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Abstract: Inflammatory breast cancer (IBC) is highly metastatic at the onset of the disease with no
IBC-specific treatments, resulting in dismal patient survival. IBC treatment is a clear unmet clinical
need. This commentary highlights findings from a recent seminal approach in which pembrolizumab,
a checkpoint inhibitor against programmed cell death protein 1 (PD-1), was provided to a triple-
negative IBC patient as a neoadjuvant immune therapy combined with anthracycline–taxane-based
chemotherapy. We highlight the findings of the case report and offer a perspective on taking a
proactive approach to deploy approved immune checkpoint inhibitors. On the basis of our recently
published research study, we propose in situ vaccination with direct injection of immunostimulatory
agents into the tumor as an option to improve outcomes safely, effectively, and economically for
IBC patients.

Keywords: inflammatory breast cancer; neoadjuvant immunotherapy; triple-negative breast cancer;
immune checkpoint inhibitors; pembrolizumab; immunomodulators; in situ vaccination; cowpea
mosaic virus nanoparticles; toll-like receptors

1. The Clinical Burden of IBC

Inflammatory breast cancer (IBC) is a rare, aggressive, and highly metastatic form
of breast cancer (BC). IBC accounts for roughly 2.5% of all newly diagnosed BC in the
US but is responsible for ~10% of BC-related deaths [1,2], making it the deadliest form of
BC. Among the BC subtypes, triple-negative (TN) IBC accounts for 20% to 40% of all IBC
cases, and within this subtype, ~30% present with lymph node and distant metastasis at
diagnosis and have the poorest prognosis [3,4]. Anthracycline–taxane-based chemotherapy
remains the backbone of neoadjuvant therapy for TN IBC; however, the efficacy of this
treatment is poor, with a dismal 15-year survival rate of ~20–30% [5–7]. The lack of effective
therapies against TN IBC is due, in part, to a lack of clinical trials because (1) TN IBC is a
different clinical and molecular entity than TN non-IBC, which causes the exclusion of TN
IBC patients from most clinical trials [8–10] and (2) IBC is rare, making patient recruitment
difficult for specific TN IBC clinical trials.

Lacking specific treatments, TN IBC patients are relegated to the same treatments as
noninflammatory TN BC patients. Furthermore, systemic targeted therapy of IBC has been
extrapolated from studies on high-risk non-IBC patients, and drugs have been selected
with little consideration for IBC biology or potential impacts on metastasis [11,12]. As a
result, there have been minimal efforts and strategies to identify improved treatments for
TN IBC patients [13]. This is highlighted by the fact that of the three clinical trials currently
underway in the US evaluating immune checkpoint inhibitors (ICIs) in combination with
chemotherapy or targeted therapy in IBC patients, there is only one trial involving recurrent
or metastatic TN IBC patients (NCT03202316) (https://www.clinicaltrials.gov/ct2/results?
cond=&term=NCT03202316&cntry=&state=&city=&dist= Accessed on 9 September 2022).
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Hence, therapeutically, TN IBC is an orphan disease with a high unmet medical need.
Given the intrinsic aggressive and metastatic nature of IBC, an aggressive approach to

tackle this deadly disease is needed to improve patient outcomes. In this light, the recent
case report by Kharel et al. [14] demonstrating the use of neoadjuvant chemotherapy in
combination with a T-cell checkpoint inhibitor (pembrolizumab, a PD-1 inhibitor) to treat a
TN IBC patient offers a bright light at the end of the dark tunnel faced by TN IBC patients.

Kharel’s study reports the treatment of a TN IBC patient (Figure 1) who was given the
KEYNOTE-522 clinical trial regimen: the patient received systemic intravenous neoadjuvant
therapy comprising carboplatin (area under the curve 5 every 3 weeks), pembrolizumab
(200 mg every 3 weeks), and weekly paclitaxel (80 mg/m2 for 12 weeks), followed by a com-
bination of doxorubicin (60 mg/m2), cyclophosphamide (600 mg/m2), and pembrolizumab
(200 mg every 3 weeks) for four cycles [14]. Although the phase 3 KEYNOTE-522 clin-
ical trial was designed for previously untreated stage II or stage III TN breast cancer
patients [15], including IBC, the last interim report on 602 patients who underwent ran-
domization did not report any TN IBC patients [16]. Hence, the study by Kharel represents
the first report of the efficacy of an ICI in the neoadjuvant setting against TN IBC and
provides the following insights into the clinical relevance of this approach to treating TN
IBC patients.
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Figure 1. Neoadjuvant pembrolizumab and chemotherapy induced clinical response in a triple-
negative IBC patient. A small boil-like left axillary mass increased in size in six weeks with associated
pain, swelling, and erythema (A). Chest computerized tomography (CT) indicated the presence of
a large left fungating mass in the lateral left breast (7.7 × 5.7 cm) with associated left sub-pectoral,
axillary, and internal mammary lymphadenopathy and diffuse edema and skin thickening within the
left breast with skin involvement (white arrow) (B). The fungating mass and left breast erythema were
resolved after completion of the neoadjuvant pembrolizumab and chemotherapy (C); a post-treatment
chest CT with contrast demonstrated a significant decrease in the size of the previously biopsied
left axillary mass (white arrow) (D). Improvement in previously seen left axillary lymphadenopathy
and dermal thickening of the left breast/axilla was also observed (D). Text and pictures (A–D) were
modified from Kharel et al. [14], Breast Disease (2022); 41:255–260, with permission from IOS Press
(http://dx.doi.org/10.3233/BD-210041 Accessed on 9 September 2022).

http://dx.doi.org/10.3233/BD-210041
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A. Efficacious front-line agents: The impressive clinical and pathological response
observed in this patient can be related, among other factors, to the presence of high lev-
els of tumor-infiltrating lymphocytes (TILs) and the combination of immunogenic cell
death (ICD) inducers with an ICI (pembrolizumab) as front-line agents. Cancer cells
undergo bona fide ICD in response to the ICD inducers (paclitaxel, doxorubicin, and
cyclophosphamide) [17,18]. During ICD, dying cells release a panel of immunostimulatory
damage-associated molecular patterns and cytokines that support the recruitment, phago-
cytic activity, and maturation of antigen-presenting cells, enabling them to engulf antigenic
material, migrate to lymph nodes, and prime a cytotoxic T lymphocyte-dependent immune
response [19]. Adding an anti-PD-1 inhibitor releases the immune T cells from immuno-
suppression through PD-1 and potentiates the ICD-generated systemic cytotoxic immune
response. The establishment of immunological memory can translate into longer-term
suppression of metastatic events and improved patient survival. It is expected, therefore,
that this TN IBC patient will have a better outcome due to the treatment and compared
with historical cases. This patient started chemo- and immunotherapy in August 2020 and
underwent surgery in March 2021, followed by maintenance immunotherapy, which was
completed in December 2021. As of this date, the patient is still clinically well and has no
signs of recurrence [20].

