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ABSTRACT

Methylation is a common modification encountered
in DNA, RNA and proteins. It plays a central role in
gene expression, protein function and mRNA trans-
lation. Prokaryotic and eukaryotic class | translation
termination factors are methylated on the glutamine
of the essential and universally conserved GGQ
motif, in line with an important cellular role. In eu-
karyotes, this modification is performed by the
Mtq2-Trm112 holoenzyme. Trm112 activates not
only the Mtg2 catalytic subunit but also two other
tRNA methyltransferases (Trm9 and Trmi1). To
understand the molecular mechanisms underlying
methyltransferase activation by Trm112, we have
determined the 3D structure of the Mtq2-Trm112
complex and mapped its active site. Using site-
directed mutagenesis and in vivo functional experi-
ments, we show that this structure can also serve as
a model for the Trm9-Trm112 complex, supporting
our hypothesis that Trm112 uses a common
strategy to activate these three methyltransferases.

INTRODUCTION

Methylation is a widespread modification occurring on a
large variety of substrates. Among these, components
linked to protein synthesis (rRNA, tRNA, ribosomal
proteins and translational factors) seem to be over-
represented (1,2). In most instances, this modification is
catalysed by S-adenosylmethionine- (SAM)-dependent
methyltransferases (MTases), whose larger family (class I)

consists of a seven-stranded B-sheet surrounded by helices
on each side (3). The fold of the members of this family is
well conserved despite little sequence identity.

Among the various substrates of protein MTases
identified so far, the universally conserved GGQ motif
found in class I translation termination factors is of par-
ticular interest. This motif becomes N5-methylated on the
glutamine (Gln) side chain in both prokaryotes and eu-
karyotes (4,5), although the factors from these two
kingdoms are structurally unrelated (6,7). These proteins
(RF1 and RF2 in bacteria and eRF1 in eukaryotes) rec-
ognize stop codons entering the ribosomal A-site and
induce the hydrolysis of the ester bond connecting the
newly synthesized polypeptide to the P-site tRNA (8).
Hydrolysis is catalysed by the peptidyl transferase centre
(PTC) of the large ribosomal subunit and this step
requires the entry of the GGQ motif into the PTC (9-11).

In Escherichia coli, the MTase PrmC catalyses the Gln
modification (12,13). PrmC comprises two domains:
an N-terminal five-helix bundle connected by a short
B-hairpin to a large C-terminal domain characteristic of
the class I SAM-dependent MTases (14,15). The crystal
structure of the complex between E. coli RF1 and PrmC
has revealed that this MTase is specific for the closed form
of RF1 (14). This methylation is clearly necessary for ef-
ficient bacterial translation termination in vivo, since prmC
inactivation reduces the specific termination activity of
RFs 3- to 4-fold. In E. coli, K12 strains, which carry a
mutation reducing RF2 activity, lack of methylation is no
longer compatible with normal cell growth. In strains with
normal RF2 activity, prmC inactivation considerably
reduces growth on poor carbon sources, suggesting that
lack of RF methylation limits the synthesis of some
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proteins that are important under such conditions (16).
Similar results were obtained in vitro, where the efficiency
of termination with unmethylated RF2 is at least three
times lower than with methylated (4). Recent high-
resolution crystal structures of 70S ribosome termination
complexes bound with RF1 or RF2 and mRNA contain-
ing a stop codon have revealed the mechanism of stop
codon recognition and the concomitant strict coordin-
ation of peptidyl-tRNA hydrolysis (10,11,17). The struc-
ture of RF1 bound to a pre-termination complex revealed
that the Gln side chain from the GGQ motif may directly
coordinate the catalytic water molecule through its
carbonyl oxygen, confirming previous molecular dynamics
studies (10,18). Methylation of this side chain would sta-
bilize the entire hydrogen bonding network within the
PTC and improve RF1/RF2 affinity for the ribosome by
increasing hydrophobic interactions (10), rationalizing
previous in vitro experiments showing that over-expressed
RF2 had a lower affinity to the ribosome than the
methylated factor (19).

Methylation of the GGQ motif is conserved in both
Saccharomyces cerevisiae and mammalian eRF1 proteins
(5,20). This modification is performed by a heterodimeric
holoenzyme: Mtq2/Trm112, Pred28a (N6amtl)/mTrm112
and HEMK2a/hTRM112 in yeast, mouse and man, re-
spectively (hereafter referred to as Mtq2-Trm112)
(5,20,21). In this complex, the Mtq2 subunit binds the
SAM cofactor and catalyses methyl transfer while the
Trm112 partner stabilizes and activates Mtq2 (21,22).
Trm112 is a small protein composed of two domains: a
conserved zinc-binding domain formed by both N- and
C-terminal extremities and a central helical domain
specific to eukaryotes (22). The Mtq2-Trm112 substrate
is the eRF1-eRF3-GTP (or any non-hydrolysable GTP
analogue) complex, where eRF3 is the class II release
factor of the translational GTPase family, which assists
eRF1 in peptide release by inducing a rearrangement of
the termination complex upon GTP hydrolysis (22-24). As
in prokaryotes, the role of this methylation seems to be
associated with the ribosome environment, since methyla-
tion should not affect the intrinsic structure of eRF1 (25).
Deletion of the MTQ2 gene in S. cerevisiae affects growth
(2-fold decrease in growth rate at 30°C) and leads to sen-
sitivity to the antibiotic paromomycin, implying a trans-
lation defect related to ribosomal A site function (26)
(V.H.H. and S.F., unpublished results). In addition, in-
activation of the murine N6éamtl gene leads to early em-
bryonic lethality probably due to cell cycle defects (20).
The S. cerevisiae trm112-A strains are sicker than mtg2-A
strains, indicating that Trm112 has additional functions
(27) (V.H.H. and S.F., unpublished results). In parallel,
inactivation of SMO2, encoding the Trm112 homolog in
Arabidopsis thaliana, leads to a defect in progression of
cell division and organ growth (28).

