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Exploiting defective RRAM array 
as synapses of HTM spatial pooler 
with boost‑factor adjustment 
scheme for defect‑tolerant 
neuromorphic systems
Jiyong Woo1*, Tien Van Nguyen2, Jeong Hun Kim1, Jong‑Pil Im1, Solyee Im1, Yeriaron Kim  1, 
Kyeong‑Sik Min2 & Seung Eon Moon1

A crossbar array architecture employing resistive switching memory (RRAM) as a synaptic element 
accelerates vector–matrix multiplication in a parallel fashion, enabling energy-efficient pattern 
recognition. To implement the function of the synapse in the RRAM, multilevel resistance states 
are required. More importantly, a large on/off ratio of the RRAM should be preferentially obtained 
to ensure a reasonable margin between each state taking into account the inevitable variability 
caused by the inherent switching mechanism. The on/off ratio is basically adjusted in two ways by 
modulating measurement conditions such as compliance current or voltage pulses modulation. The 
latter technique is not only more suitable for practical systems, but also can achieve multiple states 
in low current range. However, at the expense of applying a high negative voltage aimed at enlarging 
the on/off ratio, a breakdown of the RRAM occurs unexpectedly. This stuck-at-short fault of the RRAM 
adversely affects the recognition process based on reading and judging each column current changed 
by the multiplication of the input voltage and resistance of the RRAM in the array, degrading the 
accuracy. To address this challenge, we introduce a boost-factor adjustment technique as a fault-
tolerant scheme based on simple circuitry that eliminates the additional process to identify specific 
locations of the failed RRAMs in the array. Spectre circuit simulation is performed to verify the effect of 
the scheme on Modified National Institute of Standards and Technology dataset using convolutional 
neural networks in non-ideal crossbar arrays, where experimentally observed imperfective RRAMs are 
configured. Our results show that the recognition accuracy can be maintained similar to the ideal case 
because the interruption of the failure is suppressed by the scheme.

Neuromorphic computing technology that emulates the role and function of the human brain into electronic 
systems has received great attention recently1. This is because data processing is dramatically speeded up by 
the brain structure, where numerous neurons are connected by synapses in parallel. The bio-inspired parallel 
operation has been thus exploited widely in various fields by developing neural network algorithms in software2. 
The algorithms are specifically useful for new industrial applications such as autonomous vehicles and drones 
that need to process massive amounts of data in real time. As vector–matrix multiplication (VMM) plays an 
important role in realizing the parallel operation in the algorithms, this simple but time-consuming computation 
step should be demonstrated in hardware3. The VMM can be implemented in conventional computing systems 
such as central and graphics processing units4, 5, but it becomes energy inefficient against expectations. Since the 
system is based on Von-Neumann architecture, the results computed at processing units must be transferred to 
memory to store. The frequently moving data between the processing unit and memory takes a lot of time and 
power, which is known as the Von-Neumann bottleneck6.
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In this regard, a crossbar array architecture, where word lines and bit lines are located perpendicularly, has 
been considered to speed up the VMM7. In this configuration, data corresponding to synaptic weight is stored at 
each intersection. When signals in the form of voltage enter the word lines simultaneously, the multiplication of 
the voltage and synaptic weight at each cross in the array is performed. The calculated results are then summed 
along the bit line, and a single column current is shown at the end of the bit line. Note that the VMM takes place 
at the location, where the weights are physically stored, thereby saving time by avoiding the Von-Neumann bot-
tleneck. In order to maximize the functionality and versatility of the VMM in the crossbar array based neuro-
morphic systems, an appropriate synaptic weight element should be utilized8. In particular, a capability to have 
multilevel weights in highly scalable devices is strongly required. To date, various emerging devices such as phase 
change memory9, spin-transfer torque magnetic memory10, ferroelectric memory11, electrochemical memory12, 
and resistive switching memory (RRAM)13–19 have been suggested for the synaptic devices. Among them, the 
RRAM driven by formation and rupture of a filament has been considered as the most promising candidate due 
to its excellent scalability (< 10 nm) and multilevel operation17. The RRAM devices have been implemented with 
the crossbar array architecture in the form of one-transistor (or one-selector) and one-RRAM configuration. This 
structure can thus minimize disturbances due to unwanted sneak-path currents from neighboring cells while 
writing and reading only the selected RRAM20,21.