B. Biomarkers: The importance of TILs and the protein levels of programmed death-
ligand 1 (PD-L1) in IBC pathology and as surrogate biomarkers of patient outcomes has
been demonstrated by us [21,22] and others [23,24]. The high TILs levels (~40%), PD-L1
positivity in a pre-treatment biopsy, and the excellent response in this TN IBC patient
confirm the value of TILs and PD-L1 status in TN IBC patients [21–24]. It should be noted
that while the efficacy of ICIs has been associated with PD-L1 positivity in metastatic TN
BC patients [25,26], no association with PD-L1 protein levels was found in the KEYNOTE-
522 trial [16]. The difference in results may be related to the different drugs or inhibition
pathways, disease stages (early rather than late), PD-L1 assays, or all these factors [16].
Correlative genomic studies to identify molecular and immune biomarkers associated
with TN BC patients’ responses to the pembrolizumab and chemotherapy regimen in the
KEYNOTE-522 trial are planned. A transcriptomic analysis will provide a view of immune
and cellular markers associated with the response to checkpoint inhibition [16].

C. Pembrolizumab–chemotherapy tolerance: The pembrolizumab–chemotherapy
treatment was well tolerated, with only alopecia and grade 1 fatigue reported in this TN
IBC patient; similar side effects were observed in the KEYNOTE-522 study [16]. It should
be noted that although severe adverse events were reported in ~33% of the patients in
the pembrolizumab–chemotherapy group in the KEYNOTE-522 study [16], the observed
severe adverse events did not negatively affect the ability to administer the neoadjuvant
chemotherapy. This is important since the administration of fewer doses of neoadjuvant
chemotherapy than planned has been associated with worse long-term outcomes [27]. The
good response with minimum toxicity in the TN IBC patient may be related, among other
factors, to the presence of a responsive immune system, undamaged by previous grueling
doses of toxic chemotherapy regimens as observed in heavily treated metastatic breast
cancer patients undergoing immune checkpoint therapy [25].

2. The Urgency of Applying Novel Efficacious and Economically Available Therapies
against IBC

IBC is highly metastatic, and despite deploying a multidisciplinary approach to tackle
this disease, the current anthracycline–taxane approach is minimally effective, with a very
low 15-year survival rate of ~20–30% [5–7]. In other words, IBC patients do not have the
luxury of waiting until efficacious therapies are found.

While the biological toxicity was manageable in the neoadjuvant setting in Kharel’s
report and the KEYNOTE-522 study [14,16], the economic toxicity associated with the very
high cost of immunotherapies in cancer patients creates a huge economic personal and
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societal burden [28]. Hence, a new aggressive approach is needed to make efficacious
immunotherapies available to patients without causing an economic burden.

Intratumoral administration of immunotherapeutic agents (in situ vaccination, ISV)
is an attractive way to stimulate antitumor immunity while reducing both systemic and
economic toxicity. Every vaccine contains an antigen and an immune adjuvant. The
antigen is what the immune system is being trained to recognize and respond to, and the
immune adjuvant stimulates the immune system to respond to the antigen(s). There are a
variety of classes of tumor antigens: tumor-associated antigens, neoantigens, and, in some
tumors, viral antigens [29]. All are within the tumor itself, but the immune response against
these antigens is generally weak because the tumor creates an immunosuppressive local
environment that suppresses a robust antitumor immune response. ISV uses the tumor
as the source of the relevant antigen and introduces some form of immune stimulation
(immune adjuvant) into the tumor to disrupt the local immune suppression and prime a
new response or enhance a pre-existing antitumor immune response. This stimulates a
local antitumor immune response, and more importantly, generates a systemic immune
response against any tumor antigens shared by most or all metastatic and micro-metastatic
foci in the cancer patient [30,31]. Clinically, this might translate into tumor reduction in
the injected lesion; an expanded systemic immune response that suppresses noninjected
tumors; and a significant delay or blocking of metastatic events, which are the main cause
of cancer deaths. Of note, intratumoral treatment enables a high local concentration of
immune stimulatory reagents while the systemic levels are low, which means that adverse
immune-mediated events are reduced. The widely used checkpoint blockade therapies,
such as PD-1- or PD-L1-blocking antibodies, depend on freeing tumor-recognizing effector
T cells from the suppression of T-cell checkpoint molecules. Checkpoint blockade is most
effective when there are many tumor-recognizing T cells. ISV can synergize with checkpoint
blockade because it generates tumor-recognizing effector T cells and thus creates more of
the proper T cells for checkpoint blockade therapy to work with [32,33].

The interest in ISV is reflected in the increasing number of clinical trials deploying
various intratumoral immune stimulatory agents in a wide range of tumors [32,34]. While
a review of ISV is not within the scope of this commentary, the scientific rationale and
technical and clinical details of ISV can be found in recently published updates on this
topic [32–35]. Relevant to this commentary, we recently demonstrated that ISV is indeed a
potential novel and efficacious approach against IBC disease by demonstrating that ISV
with empty cowpea mosaic virus (eCPMV) nanoparticles resulted in impressive clinical
responses in five canine inflammatory mammary cancer (IMC) patients [36].

The preclinical efficacy of ISV using the highly immunostimulatory CPMV and eCPMV
nanoparticles has been previously and extensively documented in various syngeneic
murine tumor models, including a murine breast cancer model [37–40]. The excellent
efficacy observed for CPMV/eCPMV immunotherapy in murine models was extended to
more ‘translational’ models to facilitate the rapid deployment of CPMV-based therapy in
humans by evaluating eCPMV ISV in companion dogs diagnosed with oral melanomas [41]
and canine IMC patients [36]. IMC is the canine counterpart of human IBC, with similar
clinicopathologic and biologic features and poor outcomes [42]. As such, canine IMC
represents the optimal animal model to clinically translate efficacious therapies to humans
while at the same time providing canine patients with state-of-the-art immunotherapies
not yet available to humans [42].

Similar to the striking clinical and pathological response observed in the reported TN
IBC patient treated with systemic neoadjuvant anti-PD-1 therapy [14], we also observed
a robust clinical efficacy of neoadjuvant ISV eCPMV immunotherapy leading to tumor
reduction in all five treated IMC dogs. Two of the IMC canine patients had such a reduction
in tumor burden that they underwent surgery. Of note, surgery is not recommended for
canine IMC patients because of the extensive local involvement, the presence of coagu-
lopathies, and distant metastatic disease [43]. To our knowledge, this is the first report of
an immunotherapy-based approach that allowed surgical intervention in IMC patients.
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Furthermore, no adverse events were seen in any of the eCPMV-treated dogs, and the
quality of life was improved in three canine IMC patients. While canine IMC patients
usually die of the disease within an average of one month without treatment [44], eCMPV
therapy was associated with statistically significant improvement in the survival of treated
dogs, and one IMC patient remained alive for up to ~6 months; the dog died of renal failure
with no evidence of metastatic disease in the kidneys.