Besides Mtq2, Trm112 interacts with and activates two
other MTases: Trm9 and Trm11 (22,27,29-32). The Trm9-
Trm112 complex catalyses the addition of a methyl group
to uridine at wobble position lSU34% of some tRNAs
(tRNAARCGUCY) and tRNACLYWUUO) (33 34). These
modified tRNAs are the specific targets of zymocin, a
tRNAse toxin secreted by Kluyveromyces lactis (35).

Consequently, disruption of TRM9 or TRM112 genes
renders strains resistant to that toxin (36). In addition,
yeast Trm9 has been implicated in cell death protection
by enhancing the translation of DNA damage response
key proteins (37). The Trm11-Trm112 complex methylates
guanine at position 10 on several yeast tRNAs, forming
2-methylguanosine (30,31).

To gain insight into the role of Trm112 in the activation
of these three MTases, we have solved the crystal structure
of eukaryotic Mtq2-Trm112 MTase bound to its cofactor
SAM and performed in vitro biochemical analysis of
mutants as well as in vivo studies. This has allowed us to
identify an activation mechanism and to propose a model
explaining the need for GTP in the methylation reaction.
In addition, in vivo mutational analysis supports the idea
that yeast Trm9 interacts with Trm112 in a similar way as
Mtq2, rationalizing the role of Trm112 as an activating
platform for several MTases.

MATERIALS AND METHODS

Cloning, mutagenesis, expression and purification of
proteins

Genes encoding  Encephalitozoon  cuniculi  (Ec)-Mtq2
(UniProtKB entry: Q8SRR4), eRF1 and eRF3 were
cloned from Ec-GB-M1 genomic DNA (generous gift from
Prof. Vivares, Université Blaise Pascal, Clermont-Ferrand,
France) into pET9 plasmids with a C-terminal hexahistidine
tag. In parallel, a DNA sequence was designed to encode
Ec- Trm112 (UniProtKB entry: Q8SUPO0) and Mtq2 with a
C-terminus His-tag. This fragment was obtained by de novo
gene synthesis (GenScript Corporation, Piscataway, NIJ,
USA) and was further subcloned into pET21-a between
Ndel and Xhol sites. Expression of the His-tagged
Mtq2-Trm112 complex was done in E. coli BL21 (DE3)
Gold strain (Novagen). The 800 ml of culture in 2xYT
medium (BIO101 Inc.) containing ampicillin at 50 pg/ml
were incubated at 37°C until an OD600 of about 0.6-0.8
and induced with IPTG 0.5mM final at 28°C for 4 h. The
cells were harvested by centrifugation, resuspended in
40ml of 20mM Tris—HCI, pH 7.5, 200mM NaCl, 5mM
B-mercaptoethanol (buffer A) and stored at —20°C. Cell
lysis was achieved by sonication. His-tagged complex was
purified on a nickel-nitrilotriacetic acid column (Qiagen
Inc.) followed by gel filtration on a SuperdexTM 75 (16/
60) column (GE Healthcare) equilibrated in buffer A.

Plasmids used for over-expression of yeast proteins were
mutagenized following Quick change mutagenesis
protocol (Stratagen) and sequenced. Expression and puri-
fication of S. cerevisiae and human proteins were done as
described previously (21,22).

Yeast strain construction

Genomic cassette insertion through homologous recom-
bination was used for C-terminus epitope-tagging in
yeast according to published protocol (38). Point muta-
tions in Trm9-13Myc encoding gene sequence were also
introduced by cassette insertion through homologous re-
combination (39). Detailed experimental procedure is
described in Supplementary Data.
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Co-immunoprecipitation and western blot

Soluble protein extracts were prepared by the glass bead
method starting from 10® to 10° mid-log growing cells.
Cells were washed once in water and pellets were frozen
in liquid nitrogen and then stored at —20°C. Cells were
thawed and resuspended in ice-cold breaking buffer
(50mM  Tris=HCI, pH 7.5, 150mM NaCl, 20mM
MgCl,, SmM EDTA, 1% NP-40) supplemented with
Complete EDTA-free anti-protease cocktail (Roche
Diagnostics). After addition of acid-washed glass beads,
cells were lysed by 5 pulses of vortexing for 30 s separated
by cooling intervals on ice. Soluble fractions were col-
lected after centrifugation for 20min at 4°C at
13000 rpm. Based on Bradford assay, 500 pug of proteins
were incubated with mouse monoclonal 9E10 anti-myc
antibody (Santa Cruz Biotechnology) for 1h on ice.
Immune complexes were then incubated for 30min at
4°C on a rotating wheel after addition of protein
G-agarose (Sigma). Agarose beads were washed four
times in breaking buffer. The final pellet was resuspended
in cracking buffer (40 mM Tris—HCI, pH 6.8, 8 M Urea,
5% SDS, 0.1 mM EDTA, 1% B-mercaptoethanol, 0.04%
Bromophenol Blue) (40) and boiled for protein release
from beads. Proteins from starting soluble fraction and
from final supernatant were resolved on a 15% polyacryl-
amide gel and transferred onto Protran nitrocellulose
membrane (Whatman). Probing was performed using
either mouse 9E10 anti-myc or 12CAS5 anti-HA (Santa
Cruz Biotechnology) as primary antibody (1/500) and
sheep anti-mouse HRP-conjugated IgG as secondary
antibody (1/3000, GE HealthCare). Immunoblots were
developed using ECL (GE HealthCare).

