragraph of Section 2.3.2). The “power” of a sampling de-
sign is then obtained by the fraction of subsamples in which 
pgr was significant.

We note that, technically, this is not a power comparison 
in the proper meaning of the word (since one can never be 
entirely sure from real data that there is an indeed a true asso-
ciation). However, as already mentioned above, considering 
the high significance of pgr in the full cohort, the performed 
analysis is very similar to a proper power comparison.

3  |   RESULTS

3.1  |  Original cohort

The results of a standard analysis with the Cox regression 
model with respect to relapse-free survival for the DACHS 
cohort are displayed in Table 1A (upper table). We see that 
age and stage have a significant effect on relapse-free survival, 
gender has no effect at all, and administration of chemotherapy 
has a borderline independent effect (which is not surprising 
since it is related to stage). Our primary interest, however, is 
estimating the hazard ratio of MSI. Here, patients with high 
MSI have a slightly reduced risk of relapse or death compared 
to those with no MSI or low levels as indicated by a hazard 
ratio of 0.80. The 95%-confidence interval ranges from 0.56 
to 1.13. As described above we consider the full cohort esti-
mates as the gold standard when evaluating different sampling 
designs. The results mentioned in the paragraph above are in 
accordance with results from other recent studies20,21 and also 
with a related analysis of the DACHS study.10

The results of the original GBSG cohort analyzed by a 
Cox regression are given in Table 1B (lower table). Patients 
with progesterone receptor ≥ 20 fmol have a reduced risk of 
relapse or death (hazard ratio 0.53 with 95% confidence in-
terval [0.41,0.69]) as compared to patients with progesterone 
receptor < 20 fmol.

3.2  |  Application of sampling designs

The results when repeatedly applying the sampling designs to 
the full cohort are summarized in Table 2, showing the aver-
age log hazard ratio for the covariate under consideration to-
gether with the corresponding standard error due to sampling 
(“sampSE”) and the total standard error (“totalSE”).

The results for MSI in the DACHS cohort are provided in 
Table 2A, the corresponding results for pgr in the GBSG dataset 
are given in Table 2B. The values for the full cohort (Table 2, 
average results when repeatedly applying the sampling designs 
to the full cohort) coincide with those obtained in the analysis 
of the original data of the full cohort (Table 1) as they should. 
For the DACHS cohort, the high resource setting (924 individ-
uals included, hence 924/1550 = 60% of the full cohort) corre-
sponds to the usual application of a nested case-control (NCC) 
with 1:1 matching (hence one control matched to each case, no 
case sampling) and a case-cohort (CC) design where all 569 
“cases”, ie patients with event, are included together with either 
dynamically matched patients at risk for the NCC or a randomly 
chosen subcohort of corresponding size for the CC design. Both 
designs give comparable results in terms of estimated hazard 
ratios; their standard errors are less than 1.3 times higher than 
those derived from the full cohort. With simple random sam-
pling (SRS), only 339 patients with event are sampled on av-
erage leading to a somewhat larger standard error. Since it is 
not possible to obtain a sample size of approximately 924 with 
an EGS as described in Section 2.2.3, this sampling design is 
omitted in the high resource setting.

In the medium resource setting (418 individuals, that is 
418/1550 = 27% of the full cohort), the picture is similar but 
standard errors of modNCC and modCC are about 1.9 times 
larger than those in the full cohort. SRS again gives larger stan-
dard errors (2.30 times larger). With both implementations of 
the EGS, the total standard errors are larger than for all other 
designs (2.86/2.75 times larger). Moreover, for the EGS design 
with t2 = 5 years, there is a substantial deviation of the average 
estimated HR from the corresponding estimate from the full co-
hort, while the average estimated HR for the EGS design with 
t2 = t1 is in good agreement with the full cohort estimate.

The low resource setting (270 individuals) demonstrates 
the limitations of sampling designs in a clinical cohort study: 
With only 270 patients included (≈ 17% of the full cohort), 
the standard errors of the estimated log-hazard ratios are about 
2.5 times larger than that derived from the full cohort with 
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SRS again yielding poorer precision than the modNCC and 
the modCC sampling design. This would only be acceptable 
when a very large effect of the “expensive” covariate could 
be anticipated which is not the case for the effect of MSI sta-
tus in the DACHS study. For EGS, we observe large standard 
errors (4.56/4.02 times higher than in the full cohort); more-
over the average HR estimates of both implementations show 
a substantial deviation from the full cohort estimates. Finally, 
we note that while the differences in inflation factor between 
modNCC/modCC and SRS are rather subtle, applying more 

complex sampling designs like modNCC/modCC may lead to 
substantial savings. In the medium resource setting, the relative 
efficiency between modNCC and SRS is (2.30/1.92)^2 = 1.44, 
indicating that roughly 44% more samples would be needed to 
obtain the same standard error as modNCC with an SRS de-
sign. For the small resource setting, the corresponding relative 
efficiency is (2.66/2.46)^2 = 1.17, implying that an SRS design 
would require approximately 17% more patients.