ICIs target specific molecules, and their efficacy is associated with the presence of the
target molecule. CPMV is a plant virus and does not infect mammalian cells, meaning
that it is not an oncolytic virus. CPMV nanoparticles are ‘tumor agnostic’; their efficacy
is associated with the immune modulation of the tumor microenvironment; and they do
not have a direct effect on tumor cancer cells. CPMV and eCPMV are identical in their
protein content, but eCPMV lacks RNA, so it cannot infect anything. CPMV nanoparticles
are agonists for toll-like receptors (TLRs) 2, 4, and 7, with TLR 2 and 4 recognizing the viral
capsid and TLR7 recognizing the viral RNA genome. Because eCPMV lacks RNA, it exerts
activity only through TLR2 and TLR4 [45].

Like the human TN IBC patient treated with neoadjuvant pembrolizumab and
chemotherapy [14], all five canine IMC patients treated with eCPMV immunotherapy also
had the TN tumor subtype. These were large tumors (the largest diameter of the treated
tumors ranged from 4 cm to 20 cm). Although targeting the PD-1/PD-L1 axis has been
linked mostly to PD-L1-positive TN patients, clinical responses to PD-1/PD-L1-blocking
antibodies are not observed in all TN patients [25]. Of note, all of our TN IMC patients
responded to eCPMV ISV therapy, and similar striking responses to eCPMV therapy have
been observed in non-IMC hormone receptor-positive canine mammary cancer patients
without a need for a specific marker [46]. The extensive data obtained using murine
models [37–40], canine oral melanoma patients [41], and canine IMC patients [36] suggest
that ISV with CPMV nanoparticles could be an effective immunotherapy for other solid
tumors. Adding other immune checkpoint and/or immunomodulators will enhance the
observed clinical efficacy of ISV CPMV immunotherapy [47].

3. Can We Achieve Good Clinical Responses and Improve Outcomes with Low
Biologic and Economic Toxicity for IBC Patients?

While the striking positive response to neoadjuvant pembrolizumab and chemother-
apy in the TN IBC patient provides a strong motivation to deploy existing FDA-approved
systemic immunotherapies as front-line therapies against IBC disease to improve outcomes
in IBC patients, the question of cost is still a huge burden for cancer patients, including IBC
patients, because insurance companies may deny coverage. To provide a perspective on
the high cost of immunotherapies, ipilimumab (an anti-CTLA-4 antibody) systemic therapy
consists of 10 mg/kg every three weeks for four doses, followed by every three months for
up to three years or until recurrence or unacceptable toxicity occurred. It has been estimated
that the adjuvant ipilimumab regimen for melanoma has a price tag of USD 1.8 million per
patient [48]. While no estimates exist yet for the cost of pembrolizumab or atezolizumab
for breast cancer, it should be noted that the current systemic dose of pembrolizumab
is 200 mg every three weeks for up to 24 weeks [14,16] and the dose of atezolizumab is
840 mg on day one and day 15 for ~24 weeks [25]. Clearly, checkpoint blockade therapy is
not economically accessible for many cancer patients, including IBC patients.

From this economic standpoint, ISV therapy is very attractive for the simple reason
that it requires a smaller amount of the immunotherapeutic agent, implying a lower cost
without affecting the efficacy and minimal or no toxicity, which often limits the systemic
counterpart. For example, ISV applying ipilimumab (just 2 mg once a week for 8 weeks)
and interleukin-2 (IL-2) generated responses in both injected and noninjected lesions, with
minimal additional toxicity in advanced melanoma [49]. This melanoma study supports
the feasibility of ISV with ICIs as a therapeutic approach with excellent local and systemic
(abscopal effect) efficacy and a significantly lower cost. It should be noted that most of
the current ongoing clinical trials for breast cancer will apply ISV therapy with oncolytic
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viruses, immunomodulators, and cellular therapies in combination with chemotherapy and
systemic immune checkpoint blockade [50]. Hence, efficacy will be observed in some of
those trials, but the prohibitive cost of immune checkpoint blockade remains a major issue.
ISV immunotherapy, therefore, represents a potential option to achieve striking clinical
responses with minimal biological and economic toxicity. The pros and cons of ISV have
been described in a few recent reviews [32,33,51]. In relation to IBC disease, the lack of
solid masses in IBC may represent a technical challenge for ISV [8,10]. However, advances
in image-guided techniques for intratumoral immunotherapy delivery will facilitate the
application of ISV in IBC patients [52].

4. What Other Immunotherapies Could Be Applied with ISV to IBC Patients?

The intrinsic aggressive and metastatic nature of IBC leaves no room for clinical
trials in which patients will probably die before ending their participation in the trial. We
envision that a proactive approach to alleviate the burden suffered by IBC patients should
utilize ISV on three fronts:

1. Immunotherapies with existing and approved ICIs as front-line therapies. Kharel’s
single case report of systemic therapy with good efficacy supports the use of ICIs as
front-line therapies [14], and the melanoma study demonstrated the feasibility and high
efficacy of ISV of a checkpoint inhibitor with good responses in the injected and noninjected
advanced melanoma tumors [49].

2. Immunomodulators with excellent efficacy in preclinical models, giving preference
to agents demonstrating high preclinical efficacy in mouse and canine models and low toxi-
city of ISV in humans and optimal models, such as dogs. The observed striking responses
in canine IMC patients support studies to treat IBC patients with neoadjuvant ISV CPMV
alone or in combination with standard-of-care therapy or other ICIs [36]. The current list of
immunomodulatory agents being tested with ISV alone or in combination with systemic
chemotherapy and checkpoint blockade in human breast cancer was detailed in Huppert’s
review [50]. Not included in that review were a few recent reports of ISV immunomod-
ulatory agents demonstrating impressive responses in injected and noninjected tumors
in human patients with solid tumors [53,54] and canine cancer patients [54,55]. These
compounds, in our view, represent potential immunotherapeutic options for IBC patients.

The Milhem group reported an update of an ongoing open-label, multicenter phase
1b/2 study (NCT03684785) of ISV using cavrotolimod, a TLR9 agonist, in combination
with intravenous pembrolizumab in patients with large advanced solid tumors, including
melanomas, Merkel cell carcinomas, cutaneous squamous cell carcinomas, head and neck
squamous cell carcinoma, leiomyosarcoma, and various metastatic tumor patients [53].
Multiplex immunohistochemistry demonstrated an increase in CD8+ T cells and CD45RO+

memory T cells in the injected tumor lesion of a responder patient after treatment with
cavrotolimod and pembrolizumab. Along with tumor reduction in the treated tumor,
systemic immune activation was observed in noninjected tumor lesions distant from the
site of the injection. The therapy was well-tolerated, with flu-like symptoms being the
most severe adverse event reported. Durable and ongoing responses in all responders were
observed, which is obviously quite impressive and well above current immunotherapy
expectations [53].