Zymocin killer assay

This assay was performed as previously described (41).
Procedure is described in Supplementary Data.

Crystallization and structure solution

Thin needle crystals were grown at 19°C from a 0.1:0.1 pl
mixture of 7mg/ml complex solution with a crystallization
solution containing 20% poly ethylene glycol (PEG) 4000,
10% isopropanol, 100mM HEPES (pH 7.5). For data
collection, the crystals were transferred into a cryoprotect-
ant crystallization solution with progressively higher
ethylene glycol concentrations up to 30% v/v. The
datasets were collected at the Zn-edge on beam line
Proxima-1 (SOLEIL, St-Aubin, France). The structure
was determined by the SAD method (Single wavelength
Anomalous Dispersion) using the anomalous signal from
the Zn element (see Supplementary Data for details).
The final model contains all the Mtq2 residues (from
Metl to Serl64) as well as residues 1-32 and 36-125
from Trm112, which are well defined in electron density.
In addition, one zinc atom, one SAM molecule and 136
water molecules have been modelled. Statistics for data
collection and refinement are summarized in
Supplementary Table S1. The atomic coordinates and
structure factors have been deposited into the
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Brookhaven Protein Data Bank under the accession
number 3Q87.

In vitro methylation assay

Methylation assays were done as described previously by
incubating eRFI1, ¢eRF3 and GTP with Mtq2-Trm112
complex in presence of [PH] SAM (22).

SAM-binding to human Mtq2 (Hs-Mtq2)

An equimolar amount of Hs-Trm112 was added to par-
tially purified Hs-Mtq2 (corresponding approximately to
100 pmol) and 0.5pul of [*’H] SAM (78 Ci/mmol, Perkin
Elmer) in 50 pl final volume methylation buffer for 15 min
at 30°C. Reaction was stopped by filtration through nitro-
cellulose filters (0.45 um HAWP02500 Millipore) followed
by washing with methylation buffer. Radioactivity on
filter then represents an amount of SAM bound to
Hs-Mtq2. Controls with Hs-Trm112 alone showed very
low background fixation. We checked by western blot
that Hs-Trm112 was not increasing binding of Hs-Mtq2
itself to the filter, increasing artifactually SAM-binding.

RESULTS
Crystal structure

To understand the molecular basis responsible for the
interaction between Mtq2 and Trm112, we have crystal-
lized the Mtq2-Trm112 complex from the small parasite
E. cuniculi (Ec-Mtq2-Trm112, see ‘Cloning, mutagenesis,
expression and purification of proteins’ for more details).
We took advantage of the presence of a zinc atom bound
to Trm112 as observed for the S. cerevisiae protein (22) to
solve the structure of this complex by the SAD method
using the zinc anomalous signal. The final model has been
refined to 2.1 A resolution and contains one Mtq2-
Trm112 heterodimer in the crystal asymmetric unit
(Figure 1A, Supplementary Table S1 and Figure S1 for
electron density map). Although we did not pre-incubate
the Mtq2-Trm112 complex with SAM for the crystalliza-
tion experiments, an unambiguous electron density corres-
ponding to a SAM molecule is present in its expected
binding site, indicating that this ligand was co-purified
with the complex. SAM is bound at the C-terminal face
of the Mtq2 central B-sheet and interacts exclusively with
residues from Mtq?2.

Mtq2 adopts the typical class I SAM-dependent MTase
fold composed of a central seven-stranded B-sheet (strand
order: B31P21B11B41B51B74P61) surrounded by three
a-helices (a1-a3) on one side and two (¢4 and a5) on
the other (42). A search for proteins with similar three-
dimensional structure [program DALI (43)] identified the
C-terminal domain MTase from the PrmC/HemK as the
best hit (Z-score = 18.5; RMSD of 2.2 A over 159 Cua
atoms, 19% sequence identity) (14,44). Interestingly, this
enzyme performs the same chemical reaction as Mtq2,
since it modifies the Gln side chain of the GGQ motif
from bacterial release factors RF1 and RF2. The bacterial
PrmC MTases are formed by an N-terminal helical
domain and a C-terminal MTase domain connected by a
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Figure 1. Mtq2 activation by Trm112. (A) Ribbon representation of
the E. cuniculi Mtq2 (blue)-Trm112 complex. The Trm112 zinc-binding
and central domains are shown in pink and green, respectively. The
purple sphere depicts the zinc atom bound to Trml12. The SAM
cofactor bound to Mtq2 is shown as yellow sticks. Secondary structure
elements are indicated. Labels in italics correspond to Trmll12.
(B) Activation loop. Same colour code as panel (A). The loop connect-
ing strands B3 to B4 from Mtq2 is shown in grey. Black dashed lines
depict hydrogen bonds. The SAM cofactor bound to Mtq2 is shown as
yellow ball and sticks. (C) Effect of HsTrml112 on SAM-binding by
HsMtq2. The lower SAM-binding activity observed for the complex
formed by the two proteins purified separately is probably due to the
instability of the HsMtq2 protein. Hence, contrary to the co-expressed
and copurified HsMtq2-Trm112 complex, which is very stable, a
significant fraction of HsMtq2 should not be functional in this assay.

short B-hairpin. As anticipated by sequence analysis (5),
only the MTase domain is present in Mtq2. In proteins
from both kingdoms, these domains are very similar and
bind the SAM/S-adenosyl-L-homocysteine (SAH) cofactor
in the same way.