For the GBSG data the estimated hazard ratios for the high 
resource setting (454 individuals, hence 66% of the full cohort) 

T A B L E  2   Mean results of different sampling for the DACHS cohort (adjusted HR for MSI, upper table A) and the GBSG cohort (adjusted HR 
for pgr, lower table B)

DACHS n.sample n.event log(HR) HR sampSE totalSE IF

(A)

Full cohort 1550 569 −0.229 0.80 0.180 1.00

NCC 924 569 −0.220 0.80 0.139 0.229 1.27

CC 925 569 −0.219 0.80 0.142 0.231 1.28

SRS 924 339 −0.237 0.79 0.152 0.238 1.32

modNCC 418 255 −0.225 0.80 0.291 0.343 1.91

modCC 418 236 −0.230 0.79 0.290 0.350 1.94

SRS 418 154 −0.245 0.78 0.360 0.407 2.26

EGS t2 = t1 419 276 −0.251 0.78 0.372 0.520 2.89

EGS t2 = 5y 419 247 −0.542 0.58 0.360 0.506 2.81

modNCC 270 165 −0.228 0.80 0.398 0.441 2.45

modCC 270 157 −0.223 0.80 0.401 0.446 2.48

SRS 270 99 −0.267 0.77 0.434 0.477 2.65

EGS t2 = t1 271 181 −0.542 0.58 0.589 0.827 4.59

EGS t2 = 5y 273 153 −0.504 0.60 0.482 0.726 4.03

GBSG n.sample n.event log(HR) HR sampSE totalSE IF Power

(B)

Full cohort 686 299 −0.630 0.53 0.134 1.00

NCC 454 299 −0.635 0.53 0.099 0.165 1.23 0.999

CC 455 299 −0.637 0.53 0.113 0.177 1.31 0.996

SRS 454 198 −0.630 0.53 0.096 0.164 1.22 0.996

modNCC 213 139 −0.624 0.54 0.208 0.252 1.89 0.767

modCC 213 126 −0.632 0.53 0.214 0.256 1.91 0.760

SRS 213 93 −0.623 0.54 0.245 0.281 2.10 0.764

EGS t2 = t1 213 147 −1.058 0.35 0.285 0.376 2.81 1,000

EGS t2 = 5y 214 142 −0.830 0.44 0.217 0.322 2.40 1,000

modNCC 139 90 −0.621 0.54 0.281 0.322 2.40 0.545

modCC 139 85 −0.639 0.53 0.298 0.329 2.46 0.557

SRS 139 61 −0.627 0.53 0.286 0.322 2.40 0.553

EGS t2 = t1 139 94 −0.370 0.69 0.372 0.462 3.45 0.924

EGS t2 = 5y 139 88 −0.659 0.52 0.371 0.488 3.64 0.990

no. sample, number of distinct individuals included; no. event, number of events included; log(HR), adjusted log hazard ratio of MSI (DACHS) and pgr (GBSG); HR, 
adjusted hazard ratio of MSI (DACHS) and pgr (GBSG); sampSE, empirical standard error of the logHR due to sampling design; totalSE, total empirical standard 
error of the logHR; IF, inflation factor of the standard error defined as IF = totalSE(sampling design)/totalSE(cohort); power, fraction of repetitions, in which the 
corresponding test (α = 0.05) rejects the null hypothesis of no association; for EGS a simple logistic regression is used.
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correspond to the full cohort estimate. Also for the medium re-
source setting (213 individuals, 31% of the full cohort) the esti-
mates are close to the full cohort counterpart for the modNCC, 
the modCC and SRS, yet the standard errors are about two 
times higher. The two EGS implementations yield decreased 
HRs of 0.35 and 0.43, respectively, as compared to the gold 
standard of 0.53 for the full and show a considerably higher 
standard error than modNCC, modCC, and SRS.

3.3  |  Power in detecting 
important covariates

The results for the power comparison in detecting a signifi-
cant effect of pgr on relapse-free survival in the GBSG data 
are summarized in the column “Power” in Table 2B.