The Fahrer group demonstrated the clinical efficacy of intratumoral injections of
a slow-release emulsion of Complete Freund’s Adjuvant (CFA) containing heat-killed
Mycobacteria in three preclinical species (relatively large mouse mastocytomas, canine
mastocytomas, and equine melanomas) and in large human cancer patients (one nonsmall
cell lung cancer, one metastatic osteosarcoma, one squamous cell cervical carcinoma, one
squamous cell head and neck cancer, one prostate cancer, two metastatic renal cancers, two
lung cancers, one urothelial cancer, and two invasive hormone receptor-positive ductal
breast cancers) [54]. ISV of CFA was safe and well-tolerated in human, equine, and canine
patients, with minor adverse events, such as inflammation at the site of injection and
fever. As expected, a systemic immune response was also observed with regression of
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noninjected metastases. Of interest, analysis of immune cells infiltrating mastocytomas
in mice showed that early neutrophil infiltration was predictive of treatment benefit; in
addition, the regression of treated canine mastocytomas weeks or months after treatment
demonstrated an increase in B- and T-cell infiltrates. The findings of this study suggest that
activation of the innate immune system alone may be sufficient for the regression of some
injected tumors, followed by activation of the adaptive immune system, which can mediate
the regression of noninjected metastases [54].

This study is remarkable not only for the safety and efficacy of the ISV approach used
here but also for the low cost of this CFA-based immunotherapy. CFA is licensed for human
use, and dead Mycobacteria are inherently safer than the live Mycobacteria used both in the
widely administered childhood intradermal bacille Calmett—Guerin (BCG) vaccine against
tuberculosis and as an intravesical treatment for superficial bladder cancer. As pointed out
in Fahrer’s study, if correctly emulsified, CFA forms a slow-release depot at the injection
site, meaning that one injection provides continuous immunostimulation over a period
of weeks [54]. In relation to the cost of the CFA-based therapy, the ISV CFA injections in
human patients consist of one to four injections with a volume ranging from 0.5 mL to
2 mL. The cost of the CFA used in Fahrer’s study was ~USD 38 for a 10 mL vial (each mL
contained 1 mg of Mycobacterium tuberculosis (H 37RA), heat-killed and dried, 0.85 mL of
paraffin oil, and 0.15 mL of mannide monooleate).

This immunotherapeutic approach could be very attractive for IBC patients in North
African countries; the IBC incidence ranges from ~5% to 11% of total breast cancers in Mo-
rocco, Algeria, Tunisia, and Egypt [22,56–58], making this specific disease a high economic
burden for these countries. Hence, it is hard to disagree with Fahrer’s conclusion that “CFA
therefore has the potential to be a simple and inexpensive form of cancer immunotherapy,
accessible for use in both developed and emerging economies” [54]. It is our hope that
given CFA’s fewer side effects, good efficacy, and low cost, this CFA-based study will
attract the attention of IBC oncologists to deploy this therapy in large-scale studies in those
countries where the issue of enrolling IBC patients is not a hurdle as it is in other countries
where IBC is rare and enrolling an appropriate number of patients is a huge problem [1,2].

Although IL-2 and IL-12, which expand and stimulate T cells and natural killer (NK)
cells to mediate antitumor immunity, have demonstrated promising therapeutic effects,
their clinical use is limited by severe systemic adverse effects [59]. The Wittrup group
has developed IL-2 and IL-12 cytokine fusion proteins anchored to collagen, which is
abundantly and ubiquitously expressed in tumors, and tagged the cytokines with canine
serum albumin to increase the molecular weight of the proteins in order to prolong their
intratumoral retention and effectively eliminate toxic systemic exposure [60,61]. This smart
design demonstrated high activity and tolerability in large canine soft tissue sarcoma
(STS) and canine oral melanoma (OM) patients [55]. One to two ISV injections with IL-
2 and IL-12 fusion proteins were performed as neoadjuvant therapy in 10 canine STS
cases, followed by tumor surgery. Twelve canine OM cases received the ISV injection in
combination with radiation therapy the same day, followed by five ISV injections of IL-
2/IL-12 fusion proteins every two weeks and follow-up of OM patients. The ISV IL-2/IL-12
therapy was well-tolerated, with transient body temperature elevation as well as mild
neutropenia/thrombocytopenia. Evidence of a systemic response was observed in one OM
patient by a significant tumor reduction in a lung metastatic site. IHC analysis of tissues
from treated STS canine patients demonstrated enhanced infiltration, and RNA profiling
reveal enrichment of genes associated with antitumor effector function. In addition, IL-
2/IL-12 treatment in canine STS increased CTLA-4 and PD-L1 expression, implying that
adding ICIs could potentiate T- and NK-cell effector functions [55]. These findings support
the safety and efficacy of ISV with IL-2/IL-12 collagen binding cytokines alone or combined
with standard-of-care surgery, radiation therapy, and other ICIs.

3. Treating a heterogeneous disease with complex combination therapies. Although
the ISV immunotherapies described above have demonstrated striking clinical responses,
we should remember that, as observed with the current ICIs approved to treat many
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cancers, these agents do not benefit all patients. Relapses are frequent because redundant
pathways of immune suppression are active, important pathways of immune activation
are silent, and critical tumor signaling pathways remain intact [62]. Hence, to overcome
resistance and extend the benefit of immunotherapies to more patients, we need to precisely
modulate various immunoregulatory and tumor intrinsic pathways. A series of safe
and affordable agents are approved or in clinical trials and demonstrate good efficacy,
including known chemotherapy drugs (doxorubicin, paclitaxel, and cyclophosphamide),
small inhibitor molecules (AKT inhibitors, MEK inhibitors, and PARP inhibitors), and
TLR agonists (SD-101, an agonist for TLR9). Some of these agents are deployed as dual
therapies in various cancers. The details of the clinical trials in BC of these agents can
be found in recent detailed reviews [50,62–64]. Furthermore, the ISV approach requires
small quantities injected into the tumor parenchyma, reducing cost and potentially toxic
events as well as offering the unique opportunity to combine multiple therapeutic agents
to achieve a more robust immune response, higher objective response rates, and increased
response duration in cancer patients, including IBC patients. While it is not the focus of
this commentary, overcoming intrinsic resistance to therapies other than immunotherapy
also requires ongoing and consistent consideration of new rational drug combinations that
would be safe, affordable, and effective.