The Ec-Trm112 protein is composed of two domains: a
zinc-binding domain formed by both N- and C-terminal
extremities and a central domain. Its overall structure is
very similar to yeast Trm112 [Z-score = 9.3 and global
RMSD of 2.9 A over 102 Ca atoms, 18% sequence

identity; Supplementary Figure S2A, (22)]. The zinc-
binding domain consists of an a-helix packed onto a
four-stranded antiparallel PB-sheet (RMSD with the
equivalent domain from yeast Trm112 of 1.4 A over 57
Ca atoms, 30% sequence identity). Similarly, to yeast
Trm112, four cysteine residues coordinate the zinc atom.
The central domain is a four-helix bundle in the E. cuniculi
protein but it is less similar to yeast Trm112 (three-helix
bundle) than the zinc-binding domain (RMSD of 3.4 A
over 42 Ca atoms, 5% sequence identity). In this domain,
only helices o3 and o4 from Ec-Trm112 match with the
equivalent helices from yeast Trm112. Helix o2 from the
yeast protein structurally matches with the eclongated
stretch preceding helix o2 in Ec-Trm112. Helix o3’ from
Ec-Trm112 corresponds to the linker connecting helices a3
and o4 in yeast protein. Another important difference
between the E. cuniculi and yeast Trml12 structures
resides in the orientation of the last ten C-terminal
residues that are relatively well conserved. This region
was proposed to be part of the homodimer interface in
yeast Trm112 and this has since been confirmed by
site-directed mutagenesis (data not shown). In the
present Mtq2-Trm112 complex, this region cannot adopt
the same conformation and folds back onto Trml12
strand B3 to avoid important steric  clashes
(Supplementary Figure S2B).

Mtq2-Trm112 interface

In the complex, Mtq2 binds mainly to the zinc-binding
domain from Trm112 via a B-zipper interaction between
Mtq2 strand 3 and Trm112 strand 4 that are associated
in a parallel manner (Figure 1A). As a consequence, their
B-sheets form a continuous large eleven-stranded p-sheet.
Additional contacts are also made by residues from
the loop connecting strands 3 to f4 in Mtq2 with helix
al and the al-Bl loop from Trml12 (Supplementary
Figures S3A-C, S4 and S5). The complete interface
buries a total solvent accessible surface area of 2000 AZ
and contains 12 hydrogen bonds, clustered in two regions
(see Supplementary Table S2). H-bonds at the B-zipper
interface are mostly realized between main chain atoms
from both partners (Supplementary Figure S3A).
Additional H-bonds occur between residues from loop
connecting B1 to o2 in Trm112 and from loop B3-B4 in
Mtq2 (Supplementary Figure S3B). Non-polar atoms clus-
tered at the centre of this contact area provide two-thirds
of the interface (Supplementary Figure S3B-C). This is
indeed illustrated by the strictly conserved Ile'*’
(S. cerevisiae numbering) from Trm112 strand B4. Its sub-
stitution by an aspartic residue results in complete inacti-
vation without disrupting the Mtq2-Trm112 complex
(Table 1). A few contacts also exist between strand B2 as
well as the B3—p4 loop in Mtq2 and the loop connecting 1
to o2 from the Ec-Trml112 central domain. Helix o2
in yeast Trm112 matches with the region corresponding
to the Ec-Trm112 Bl-a2 loop and hence is predicted to
be important for Mtq2-Trm112 complex formation
(Supplementary Figure S3C). This is supported by experi-
ments showing that the yeast complexes containing yeast
Trm112 single point mutants F46D and RS53E are less
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Table 1. Effect of Mtq2 and Trm112 mutants on eRF1 methylation
in vitro

eRF1 MTase
activity (%)

Trm112 mutants

N43R (D36) 58+ 6 Located in
F46D (139) 0 Ec-Trm112-Mtq2
RS3E (T46) 0 interface
1125D (1115) 0
A106E (196) 59 + 11 Outside from
E107K (E97) 61 +£3 Ec-Mtq2-Trm112
I118E (1108) 51+8 interface
Y120E (P110) 74 £ 3
NI123R (G113) 58+1
Mtq2 mutants
El16K (ES) 15+£3 Active site
YI15F (Y4) 0
EI9K (ES) 0
D20N (D9) 0
F22A (Y11) 0
D26K/E29K (DI5/EIS8) 0
NI122A (N8S5) 0
R207A (RI149) 6.5+ 2.1

R207E (RI49) <
E212K (EI54) 65+ 6

D77A (D51) 0
DI06A/LI07A (D69/L70) 0

SAM binding

All these Mtq2 mutants were co-expressed with wild-type Sc-Trm112 in
E. coli and purified using standard protocols. With the exception of the
F22A mutant, none of these mutations affected significantly complex
formation, solubility and CD spectra (data not shown). Although its
CD spectrum was comparable to that of wild-type complex, the Mtq2
(F22A)-Trm112 mutant complex was less stable than wild-type
complex. The eRF1 MTase activity of each complex is expressed as a
percentage of activity obtained with wild-type enzyme. Absolute
activities were measured at least in triplicate, as the initial velocity of
the reaction (pmol of eRF1 methylated by second). The E. cuniculi
numbering is indicated in parenthesis.

soluble and stable than the wild-type complex and have
lost eRF1 MTase activity (Table 1). In addition, superpos-
ition of yeast Trm112 onto our structure of the complex
suggests that additional contacts could occur between
helix o2 from Sc-Trm112 and the N-terminal face of the
Mtq2 B-sheet as it faces two loops (connecting ol to B1
and o2 to B2) that are predicted to be longer in other
organisms such as S. cerevisiae than in E. cuniculi. This
is supported by the N43R mutant, which has decreased
eRF1 MTase activity (Supplementary Figure S3C and
Table 1).