While most studies have focused on achieving the multilevel states13–19, reliability issues of the multiple states 
that play a crucial role in the VMM from operational perspective have been rarely explored22,23. More importantly, 
a device failure in the crossbar RRAM array causes significant performance degradation in the neuromorphic 
systems24,25. Among the various neuromorphic architectures, the crossbar array can be served as a spatial pooler 
(SP) for hierarchical temporal memory (HTM) that describes the functionality of the human neocortex26, as 
shown in Fig. 1. One of the important roles in the SP structure is to encode information by converting input 
data through the synapses to a sparse distributed representation. For the given input, the assigned weights of the 
analog synapses are added. The output is then activated only when the weighted sum exceeds a threshold, and 
the sparse binary pattern is generated. Recently, beyond the mixed analog–digital SP structure, the design and 
implementation of a fully analog SP has been attempted27.

Unlike memory operations that select specific word line and bit line to read only one RRAM, all the column 
currents are read simultaneously during the pattern recognition process. When stuck-at-short faults occur in 
multiple RRAMs in a particular column, the column current is primarily governed by the failed RRAMs, no 
matter how the input vectors and weights are configured. As shown in Fig. 1b, instead of the first column 
designed to represent the largest column, the wrong column is often activated, resulting in a recognition error. 
This problem was overcome by using a conventional fault-aware mapping scheme that diagnoses the location of 
the failed devices28. The VMM was then performed after the rearranged weight pattern was mapped to the array. 
However, the drawback is that complicated circuits and capacitors required to read and verify all RRAMs occupy 
a large area. To minimize the effect of the failed RRAMs without using the fault-aware mapping, we introduced 
a boost-adjustment technique implemented with simple circuits proposed in the previous work25. However, the 
types of the failures that can be specifically observed in real devices dedicated to the synaptic element have not 
been discussed.

Therefore, in this study, we first showed the stuck-at-short fault in the RRAM, one of primary failures, at the 
expense of the large on/off ratio. The scheme was then validated by using the resistance values, its distributions, 
and failure rates obtained from the experimental results of the RRAMs as simulation parameters. The pattern 

Figure 1.   (a) HTM system consists of an input space and a spatial pooler space. (b) The HTM spatial pooler 
can be implemented in the crossbar array. In real crossbar arrays, defective RRAMs are included. As a result, 
the largest current is calculated in the unpredictable column. Additional schemes are required to intentionally 
disable the wrong column.
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recognition accuracy of the Modified National Institute of Standards and Technology (MNIST) dataset was 
evaluated.