5. Conclusions

There is sufficient data to support the application of ISV in IBC patients using the
currently approved ICIs alone or in combination with standard of care in the neoadjuvant
setting to take advantage of a chemo-naïve immune system not yet affected by toxicity from
established chemotherapeutic regimens. Adding new and potent immunomodulators, such
as CPMV, cavrotolimod, CFA, and IL-2/IL-12, and other safe, affordable, and potentially
effective therapies against this extremely aggressive and metastatic disease provides a
pathway to significantly improve patients’ outcomes and eliminate IBC as a therapeutic
orphan disease.

Author Contributions: Conceptualization, H.A.-P.; writing—original draft preparation, H.A.-P.;
writing—review and editing, H.A.-P., D.A.-M. and S.F.; funding acquisition, S.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was supported in part by the NCI (U01CA218292 and R01CA224605 to SF) and
the assistant contract at Complutense University (2110/AYU/011 to DAM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author expresses his gratitude to Louise Lines and Petra Sergent (Geisel
School of Medicine at Dartmouth) for their critical review of and useful comments on the manuscript,
Kathleen J. Bryar for proofreading the manuscript, and Kharel and Dhakal for sharing information
about this case, comments on the manuscript draft, and allowing the use of the pictures and text
reprinted from “Kharel, Z., Nemer, O.P., Xi, W., Upadhayaya, B., Falkson, C.I., O’Regan, R.M., Dhakal,
A. Inflammatory breast cancer with excellent response to pembrolizumab–chemotherapy combination:
A case report. Breast Disease 41:255–260” with permission from IOS Press. The publication is available
at IOS Press through http://dx.doi.org/10.3233/BD-210041 Accessed on 9 September 2022.

Conflicts of Interest: Fiering is a co-founder of and has a financial interest in Mosaic Immunoengi-
neering Inc. The remaining authors declare no conflict of interest.

http://dx.doi.org/10.3233/BD-210041


Cells 2022, 11, 2850 9 of 11

References
1. Hance, K.W.; Anderson, W.F.; Devesa, S.S.; Young, H.A.; Levine, P.H. Trends in Inflammatory Breast Carcinoma Incidence and

Survival: The Surveillance, Epidemiology, and End Results Program at the National Cancer Institute. J. Natl. Cancer Inst. 2005, 97,
966–975. [CrossRef] [PubMed]

2. Goldner, B.; Behrendt, C.E.; Schoellhammer, H.F.; Lee, B.; Chen, S.L. Incidence of Inflammatory Breast Cancer in Women,
1992–2009, United States. Ann. Surg. Oncol. 2014, 21, 1267–1270. [CrossRef] [PubMed]

3. Van Uden, D.J.P.; Bretveld, R.; Siesling, S.; de Wilt, J.H.W.; Blanken-Peeters, C.F.J.M. Inflammatory breast cancer in the Netherlands;
improved survival over the last decades. Breast Cancer Res. Treat. 2017, 162, 365–374. [CrossRef] [PubMed]

4. Fayanju, O.M.; Ren, Y.; Greenup, R.A.; Plichta, J.K.; Rosenberger, L.H.; Force, J.; Suneja, G.; Devi, G.R.; King, T.A.; Nakhlis, F.; et al.
Extent of axillary surgery in inflammatory breast cancer: A survival analysis of 3500 patients. Breast Cancer Res. Treat. 2020, 180,
207–217. [CrossRef]

5. Low, J.A.; Berman, A.W.; Steinberg, S.M.; Danforth, D.N.; Lippman, M.E.; Swain, S.M. Long-term follow-up for locally advanced
and inflammatory breast cancer patients treated with multimodality therapy. J. Clin. Oncol. 2004, 22, 4067–4074. [CrossRef]

6. Ueno, N.T.; Buzdar, A.U.; Singletary, S.E.; Ames, F.C.; McNeese, M.D.; Holmes, F.A.; Theriault, R.L.; Strom, E.A.; Wasaff, B.J.;
Asmar, L.; et al. Combined-modality treatment of inflammatory breast carcinoma: Twenty years of experience at M. D. Anderson
Cancer Center. Cancer Chemother. Pharmacol. 1997, 40, 321–329. [CrossRef]

7. Chainitikun, S.; Saleem, S.; Lim, B.; Valero, V.; Ueno, N.T. Update on systemic treatment for newly diagnosed inflammatory breast
cancer. J. Adv. Res. 2020, 29, 1–12. [CrossRef]

8. Woodward, W.A. Inflammatory breast cancer: Unique biological and therapeutic considerations. Lancet Oncol. 2015, 16, e568–e576.
[CrossRef]

9. Lim, B.; Woodward, W.A.; Wang, X.; Reuben, J.M.; Ueno, N.T. Inflammatory breast cancer biology: The tumour microenvironment
is key. Nat. Rev. Cancer 2018, 18, 485–499. [CrossRef]

10. Rosenbluth, J.M.; Overmoyer, B.A. Inflammatory Breast Cancer: A Separate Entity. Curr. Oncol. Rep. 2019, 21, 86. [CrossRef]
11. Menta, A.; Fouad, T.M.; Lucci, A.; Le-Petross, H.; Stauder, M.C.; Woodward, W.A.; Ueno, N.T.; Lim, B. Inflammatory Breast

Cancer: What to Know About This Unique, Aggressive Breast Cancer. Surg. Clin. North Am. 2018, 98, 787–800. [CrossRef]
[PubMed]

12. Dawood, S.; Cristofanilli, M. IBC as a Rapidly Spreading Systemic Disease: Clinical and Targeted Approaches Using the
Neoadjuvant Model. J. Natl. Cancer Inst. Monogr. 2015, 2015, 56–59. [CrossRef]

13. Gonzalez-Angulo, A.M.; Hennessy, B.T.; Broglio, K.; Meric-Bernstam, F.; Cristofanilli, M.; Giordano, S.H.; Buchholz, T.A.;
Sahin, A.; Singletary, S.E.; Buzdar, A.U.; et al. Trends for Inflammatory Breast Cancer: Is Survival Improving? Oncologist 2007, 12,
904–912. [CrossRef] [PubMed]

14. Kharel, Z.; Nemer, O.P.; Xi, W.; Upadhayaya, B.; Falkson, C.I.; O’Regan, R.M.; Dhakal, A. Inflammatory breast cancer with
excellent response to pembrolizumab-chemotherapy combination: A case report. Breast Disease 2022, 41, 255–260. [CrossRef]
[PubMed]

15. Schmid, P.; Cortés, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kuemmel, S.; Bergh, J.; Denkert, C.; Park, Y.; Hui, R.; et al. KEYNOTE-
522: Phase 3 study of pembrolizumab (pembro) + chemotherapy (chemo) vs placebo (pbo) + chemo as neoadjuvant treatment,
followed by pembro vs pbo as adjuvant treatment for early triple-negative breast cancer (TNBC). Ann. Oncol. 2019, 30, v851–v934.
[CrossRef]

16. Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al.
Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [CrossRef] [PubMed]

17. Kepp, O.; Senovilla, L.; Vitale, I.; Vacchelli, E.; Adjemian, S.; Agostinis, P.; Apetoh, L.; Aranda, F.; Barnaba, V.; Bloy, N.; et al.
Consensus guidelines for the detection of immunogenic cell death. OncoImmunology 2014, 3, e955691. [CrossRef]

18. Pol, J.; Vacchelli, E.; Aranda, F.; Castoldi, F.; Eggermont, A.; Cremer, I.; Sautès-Fridman, C.; Fucikova, J.; Galon, J.; Spisek, R.; et al.
Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. OncoImmunology 2015, 4, e1008866. [CrossRef]

19. Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al.
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8,
e000337. [CrossRef]

20. Dhakal, A.; 1425 Portland Avenue, Rochester General Hospital, Rochester 14621, NY, USA. Personal communication, Follow-up
of patient treated with pembrolizumab and reported.d in this communication in reference 14, 5 May 2022.