These results demonstrate that a logistic regression based 
on EGS markedly outperforms all other sampling design in 
terms of power of detecting an important covariate. Notably, 
for the medium resource setting (213 individuals), the test 
based on EGS rejects the null hypothesis of no association in 
every single repetition, while the power of the other sampling 
designs is below 0.8. The performance of the two different 
EGS implementations in the low resource setting (139 indi-
viduals) with a power of 0.989 and 0.884, respectively, is still 
substantially better than the performance of the other designs 
in the medium resource setting. These findings indicate that 
EGS designs enable substantial saving in situations, where 
detection of important biomarkers is the primary objective.

3.4  |  Inflation factor of the standard errors

As described in subsection ‘2.3.3 Inflation factor of the mod-
NCC design’ it is possible to calculate an analytic expression 
as an approximation of the inflation factor of the standard error 
based on the modNCC design compared to a full cohort analy-
sis. The inflation factor is given by 1∕

√

p∕2, where p denotes 
the case sampling probability. Consider Table  2A with the 
mean results of the sampling designs for the DACHS cohort. 
For the modNCC design with a sample size of 418 individuals 
and 255 events included, we use P =  .45 and obtain an ap-
proximated inflation factor of 2.11, while in fact using the em-
pirical standard errors in Table 2A we find that the empirical 
inflation factor is 1.92. For modNCC with 270 individuals and 
159 events included, we have P = .29 and the approximated 
inflation factor is 1∕

√

0.29∕2=2.63, while in our data exam-
ple, we find that the empirical inflation factor is 2.46. Hence 
the predicted inflation factor roughly reflects the increase in 
the standard error found in the results and thus might help to 
roughly assess the loss in precision coming along with the sav-
ings in resources using a modNCC design as compared to the 
full cohort.

4  |   DISCUSSION AND 
RECOMMENDATIONS

For a clinical researcher and/or a statistician involved in 
clinical cancer research the question arises which sampling 
design to choose when there are not sufficient resources to 
measure a new marker for all patients in a cohort, where data 
on basic characteristics and follow-up are already available.

We investigate the performance of various sampling designs 
for the proportional hazards model in data from the DACHS 
study on colorectal cancer and the GBSG data on breast cancer 
with long-term follow-up with regard to relapse-free survival. 
When sufficient resources are available, a classical NCC or CC 
design yields good results in our examples, both for estimating 
the HR and for the power of detecting a significant effect.

When resources are not sufficient to sample all cases, our re-
sults suggest that the sampling design should be chosen based on 
the primary goals of the analysis. We investigated two different 
purposes in this article—estimation of the HR and testing for the 
effect of a biomarker. For estimating the HR, we conclude based 
on our data examples that the modNCC and modCC design 
perform equally well. The estimates provided by SRS present 
themselves with a slightly increased standard error as compared 
to the modNCC and modCC design. Yet in the context of limited 
resources to evaluate an expensive biomarker this loss in effi-
ciency might be relevant. In several cases in our data examples, 
EGS yields HR estimates that deviate from those obtained by a 
full cohort. Moreover EGS shows a considerably higher varia-
tion in estimating the HR than modNCC and modCC.

For testing the effect of a biomarker, a simple logistic regres-
sion based on EGS markedly outperforms the other sampling de-
signs under consideration. Hence, if one considers estimation of 
the effect of a covariate on survival (ie of a HR), modNCC and 
modCC designs are a good choice. On the other hand, if screen-
ing of important biomarkers is the objective, EGS is preferable.

The main limitation of this work is that we only consider 
two specific data examples. Both of these data examples in-
volve rather heavy censoring and a binary covariate of inter-
est. To obtain a more detailed understanding of the strengths 
and weaknesses of the different designs, future work may 
compare these methods using extensive simulations varying 
the censoring regime, distribution of the covariate of interest, 
and other parameters in the model. We also note that some 
biomarker studies involve high-dimensional data, which has 
not been a focus of this article and may also be addressed in 
the future. Finally, our comparison was restricted to rather 
simple sampling designs. While these designs are easily 
comprehensible, there may be further performance gains by 
using more sophisticated designs, see eg.15

The savings of resources (a new marker is measured only 
in a subsample of the entire cohort) gained by the use of a 
sampling design comes along with a loss in precision in terms 
of an inflation of standard errors. For the modNCC design 
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yet it is possible to roughly assess the corresponding inflation 
factor (2.3.3). This can in turn help to spend the available re-
sources in a most efficient way and/or to decide whether such 
a sampling approach would be a useful enterprise at all.
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