Trm112 enhances SAM-binding by Mtq2

Trm112 is needed to solubilize and activate Mtq2 in yeast
(22). Similarly, human Mtq2 (Hs-Mtq2) protein performs
eRF1 methylation only after incubation with human
Trm112 (21). In order to understand the mechanism of
Mtq?2 activation by Trm112, we used the structure of the
complex to examine the effect of site-directed mutations.
Our strategy is based upon two important observations.
First, Trm112 shields from the solvent a large hydropho-
bic surface from Mtq2 by using a hydrophobic region that
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is involved in yeast Trm112 homodimer formation, ex-
plaining why Trm112 solubilizes Mtq2 (Supplementary
Figure S3D-E), (22). Second, the loop connecting
strands B3-B4 in Mtq2, which is largely involved in the
interaction with Trm112, is also involved in SAM-binding
(Figure 1B). This led us to speculate that although it does
not interact directly with SAM, Trm112 may stabilize this
loop in a conformation allowing Mtq2 to bind more
tightly the SAM cofactor. In particular, the Asp® side
chain and Leu’® main chain amide groups from this
loop are hydrogen-bonded to the adenine moiety of
SAM. We have therefore assessed the importance of
these two residues for MTase activity by site directed mu-
tagenesis of the corresponding residues in yeast Mtq2
protein (Asp'%/Leu'®”). Co-expression of this double
mutant (D106A/L107A) with Trm112 yielded soluble
complex, indicating that these mutations do not prevent
complex formation. Similarly to the D77A mutant (Asp’!
in E. cuniculi), a mutation known to disrupt SAM-binding
by MTases, the D106A/L107A, a double mutant is com-
pletely unable to methylate eRF1 (Table 1). We next took
advantage of the fact that Hs-Mtq2, in contrast with
Sc-Mtq2, can be purified in low amounts following
over-expression in E. coli in the absence of Hs-Trm112
(21). Although this protein is well folded according to
circular dichroism experiments (data not shown), it is
unable to methylate eRF1 on its own (21). This could
be due to its intrinsically low SAM-binding activity
(Figure 1C). Incubation of this protein with an equimolar
amount of Hs-Trm112 resulted in restoration of SAM-
binding activity (Figure 1C). It is noteworthy that
Hs-Trm112 is more efficient when co-expressed with
Hs-Mtqg2 than upon incubation of the separately purified
proteins (Figure 1C). Hence, at least for human proteins,
Trm112 strongly stimulates SAM-binding to Mtq2, a
prerequisite for enzymatic activity.

MTase active site

Mapping of sequence conservation at the surface of the
Mtq2-Trm112 heterodimer clearly identifies a strongly
conserved patch centred on the SAM methyl group
as an excellent candidate for the Mtq2 active site
(Figure 2A). In addition, the absence of longer loops in
orthologous proteins within this putative active site led us
to speculate that this structure is an excellent template for
the design of mutants from yeast Mtq2 that will affect
eRF1 MTase activity.

Superposition of the PrmC-RF1 and Mtq2-Trm112
complexes shows that this conserved region corresponds
to the bacterial PrmC active site (14). In particular, the
Asn-Pro-Pro-Tyr (NPPY) signature found in PrmC but
also in DNA N6-adenine and N4-cytosine MTases mod-
ifying nitrogens conjugated to planar systems such as an
amide group or a nucleotide base (3), matches perfectly
the corresponding signature in Mtq2 (Figure 2B). In the
complex between PrmC and RF1, this motif forms
H-bonds with the Gln side chain of the GGQ motif and
positions it ideally for subsequent methylation (14,15).
As observed for bacterial PrmC, the Asn'?* (Asn® in
Ec-Mtq2) side chain in this NPPY signature is crucial
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GGQ motif
B