21. Arias-Pulido, H.; Cimino-Mathews, A.; Chaher, N.; Qualls, C.; Joste, N.; Colpaert, C.; Marotti, J.D.; Foisey, M.; Prossnitz, E.R.;
Emens, L.A.; et al. The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast
cancer is prognostic of improved patient outcome. Breast Cancer Res. Treat. 2018, 171, 273–282. [CrossRef]

22. Arias-Pulido, H.; Cimino-Mathews, A.M.; Chaher, N.; Qualls, C.R.; Joste, N.; Colpaert, C.; Marotti, J.D.; Chamberlin, M.D.;
Foisey, M.G.; Prossnitz, E.R.; et al. Differential effects of CD20+ B cells and PD-L1+ immune cells on pathologic complete response
and outcome: Comparison between inflammatory breast cancer and locally advanced breast cancer patients. Breast Cancer Res.
Treat. 2021, 190, 477–489. [CrossRef] [PubMed]

23. Van Berckelaer, C.; Rypens, C.; van Dam, P.; Pouillon, L.; Parizel, M.; Schats, K.A.; Kockx, M.; Tjalma, W.A.A.; Vermeulen, P.; van
Laere, S.; et al. Infiltrating stromal immune cells in inflammatory breast cancer are associated with an improved outcome and
increased PD-L1 expression. Breast Cancer Res. 2019, 21, 28. [CrossRef] [PubMed]

http://doi.org/10.1093/jnci/dji172
http://www.ncbi.nlm.nih.gov/pubmed/15998949
http://doi.org/10.1245/s10434-013-3439-y
http://www.ncbi.nlm.nih.gov/pubmed/24366421
http://doi.org/10.1007/s10549-017-4119-6
http://www.ncbi.nlm.nih.gov/pubmed/28138891
http://doi.org/10.1007/s10549-020-05529-1
http://doi.org/10.1200/JCO.2004.04.068
http://doi.org/10.1007/s002800050664
http://doi.org/10.1016/j.jare.2020.08.014
http://doi.org/10.1016/S1470-2045(15)00146-1
http://doi.org/10.1038/s41568-018-0010-y
http://doi.org/10.1007/s11912-019-0842-y
http://doi.org/10.1016/j.suc.2018.03.009
http://www.ncbi.nlm.nih.gov/pubmed/30005774
http://doi.org/10.1093/jncimonographs/lgv017
http://doi.org/10.1634/theoncologist.12-8-904
http://www.ncbi.nlm.nih.gov/pubmed/17766649
http://doi.org/10.3233/BD-210041
http://www.ncbi.nlm.nih.gov/pubmed/35599460
http://doi.org/10.1093/annonc/mdz394.003
http://doi.org/10.1056/NEJMoa1910549
http://www.ncbi.nlm.nih.gov/pubmed/32101663
http://doi.org/10.4161/21624011.2014.955691
http://doi.org/10.1080/2162402X.2015.1008866
http://doi.org/10.1136/jitc-2019-000337
http://doi.org/10.1007/s10549-018-4834-7
http://doi.org/10.1007/s10549-021-06391-5
http://www.ncbi.nlm.nih.gov/pubmed/34542773
http://doi.org/10.1186/s13058-019-1108-1
http://www.ncbi.nlm.nih.gov/pubmed/30777104


Cells 2022, 11, 2850 10 of 11

24. Van Berckelaer, C.; Vermeiren, I.; Vercauteren, L.; Rypens, C.; Oner, G.; Trinh, X.B.; Tjalma, W.A.A.; Broeckx, G.; Charafe-
Jauffret, E.; Van Laere, S.; et al. The Evolution and Prognostic Role of Tumour-Infiltrating Lymphocytes and Peripheral Blood-
Based Biomarkers in Inflammatory Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers 2021, 13, 4656.
[CrossRef] [PubMed]

25. Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Shaw Wright, G.; et al.
Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [CrossRef]

26. Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; et al.
Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or
metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial.
Lancet 2020, 396, 1817–1828. [CrossRef]

27. Shepherd, J.H.; Ballman, K.; Polley, M.C.; Campbell, J.D.; Fan, C.; Selitsky, S.; Fernandez-Martinez, A.; Parker, J.S.; Hoadley, K.A.;
Hu, Z.; et al. CALGB 40603 (Alliance): Long-Term Outcomes and Genomic Correlates of Response and Survival After Neoadjuvant
Chemotherapy with or without Carboplatin and Bevacizumab in Triple-Negative Breast Cancer. J. Clin. Oncol. 2022, 40, 1323–1334.
[CrossRef]

28. Ghate, S.R.; Li, Z.; Tang, J.; Nakasato, A.R. Economic Burden of Adverse Events Associated with Immunotherapy and Targeted
Therapy for Metastatic Melanoma in the Elderly. Am. Health Drug Benefits 2018, 11, 334–343.