Results and discussion
Typical DC current–voltage (I–V) characteristics of a HfO2 based RRAM with TiN/Ti/HfO2/TiN stack14 defined 
as an ox-RRAM were shown in Fig. 2a. When a positive voltage was applied to the ox-RRAM, oxygen vacancies 
generated in the HfO2 were bridged between top and bottom electrodes, creating a conductive filament. As a 
result, an abruptly increased current was shown through the formed filament, which is a low resistance state 
(LRS). On the other hand, a negative voltage caused the vacancies to move away from the filament during the 
reset process, resulting in a high resistance state (HRS). Here, note that the gradual I–V transition was shown in 
the negative voltage region. It has been described that the weakest constriction part of the filament is reduced 
based on the hourglass model29 rather than the complete disconnection of the filament usually showing an abrupt 
transition. Because the filament was incompletely disconnected, the oxygen vacancies were needed to travel only 
small distances for the next set operation. The subsequent set voltage was lower than the initial forming voltage 
in proportion to the oxide thickness30. Based on this working principle, multiple weight states in the form of 
resistance values were achieved by controlling either current limiter18 and energy supplied to the RRAM31,32 
during the set and reset, respectively. Adjusting the current limiter determined the maximum allowable current 
relevant to the filament size. Elaborately releasing the limiter resulted in the multilevel states in the low resistance 
range18, but the power consumption increased. Whereas, sweeping with progressively increasing negative voltage 
steadily decreased the width. In order for oxygen vacancies to overcome activation energy, sufficient time as well 
as the voltage must be provided to the RRAM. That is, the analogously modulated multiple states in the high 
resistance range, which can be a more energy-efficient approach, were achieved by the energy controlled by the 
amplitude and width of voltage, as shown in Fig. 2b. Here, it is preferable to obtain an RRAM with a large on/off 
ratio, taking into account the case, where each state can be overlapped by the stochastic nature of the ion 
migration33,34. Assuming that the number of achievable states is the same in the RRAM, the large on/off ratio 
ensures a reasonable margin between the states despite the inherent variability. Considering the binary states for 
simplicity, the LRS resistance (RLRS) and HRS resistance (RHRS) seemed to be clearly distinguished in the single 
ox-RRAM (Fig. 2a). The stability for each state at high temperature35 and repeated cycles36 was confirmed. 
However, the difference in resistance was affected by the device-to-device variation, and each state might easily 
be overlapped in the tail region, as shown in Fig. 2c. The insufficient margin made peripheral circuits (e.g. analog-
to-digital converter and sense amplifier) connected to the crossbar array difficult to sense the states accurately, 
thereby degrading the recognition accuracy8. Although innovative device engineering37,38 has been suggested to 
improve the uniformity, this problem seemed to be inevitable due to the random ionic motion in materials. Since 
it is difficult to completely exclude the variability, an alternative approach was to increase the on/off ratio of the 
RRAM so that the non-uniform resistance distributions can be ignored39. That is, Cu or Ag instead of the oxygen 
vacancies was used for the filament source40. An RRAM device with Cu/TiW/Al2O3/WO3/W stack41 denoted as 
a Cu-RRAM was studied as an example in this study. During the set operation, a rapid transition of the I–V curve 
was shown, while the gradual reset operation was observed in the reset. The three-dimensional observation of 
the filament revealed by in-situ conducting atomic force microscopic study42 means that the switching charac-
teristics can be described identically by using the aforementioned physical mechanism6,8,13. Compared to the 
ox-RRAM, the filament in the Cu-RRAM consisted mostly of Cu ions. This made the device immune to the 
external stress, resulting in stable noise and disturbance properties43. As shown in Fig. 3a, it was noticeable that 
a much larger on/off ratio was achieved in the Cu-based RRAM than the ox-RRAM. It has been explained that 
the sources of the filament in the Cu-based RRAM are provided from the external Cu electrode as an ion reservoir 
rather than the oxide medium by breaking the bond with the oxygen during the forming process39. Thus, the less 
destructed oxide allowed the higher RHRS, resulting in the on/off ratio greater than > 103. When the voltage pulse 
of − 2 V with a width of 100 ns was applied to the LRS of the Cu-RRAM, the HRS read at − 0.1 V was shown in 
the range of tens to hundreds of MΩ. The large negative voltage pulse of − 2.5 V further increased the RHRS, 
enlarging the on/off ratio of ~ 103 in pulse operation. These results are expected to tolerate the inevitable variabil-
ity of the Cu-RRAM. In addition, the large on/off ratio is beneficial for achieving higher bit-precision, which can 
increase recognition accuracy44. However, the application of the large negative voltage caused a permanent 

Figure 2.   (a) The I–V characteristics of the ox-RRAM. (b) By increasing the negative voltage during the 
reset process, the current was analogously decreased. (c) Resistance distributions of the LRS and HRS of the 
ox-RRAM.
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breakdown of the Cu-RRAM during the reset process, as shown in the I–V curves (Fig. 3c). As the negative 
voltage was increased, the current began to gradually decrease, then increased unexpectedly. We measured 15 
Cu-RRAMs, and 7 of the 15 devices showed the breakdown in the DC I–V characterization, as shown in Fig. 3c. 
10% probability of the failure was also observed in the AC pulse cycling (not shown here)41. These results meant 
that there was a trade-off relationship between the large on/off ratio and failure. Since this failure was observed 
even in the ox-RRAM45, it has been generally understood that the constricted part was strengthened due to the 
residual Cu ions or oxygen vacancies. Here, it is worthy to note that the permanent failure must be considered 
importantly in the neuromorphic systems that sense the column current from the crossbar array and generate 
a signal to activate the next devices for pattern recognition. Ideally, specific resistance values are assigned to each 
Cu-RRAM in the array so that a large current is calculated at a predetermined column when certain input volt-
ages come in. When the column consists of the Cu-RRAMs with the stuck-at-short, much larger current than 
expected is observed. As a result, it becomes difficult to classify the column current that should be solely changed 
by the input voltages and weight patterns, thereby worsening the recognition accuracy. Considering that a 
Boolean function of AB + BC + AC needs to be executed for the recognition (Fig. 4a), the weight map is imple-
mented directly on the crossbar array, as shown in Fig. 4b. The stuck-at-short located in the second row interrupts 
to address the correct product (P), and the wrong function of AB + ABC + AC is eventually realized through an 
AND gate located at the end of the row46. The problem related to the stuck-at-short in the neuromorphic systems 
can be compensated by the fault-aware defect mapping scheme, as shown in Fig. 4c. In this scheme, before 
transferring the resistances to the array, a diagnosis to detect the failure is performed to identify the defect map 
of the failed devices. Then, a new map that relocates the activated devices to minimize the error is applied. The 
information in the row can be alsoswitched between A and B to demonstrate the given function correctly. How-
ever, the fault-aware defect mapping scheme needs to use the complex digital circuits occupying a large layout 
area28. We thus developed the boost-factor adjustment scheme, where the erroneous neurons connected with 
many defective synapses can be suppressed in a self-controlled manner without using the defect map measured 
during the previous diagnostic process25. The boost-factor adjustment scheme suppressed the gain of the current-
to-voltage converter, when the column was activated frequently due to many failures. Figure 4d showed a sche-
matic diagram of the boost-adjustment scheme consisting of diode-connected metal-oxide semiconductor field 
effect transistors (MOSFETs), comparators, and variable resistor. The SP algorithm is defined in four phases. In 
initialization (phase 1), a certain number of columns are selected first to receive the input data. To identify how 
many synapses are connected to each column at the given input, the boosting factor is multiplied in overlap step 
(phase 2). The factor, which is a dynamic value, indicates how often the column is activated compared to adjacent 
columns. Through inhibition stage (phase 3), the winning column becomes active, and the other columns are 
inhibited. Then, Hebbian learning rule is performed to update the synaptic weights up or down (phase 4). In 
phase 3, when the column current exceeds a threshold at a given input vector, the column is activated. The degree 
of the activation (α) for the column i is defined as follow:

M is the number of test vectors. According to Eq. (1), the activation function of column i becomes 1, if the col-
umn is activated, otherwise it is 0. If the column is activated frequently, the activation may be incorrect due to 
the large number of failed RRAMs. In this case, the boost-factor (β) can be adjusted to suppress the abnormally 
frequent activation, which can be simply defined as follows:

where the B is a positive parameter that controls the strength of the adaptation effect. Thus, lowering the β, 
which was inversely related to α, can reduce the false activation, minimizing the loss of recognition accuracy. The 
summed current of each column was shown in the form of the voltage through the current-to-voltage converter 
at the end of the column. The converted voltage reached the hybrid circuit configuration of variable resistor 

(1)α =
1

M

M
∑

j=1

(activation (column i)).

(2)β = e−B(αi)

Figure 3.   (a) The I–V characteristics of the Cu-RRAM. The larger on/off ratio of the Cu-RRAM was noticeable 
compared to the ox-RRAM (Fig. 2a). (b) Similar to Fig. 2b, the increased negative voltage was used to obtain the 
larger on/off ratio. (c) The breakdown occurred unexpectedly during the reset process.
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and diode-connected MOSFET area for boost-factor adjustment. According to the activity ratio of the column, 
the resistance of the variable resistor was changed by applied pulses through the boosting factor adjustment 
controller. The voltage multiplied by the adjusted boosting factor was then compared to reference voltage of the 
comparator. When the voltage of the column was close to the reference, the column started to be activated as a 
winner, while simultaneously inhibiting neighboring columns. To select the winning column, the reference volt-
age was obtained from the diode-connected MOSFETs by extracting the largest output voltage among adjacent 
columns. Therefore, the hybrid circuit was able to reduce the occupied area because it does not use a capacitor 
that represents the voltage based on the accumulated amount of charge.  

On the basis of the experimentally obtained resistance values, the designed scheme was validated by evaluat-
ing the accuracy of the MNIST handwritten dataset in simulation. As shown in Fig. 5a, the log-normal distribu-
tions of the RLRS and RHRS of the Cu-RRAMs were simulated by the following equation, and the average values 
(μ) of 14.4 and 21.3 were first extracted.

For the MNIST vector consisting of 20 × 20 pixels in convolutional neural networks, the number of input 
voltages was 400. The I–V relationship of the RRAM was simulated by a behavioral model using Verilog-A in 
CADENCE Spectre for circuit simulation. The MNIST recognition was simulated in MATLAB software. The 
400 × 256 crossbar array with randomly distributed μ of the RLRS and RHRS was constructed. Parasitic components 
such as the source and neuron resistances assumed to be 0.27% and 0.067% of HRS were also considered. The 
generated netlist was solved by MATLAB to calculate the column current in the array. It was assumed that experi-
mentally observed 10% change of the faults occurred in the array. The probability was considered reasonable 
because the 10% was also used in the literature reporting the mapping strategy47. The standard deviations (σ) of 

(3)y = f (µ, σ) =
1

xσ
√
2π

exp

{

−
(

loglogx − µ
)2

2σ 2

}

, for x > 0.