Figure 2. Mtq2 active site. (A) Mapping of the sequence conservation at the surface of the Mtq2-Trm112 complex. The RF1 peptide containing the
GGQ motif (yellow) has been modelled by superimposing the PrmC-RF1 complex onto Mtq2-Trm112 structure. Colouring is from cyan (highly
conserved) to grey (low conservation). (B) Stereo view of the comparison of the Mtq2-Trm112 (blue) and PrmC active sites. The RF1 GGQ motif
is shown as pink sticks. The PrmC MTase domain and the linker connecting N-terminal to MTase domains are coloured yellow and orange,
respectively. The SAM molecule bound to Mtq2 is shown as green sticks. Hydrogen bonds involved in coordination of the RF1 GGQ motif by PrmC
are depicted by dashed lines (14). For clarity, only EcMtq2 residue numbers are indicated. (C) Mapping of the electrostatic potential at the surface of
the Mtq2-Trm112 complex. Positively (10kT/e™) and negatively (—10kT/e™) charged regions are coloured in blue and red, respectively. Neutral
regions are in white. The orientation is the same as in panel (A). (D) Mapping of the Mtq2 and Trm112 residues important for eRF1 methylation in
yeast. Mutants affecting partially (>50%), moderately (between 10% and 50%) or completely (<10%) eRFI1 methylation are coloured in yellow,
orange and red, respectively. The Mtq2 and Trm112 proteins are coloured pink and beige, respectively. Same orientation as panel (A). (E) Model of
the eRF1-eRF3-GTP complex. The eRF1 GGQ motif is shown in sticks. For clarity, only the central domain from eRF1 is shown (purple). The
GTPase, II and 11T domains from eRF3 are coloured grey, light green and dark green, respectively. The eRF3 switch regions I and II are coloured
orange and blue, respectively. The GTP bound to eRF3 is shown as grey sticks. This model has been generated by superimposing the eRF3 GTPase
domain and the eRF1 central domain onto the corresponding domains from the recently solved crystal structure of archaeal Pelota/
Dom34-aEF1a-GTP complex (6,24,49). As the switch regions from GTPases are known to adopt the same conformation in the GTP form, we
have assumed that the switch regions from aEF 1o and eRF3 are similar in the GTP form to model the conformation of this region in the eRF3 GTP
bound form. Residues are labelled according to S. cerevisiaze numbering. (F) Superimposition of E. coli RImA(I) (grey) onto Mtq2-Trml12
heterodimer (same colour code as Figure 1A). The residues from RImA(I) and Trm112 involved in zinc coordination are depicted as sticks. The
SAM molecule bound to Mtq2 is shown as yellow sticks. The zinc atoms bound to RImA(I) and Trm112 are depicted as grey and purple spheres,
respectively.



for eRF1 methylation as its substitution by Ala completely
abolishes yeast Mtq2 MTase activity (Table 1). We further
focused our attention on two strictly conserved residues
(Tyr* and Asp’ in Ec-Mtq2, Tyr'> and Asp® in yeast)
from the N-terminal part of Mtq2 that may participate
directly in the coordination of the GGQ motif from
eRF1, according to the superposition of the crystal struc-
ture of PrmC-RF1 complex onto Mtq2 protein. Both
residues are hydrogen-bonded via their side chains and
the aromatic ring from Tyr'> packs onto the methyl
sulfonio group of the SAM molecule. In order to
analyze their role in eRF1 methylation, we have per-
formed conservative substitution of these residues. The
Tyr' side chain was replaced by Phe (Y15F), a substitu-
tion that should not much affect SAM-binding. Asp>® was
replaced by the isosteric Asn side chain (D20N). Both
mutants proved to be completely inactive (Table 1).

In addition, this conserved region displays a negative
electrostatic potential that very likely compensates for
the positive electrostatic potential surrounding the eRF1
GGQ motif (Figure 2C). We generated several charge in-
version mutants of negatively charged residues from this
highly conserved putative active site: E16K, E19K, D26K/
E29K and E212K (for clarity, yeast numbering is used
in this section unless specifically stated). We also tested
the following substitutions: F22A, R207A and R207E.
Activity measurements show that all the strictly conserved
residues located along the solvent exposed face of Mtq2
helix al (Glu', Phe*’, Asp®® and Glu*) are crucial
for eRF1 methylation, suggesting that this helix is
directly involved in substrate recognition (Table 1). This
structure-based site-directed mutagenesis approach maps
the Mtq2-Trm112 active site to a highly conserved and
negatively charged region. This is particularly interesting,
since a model of the S. cerevisiae eRF1-eRF3-GTP
complex shows that the eRF1 GGQ motif is surrounded
by highly conserved and basic residues (see ‘Discussion’
section).

Three additional Mtq2 mutants of solvent-exposed
residues affect significantly eRF1 methylation. These are
E16K from the loop preceding helix ol as well as R207A
and R207E from strand B6. These residues are located on
both sides of helix a1 and hence define a relatively large
substrate-binding site. Other mutated positions from
Mtq2 (E212K) and Trml112 (A106E, E107K, II118E,
Y120E and NI23R) affect only partially (50-75%)
MTase activity (Table 1). This notably suggests that
Trm112 may also participate in substrate binding by this
heterodimeric MTase.

The structure of the Mtq2-Trm112 complex can serve
as a model for the Trm9-Trm112 complex

Trm112 interacts with and activates three class I SAM-
dependent MTases: Mtq2, Trm9 and Trmll. These
MTases seem to compete for binding to Trm112, suggest-
ing that they interact with Trm112 in a similar manner
(22,27,30-32,36). Hence, our structure of the Mtq2-
Trm112 complex may serve as a good model for the
Trm9-Trm112 and Trm11-Trm112 complexes and provide
a template for functional studies.
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To wvalidate this hypothesis, we have studied the
Trm9-Trm112 complex from S. cerevisiae by using K.
lactis zymocin toxicity as a tool. This toxin specifically
cleaves some tRNAs at the wobble uridine (U34)
position. In order to be recognized by the zymocin, these
tRNAs need to be fully modified and Trm9 is one of the
enzymes involved (45). Hence, this toxin kills wild-type
but not S. cerevisiae trm9-A or trml12-A strains. Using
bioinformatics (see Supplementary Data for details on
Trm9 model generation), we have generated a model for
the S. cerevisiae Trm9 3D-structure and superimposed it
onto Mtq2 in the Mtq2-Trm112 complex. We used this
model to generate two mutant strains (N89K/L91R and
F105E) aimed at disrupting the Trm9-Trm112 interface.
As a positive control, we also generated a third mutant
strain by substituting the strictly conserved aspartic acid
residue proposed to be involved in SAM-binding by
Ala (D72A) to inactivate Trm9 as previously done in
other MTases (46). We then tested the effect of zymocin
addition on cultures of wild-type and mutant yeast strains.
All three mutants are resistant to zymocin supporting
the hypothesis that these Trm9 mutants are inactive
(Figure 3A). Next, the ability of these mutants to
interact in vivo with Trm112 was assessed by co-immuno-
precipitation. Whereas Trm112 co-immunoprecipitates
with wild-type Trm9, no interaction is detected with the
N8IK/LIIR or FI05E mutants (Figure 3B). These
mutants were expressed at similar levels to wild-type
Trm9 protein in vivo, confirming that these mutations
have no effect on protein stability. We therefore, conclude
that these mutations confer the zymocin resistance pheno-
type by disrupting the Trm9-Trml12 interaction.
However, Trm112 still co-immunoprecipitates with the
Trm9 D72A mutant. The zymocin resistance phenotype
is here due to the lack of SAM-binding necessary for a
normal Trm9 activity. The Trm9-Trm112 interaction is
obviously weaker with the Trm9 D72A mutant than
with wild-type Trm9, suggesting SAM-binding by Trm9
may influence the strength of interaction between Trm9
and Trm112.