29. Fotakis, G.; Trajanoski, Z.; Rieder, D. Computational cancer neoantigen prediction: Current status and recent advances. Immuno-
Oncol. Technol. 2021, 12, 100052. [CrossRef]

30. Aznar, M.A.; Tinari, N.; Rullán, A.J.; Sánchez-Paulete, A.R.; Rodriguez-Ruiz, M.E.; Melero, I. Intratumoral Delivery of
Immunotherapy-Act Locally, Think Globally. J. Immunol. 2017, 198, 31–39. [CrossRef]

31. Marabelle, A.; Tselikas, L.; de Baere, T.; Houot, R. Intratumoral immunotherapy: Using the tumor as the remedy. Ann. Oncol.
2017, 28, xii33–xii43. [CrossRef]

32. Champiat, S.; Tselikas, L.; Farhane, S.; Raoult, T.; Texier, M.; Lanoy, E.; Massard, C.; Robert, C.; Ammari, S.; De Baère, T.; et al.
Intratumoral Immunotherapy: From Trial Design to Clinical Practice. Clin. Cancer Res. 2021, 27, 665–679. [CrossRef] [PubMed]

33. Melero, I.; Castanon, E.; Alvarez, M.; Champiat, S.; Marabelle, A. Intratumoural administration and tumour tissue targeting of
cancer immunotherapies. Nat. Rev. Clin. Oncol. 2021, 18, 558–576. [CrossRef] [PubMed]

34. Hamid, O.; Ismail, R.; Puzanov, I. Intratumoral Immunotherapy-Update 2019. Oncologist 2020, 25, e423–e438. [CrossRef]
[PubMed]

35. Sheen, M.R.; Fiering, S. In Situ Vaccination: Harvesting Low Hanging Fruit on the Cancer Immunotherapy Tree. Wiley Interdiscip.
Rev. Nanomed. Nanobiotechnol. 2018, 11, e1524. [CrossRef] [PubMed]

36. Alonso-Miguel, D.; Valdivia, G.; Guerrera, D.; Perez-Alenza, M.D.; Pantelyushin, S.; Alonso-Diez, A.; Beiss, V.; Fiering, S.;
Steinmetz, N.F.; Suarez-Redondo, M.; et al. Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against
canine inflammatory mammary cancer. J. Immunother. Cancer 2022, 10, e004044. [CrossRef]

37. Lizotte, P.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea
mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol. 2016, 11, 295–303. [CrossRef]

38. Kerstetter-Fogle, A.; Shukla, S.; Wang, C.; Beiss, V.; Harris, P.L.R.; Sloan, A.E.; Steinmetz, N.F. Plant Virus-Like Particle In Situ
Vaccine for Intracranial Glioma Immunotherapy. Cancers 2019, 11, 515. [CrossRef]

39. Cai, H.; Wang, C.; Shukla, S.; Steinmetz, N.F. Cowpea Mosaic Virus Immunotherapy Combined with Cyclophosphamide Reduces
Breast Cancer Tumor Burden and Inhibits Lung Metastasis. Adv. Sci. (Weinh) 2019, 6, 1802281. [CrossRef]

40. Wang, C.; Beiss, V.; Steinmetz, N.F. Cowpea Mosaic Virus Nanoparticles and Empty Virus-Like Particles Show Distinct but
Overlapping Immunostimulatory Properties. J. Virol. 2019, 93, e00129-19. [CrossRef]

41. Hoopes, P.J.; Wagner, R.J.; Duval, K.; Kang, K.; Gladstone, D.J.; Moodie, K.L.; Crary-Burney, M.; Ariaspulido, H.; Veliz, F.A.;
Steinmetz, N.F.; et al. Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation. Mol.
Pharm. 2018, 15, 3717–3722. [CrossRef]

42. Raposo, T.P.; Arias-Pulido, H.; Chaher, N.; Fiering, S.N.; Argyle, D.J.; Prada, J.; Pires, I.; Queiroga, F.L. Comparative aspects of
canine and human inflammatory breast cancer. Semin. Oncol. 2017, 44, 288–300. [CrossRef] [PubMed]

43. Marconato, L.; Romanelli, G.; Stefanello, D.; Giacoboni, C.; Bonfanti, U.; Bettini, G.; Finotello, R.; Verganti, S.; Valenti, P.;
Ciaramella, L.; et al. Prognostic factors for dogs with mammary inflammatory carcinoma: 43 cases (2003–2008). J. Am. Vet. Med.
Assoc. 2009, 235, 967–972. [CrossRef] [PubMed]

44. Clemente, M.; De Andrés, P.J.; Peña, L.; Pérez-Alenza, M.D. Survival time of dogs with inflammatory mammary cancer treated
with palliative therapy alone or palliative therapy plus chemotherapy. Vet. Rec. 2009, 165, 78–81. [CrossRef]

45. Mao, C.; Beiss, V.; Fields, J.; Steinmetz, N.F.; Fiering, S. Cowpea mosaic virus stimulates antitumor immunity through recognition
by multiple MYD88-dependent toll-like receptors. Biomaterials 2021, 275, 120914. [CrossRef] [PubMed]

46. Valdivia, G.; Alonso-Miguel, D.; Zimmermann, B.; Perez-Alenza, M.D.; Alonso-Diez, A.; Beiss, V.; Suárez-Redondo, M.; Fiering, S.;
Steinmetz, N.F.; vom Berg, J.; et al. Neoadjuvant in situ vaccination with cowpea mosaic virus induces local and systemic
antitumor efficacy in canine mammary cancer. 2022; manuscript in preparation.

47. Wang, C.; Steinmetz, N.F. A Combination of Cowpea Mosaic Virus and Immune Checkpoint Therapy Synergistically Improves
Therapeutic Efficacy in Three Tumor Models. Adv. Funct Mater. 2020, 30, 2002299. [CrossRef]

http://doi.org/10.3390/cancers13184656
http://www.ncbi.nlm.nih.gov/pubmed/34572883
http://doi.org/10.1056/NEJMoa1809615
http://doi.org/10.1016/S0140-6736(20)32531-9
http://doi.org/10.1200/JCO.21.01506
http://doi.org/10.1016/j.iotech.2021.100052
http://doi.org/10.4049/jimmunol.1601145
http://doi.org/10.1093/annonc/mdx683
http://doi.org/10.1158/1078-0432.CCR-20-0473
http://www.ncbi.nlm.nih.gov/pubmed/32943460
http://doi.org/10.1038/s41571-021-00507-y
http://www.ncbi.nlm.nih.gov/pubmed/34006998
http://doi.org/10.1634/theoncologist.2019-0438
http://www.ncbi.nlm.nih.gov/pubmed/32162802
http://doi.org/10.1002/wnan.1524
http://www.ncbi.nlm.nih.gov/pubmed/29667346
http://doi.org/10.1136/jitc-2021-004044
http://doi.org/10.1038/nnano.2015.292
http://doi.org/10.3390/cancers11040515
http://doi.org/10.1002/advs.201802281
http://doi.org/10.1128/JVI.00129-19
http://doi.org/10.1021/acs.molpharmaceut.8b00126
http://doi.org/10.1053/j.seminoncol.2017.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29526258
http://doi.org/10.2460/javma.235.8.967
http://www.ncbi.nlm.nih.gov/pubmed/19827983
http://doi.org/10.1136/vetrec.165.3.78
http://doi.org/10.1016/j.biomaterials.2021.120914
http://www.ncbi.nlm.nih.gov/pubmed/34126409
http://doi.org/10.1002/adfm.202002299


Cells 2022, 11, 2850 11 of 11

48. Goldstein, D.A. Adjuvant Ipilimumab for Melanoma—The $1.8 Million per Patient Regimen. JAMA Oncol. 2017, 3, 1628–1629.
[CrossRef]