Figure 4.   (a) Non-ideal crossbar with faults. (b) Direct mapping to realize the given function. (c) Fault-aware 
mapping considering the failure for performing AB + BC + AC. (d) Direct mapping using the boost-factor 
adjustment manner to suppress the impact of the failure. The simplified schematic diagram of the hybrid circuit 
was shown in the box, and detailed operation was described in the reference25. Here a column with a large 
number of defective RRAMs was less activated by the boost-factor adjustment25.
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1 obtained from the cycle-to-cycle variation test was adopted. To understand how the column’s activation affects 
the recognition accuracy, the column number was increased to 1,024 and 4,096 at the given number of rows.

Table 1 shows the MNIST recognition accuracy in the non-ideal crossbar array. At the given columns of 
256, the Cu-RRAM array with variations without failure exhibited accuracy of about 78%, which is the closest 
to the ideal case. It means that the neural network consisting of the Cu-RRAM with the large on/off ratio was 
somewhat resilient to the fluctuations. The large column current due to the failure that occurred was undesirably 
multiplied by the large boosting factor, so the recognition accuracy was reduced by half. The degraded accuracy 
can be improved by defect-aware algorithms, but the time to run the algorithms and the area became a major 
drawback. However, even if the failure was additionally introduced, the recognition accuracy was maintained 
above 75% by the scheme. This tendency was similarly observed when the number of columns was increased. 

Figure 5.   (a) The relationship of log (RLRS) and probability density (%) with log-normal distribution. Here 
the number of samples measured is 100 (%). (b) The relationship of log (RHRS) and probability density (%) 
with log-normal distribution. Here the number of samples measured is 100. (c) The failure map of the non-
ideal 400 × 256 crossbar array consisting of the obtained RLRS and RHRS. The defective devices were randomly 
distributed and the failure percentage of the RRAM was assumed 10%.

Table 1.   Comparison of the recognition accuracy on the MNIST dataset as a function of the number of 
columns, standard deviation of log (HRS) and log (LRS), and stuck-at-fault (%).

# of columns Standard deviation (σ)
Probability of stuck-at-short 
(%)

Recognition accuracy (%)

w/o boost factor adjustment w/ boost factor adjustment

256

1 0 77.9 77.9

0 10 40.6 76.57

1 10 37.4 76.57

1,024

1 0 92.6 92.6

0 10 55.3 91.3

1 10 51.2 91.1

4,096

1 0 95.4 95.4

0 10 64.3 95.2

1 10 61.2 94.5
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The accuracy was further improved by increasing the column. This is because more detailed features can be 
extracted from the MNIST dataset and stored in the increased columns. The enhanced resolution in the output 
resulted in the improved accuracy. In addition, assuming that the energy to program the crossbar RRAM array 
was about 4 mJ at a given the number of the RRAMs in the column, the additional energy of 1,000 times less to 
run the boost-factor adjustment technique was needed48,49. This was because the RRAM and other components, 
which were key components in the hybrid circuit, can be operated quickly, thereby reducing running time as 
well as area demanded to implement the algorithms.

Conclusion
In this study, we exploited the Cu-RRAM with the large on/off ratio as the synaptic element for the crossbar array 
based neuromorphic systems. Even if inherent variability originated from the stochastic nature of the ion motion 
was shown, the large RLRS and RHRS difference of the Cu-RRAM was expected to help to achieve sufficient margin. 
However, as the trade-off relationship, the stuck-at-short fault was inevitably observed during the device opera-
tion. The column current in the Cu-RRAM array was thus determined by the failure, not the desired product of 
input voltage and resistance of the Cu-RRAM, degrading the recognition accuracy. To minimize the effect of the 
failure, we utilized the fault-tolerant scheme implemented by the hybrid circuit to lower the erroneously activated 
columns by the newly adjusted boost-factor. The scheme was validated in circuit simulation by evaluating the 
recognition accuracy on the MNIST dataset. The simulation results showed that the recognition accuracy of the 
boost-factor adjusted crossbar array with the σ of 1 and failure of 10% was similar to the ideal case. Therefore, we 
believe that the use of Cu-RRAM and boost-factor adjustment as appropriate synaptic element and optimized 
scheme respectively can demonstrate the multilevel states and failure compensation simultaneously for highly 
accurate neuromorphic systems.
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