Altogether, these experiments strongly support the hy-
pothesis that Trm112 interacts individually with Mtq2,
Trm9 and Trm11 and in a similar way. Hence, the struc-
ture of the Trm112-Mtq2 complex provides a good model
for further mutagenesis studies of the Trm9-Trm112 and
Trm11-Trm112 complexes.

DISCUSSION

Post-synthetic modifications are widespread and contrib-
ute largely to proteome expansion. Here, we focused our
interest on Trm112, a small eukaryotic protein interacting
with and activating three SAM-dependent MTases
involved in protein synthesis. Two (Trm9 and Trmll)
modify tRNAs and the remaining (Mtq2) acts on the
class I translation termination factor eRF1 (5,31,34).
The crystal structure of the Mtq2-Trm112 complex from
E. cuniculi shows that Mtq2 is composed of a single class I
SAM-dependent MTase domain also found in PrmC but
does not possess the equivalent of the PrmC N-terminal
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Figure 3. Saccharomyces cerevisiae Trm9 mutants exhibit induced resistance to zymocin and are affected in in vivo interaction with Trm112. (A)
Zymocin killer assay on S. cerevisiae strains. Percentage of growth in the presence of K. lactis AWJ137 supernatant containing zymocin was
calculated relative to the control assay performed with supernatant from K. lactis NK40 strain that does not produce zymocin. (B) Effect of
Trm9 mutations on Trm9/Trm112 in vivo interaction. Soluble protein extracts (Input: 1/50th of total proteins, i.e. 10 pug) and immunoprecipitates
(IP: 1/10th of immunoprecipitated material) were subjected to 15% SDS-PAGE analysis and immunoblotted using anti-Myc (Trm9-13Myc) and
anti-HA (Trm112-3HA) as primary antibodies and sheep anti mouse HRP-conjugated IgG as secondary antibody. Similar results were obtained
using anti-HA antibodies for protein pull-down (data not shown). The Trm9 D72A mutant protein exhibits a higher electrophoretic mobility due to
its reduced copy number of Myc epitopes that is indicated by asterisk (11 instead of 13 for all other Trm9 variants).

domain involved in RF binding. Superposition of the
PrmC-RF1 structure onto the Mtq2-Trm112 complex
clearly shows that Trm112 is not a structural stand-in for
the PrmC N-terminal domain (Supplementary Figure S6).

Comparison of the active sites of PrmC and Mtq2
shows that the NPPY signature found in MTases modify-
ing nitrogen atoms conjugated to planar systems perfectly
superpose and is at the centre of a region highly conserved
in eukaryotes. This superposition further shows how the
Gln side chain from the eRFI GGQ motif should be
trapped into the Mtg2 active site via a hydrogen
bonding network similar to that observed in PrmC-RF1
structure (Figure 2A). Additional structural overlap exists
between the loop connecting strand B2 from the short
B-hairpin to helix a6 from the MTase domain in PrmC
and the N-terminal region preceding helix a1 in Mtq2. In
the PrmC-RF1 complex, this loop stacks onto the SAM/
SAH molecule and the Gln side chain by contributing a
hydrophobic side chain (Leu® or Phe'™ in E. coli or
Thermotoga maritima PrmC, respectively). The corres-
ponding residue (Tyr* or Tyr'> according to E. cuniculi
and S. cerevisiae yeast numbering, respectively) is strictly
conserved across Mtq2 orthologues. The side chain from
Tyr* lies against the Sp atom and methyl donor group
from SAM and may form a charge-dipole interaction
with the positively charged Sp from SAM. In addition,
its hydroxyl group is hydrogen-bonded to the strictly
conserved Asp’ side chain (Asp® in S. cerevisiae,
Figure 2B and Supplementary Figure S4). Site-directed
mutagenesis of these residues in yeast (Y15F or D20N
mutants) results in complete loss of eRF1 MTase
activity, supporting their crucial role in Mtq2 function
(Table 1). A Tyr residue equivalent to Tyr* from
EcMtq2 has also been shown to be important for the
activity of the D1 catalytic subunit of the vaccinia virus
mRNA capping enzyme (Tyr”>>) (47).