49. Ray, A.; Williams, M.A.; Meek, S.M.; Bowen, R.C.; Grossmann, K.F.; Andtbacka, R.H.; Bowles, T.L.; Hyngstrom, J.R.;
Leachman, S.A.; Grossman, D.; et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced
melanoma. Oncotarget 2016, 7, 64390–64399. [CrossRef]

50. Huppert, L.A.; Mariotti, V.; Chien, A.J.; Soliman, H.H. Emerging immunotherapeutic strategies for the treatment of breast cancer.
Breast Cancer Res. Treat. 2022, 191, 243–255. [CrossRef]

51. Huang, A.; Pressnall, M.M.; Lu, R.; Huayamares, S.G.; Griffin, J.D.; Groer, C.; DeKosky, B.J.; Forrest, M.L.; Berkland, C.J. Human
intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials. J. Control. Release 2020, 326, 203–221.
[CrossRef]

52. Sheth, R.A.; Murthy, R.; Hong, D.S.; Patel, S.; Overman, M.J.; Diab, A.; Hwu, P.; Tam, A. Assessment of Image-Guided Intratumoral
Delivery of Immunotherapeutics in Patients With Cancer. JAMA Netw. Open 2020, 3, e207911. [CrossRef]

53. O’Day, S.; Perez, C.; Wise-Draper, T.; Hanna, G.; Bhatia, S.; Kelly, C.; Medina, T.; Laux, D.; Daud, A.; Chandra, S.; et al. 423 Safety
and preliminary efficacy of intratumoral cavrotolimod (AST-008), a spherical nucleic acid TLR9 agonist, in combination with
pembrolizumab in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, A257–A258.

54. Carroll, C.S.E.; Andrew, E.R.; Malik, L.; Elliott, K.F.; Brennan, M.; Meyer, J.; Hintze, A.; Almonte, A.A.; Lappin, C.;
MacPherson, P.; et al. Simple and effective bacterial-based intratumoral cancer immunotherapy. J. Immunother. Cancer 2021, 9,
e002688. [CrossRef] [PubMed]

55. Stinson, J.; Sheen, A.; Momin, N.; Hampel, J.; Bernstein, R.; Kamerer, R.; Samuelson, J.; Selting, K.; Fan, T.M.; Wittrup, K.D.
Abstract nr 4171: Treatment of canine soft tissue sarcomas and melanomas with intratumoral colla-gen-anchored IL-2 and IL-12 is
safe and effective [Abstract]. In Proceedings of the 97th Annual Meeting of the American Association for Cancer Research, New
Orleans, LA, USA, 8–13 April 2022; AACR: Philadelphia, PA, USA, 2022.

56. Soliman, A.; Banerjee, M.; Lo, A.; Ismail, K.; Hablas, A.; Seifeldin, I.; Ramadan, M.; Omar, H.; Fokuda, A.; Harford, J.; et al. High
proportion of inflammatory breast cancer in the Population-based Cancer Registry of Gharbiah, Egypt. Breast J. 2009, 15, 432–434.
[CrossRef] [PubMed]

57. Slaoui, M.; Zoure, A.A.; Mouh, F.Z.; Bensouda, Y.; El Mzibri, M.; Bakri, Y.; Amrani, M. Outcome of inflammatory breast cancer in
Moroccan patients: Clinical, molecular and pathological characteristics of 219 cases from the National Oncology Institute (INO).
BMC Cancer 2018, 18, 713. [CrossRef]

58. Manai, M.; Finetti, P.; Mejri, N.; Athimni, S.; Birnbaum, D.; Bertucci, F.; Rahal, K.; Gamoudi, A.; Chaffanet, M.; Manai, M.; et al.
Inflammatory breast cancer in 210 patients: A retrospective study on epidemiological, anatomo-clinical features and therapeutic
results. Mol. Clin. Oncol. 2019, 10, 223–230. [CrossRef]

59. Propper, D.J.; Balkwill, F.R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 2022, 19, 237–253.
[CrossRef]

60. Momin, N.; Mehta, N.K.; Bennett, N.R.; Ma, L.; Palmeri, J.R.; Chinn, M.M.; Lutz, E.A.; Kang, B.; Irvine, D.J.; Spranger, S.; et al.
Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl.
Med. 2019, 11, eaaw2614. [CrossRef]

61. Momin, N.; Palmeri, J.R.; Lutz, E.A.; Jailkhani, N.; Mak, H.; Tabet, A.; Chinn, M.M.; Kang, B.H.; Spanoudaki, V.; Hynes, R.O.; et al.
Maximizing response to intratumoral immunotherapy in mice by tuning local retention. Nat. Commun. 2022, 13, 109. [CrossRef]

62. Torres, E.T.R.; Emens, L.A. Emerging combination immunotherapy strategies for breast cancer: Dual immune checkpoint
modulation, antibody–drug conjugates and bispecific antibodies. Breast Cancer Res. Treat. 2022, 191, 291–302. [CrossRef]

63. Howard, F.M.; Pearson, A.T.; Nanda, R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res. Treat.
2022, 195, 1–15. [CrossRef] [PubMed]

64. Hall, P.E.; Schmid, P. Emerging strategies for TNBC with early clinical data: New chemoimmunotherapy strategies. Breast Cancer
Res. Treat. 2022, 193, 21–35. [CrossRef] [PubMed]

http://doi.org/10.1001/jamaoncol.2017.3123
http://doi.org/10.18632/oncotarget.10453
http://doi.org/10.1007/s10549-021-06406-1
http://doi.org/10.1016/j.jconrel.2020.06.029
http://doi.org/10.1001/jamanetworkopen.2020.7911
http://doi.org/10.1136/jitc-2021-002688
http://www.ncbi.nlm.nih.gov/pubmed/34531247
http://doi.org/10.1111/j.1524-4741.2009.00755.x
http://www.ncbi.nlm.nih.gov/pubmed/19601951
http://doi.org/10.1186/s12885-018-4634-9
http://doi.org/10.3892/mco.2018.1773
http://doi.org/10.1038/s41571-021-00588-9
http://doi.org/10.1126/scitranslmed.aaw2614
http://doi.org/10.1038/s41467-021-27390-6
http://doi.org/10.1007/s10549-021-06423-0
http://doi.org/10.1007/s10549-022-06665-6
http://www.ncbi.nlm.nih.gov/pubmed/35834065
http://doi.org/10.1007/s10549-022-06547-x
http://www.ncbi.nlm.nih.gov/pubmed/35235095

	The Clinical Burden of IBC 
	The Urgency of Applying Novel Efficacious and Economically Available Therapies against IBC 
	Can We Achieve Good Clinical Responses and Improve Outcomes with Low Biologic and Economic Toxicity for IBC Patients? 
	What Other Immunotherapies Could Be Applied with ISV to IBC Patients? 
	Conclusions 
	References