Next, using site-directed mutagenesis, we have identified
highly conserved and negatively charged residues (Glu'®,

Glu", Asp®, Asp® and Glu?'?) surrounding the NPPY
signature from Mtq2 as important for enzymatic activity
(Figure 2C and D and Table 1). A model of the S.
cerevisiae eRF1-eRF3-GTP complex obtained from the
structures of human eRF1-eRF3 (lacking the GTPase
domain) (48) and Dom34-HbsI-GTP complexes (49,50)
allows us to propose an explanation for the specificity of
Mtq2-Trm112 for the eRF1-eRF3-GTP complex as sub-
strate. First, the GGQ motif from eRF1 central domain is
surrounded by several conserved Lys/Arg residues
from eRF1 itself. Several of these positively charged
residues may be involved in enzyme-substrate complex
formation through an interaction with the negatively
charged active site of Mtq2. Second, at least one Lys or
Arg residue from the eRF1 helix following the GGQ motif
(probably Argl89 in S. cerevisiae eRF1 and Argl92 in
human e¢RF1 according to studies conducted on human
proteins), (48) should interact with and stabilize the
eRF3 switch I region and thereby enhance eRF3 affinity
for GTP. This should also stabilize the eRF1 central
domain and in particular the GGQ motif and/or
optimize the orientation and position of the GGQ motif
into Mtq2 active site. Finally, in the eRF1-eRF3-GTP
complex, helix o4 from the switch I region (which
contains four to five strictly or highly conserved Lys/Arg
residues) of the eRF3 GTPase domain is in close proxim-
ity from eRF1 GGQ motif and hence, could be involved in
Mtq2-Trm112 binding (Figure 2E). As the switch I region
from GTPases adopts drastically different conformations
depending on the bound guanine nucleotide, this inter-
action should be specific for the eRF3-GTP form,
rationalizing our previous observation that the Mtq2-
Trm112 substrate is the eRF1-eRF3 complex bound to
GTP but not GDP (5,22). Further studies will be
required to determine the mechanism of substrate recog-
nition by Mtq2-Trm112.

Finally, mutations of several solvent exposed Trm112
residues (A106E, E107K, I118E, Y120E and NI123R;
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Table 1) partially affect eRF1 methylation levels without
disrupting complex formation and fold (data not shown).
Strikingly, the protein displaying the higher structural
similarity with the Mtq2-Trm112 complex is the bacterial
protein RImA(I), which is involved in methylation of
23S rRNA at position G745 (51). RImA(I) is composed
of an N-terminal zinc finger domain followed by a
C-terminal class I MTase domain (52). Superposition of
the RImA(I) MTase domain onto the Mtq2 protein
(RMSD of 2.6 A over 120 Ca atoms, 7% sequence
identity) in our complex reveals that the Trm112 zinc
finger domain nicely matches with the RImA(I) zinc
finger domain that has been suggested to interact with
the rRNA substrate (Figure 2F) (52). This suggests that
Trm112 may assist Mtq2 in substrate recognition. Such
structural similarity with RImA(I) was previously pro-
posed for the Tmrl1-Trm112 complex (RMSD between
our crystal structure and the Trml1-Trm112 model is
2.35 A over 191 Co atoms) (31).

The Mtq2-Trm112 structure also suggests how Trm112
activates Mtq2 and hence its other MTase partners. First,
Trm112 masks a hydrophobic region from Mtq2 upon
complex formation, explaining the need for co-expression
of Trm112 and Mtq2 to solubilize Mtq2 (Supplementary
Figure 3D and E) (22). The same mechanism may be
shared by Trm9, which can only be recovered as a
soluble protein upon co-expression with Trm112 (22,27)
(M.G. and V.H.H., unpublished data). Second, Trm112
stimulates SAM-binding by Mtq2 via its interaction with
the Mtq2 loop connecting strands B3—f4, which in turn
contacts the SAM molecule (Figure 1B and C). Moreover,
the Trm9 mutant (D72A) predicted to be deficient in
SAM-binding interacts more weakly with Trm112 than
wild-type Trm9 (Figure 3B). Altogether, this strongly
argues in favour of a synergistic interaction between
SAM, Trm112 and Mtq2/Trm9. We project that Trm112
may assist substrate binding by its three partners. Indeed,
as mentioned above, we have identified mutations of
solvent-exposed Trm112 residues affecting eRF1 methyla-
tion by Mtq2 (Table 1). However, the implication of
Trm112 in the recognition of substrates as different as
tRNA and eRF1/eRF3 will need to be further addressed.
The requirement for a protein partner to activate MTases
is not unique to Trm112 but was described for the follow-
ing holoenzymes Trm8-Trm82, Trm61-Trm6, vaccinia
virus D1-D12 capping enzyme (46,53-57). The vaccinia
virus D12 activator subunit stabilizes the D1 subunit, in-
creases its catalytic activity and its affinity for both its
substrate and SAM (57). Regarding the TrmS8-Trm&2
complex, which catalyses m’G methylation at position
46 of some tRNAs (58), Trm82 is not directly involved
in tRNA binding but should rather stabilize Trm8 by
modulating the structure of its catalytic site (53,59). In
the Trm61-Trm6 complex, Trm6 is required for tRNA
binding and hence catalysis of A58 methylation by the
Trm61 MTase (54,56).

Several observations support the hypothesis that
Trm112 interacts in a similar way with its three MTase
partners. First, sequence analysis predicts that Mtq2,
Trm9 and Trm11 belong to the same structural family of
class I SAM-dependent MTases (3,31,34). Second,
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over-expression of Mtq2 or Trm11 affects the interaction
between Trm9 and Trml112, thereby inhibiting Trm9
activity and consequently conferring resistance to
zymocin (36). This is in line with previous results indi-
cating that Trml12 interacts independently with its
partners (31). Third, the B-zipper type of interaction
between strands B4 from Trml112 and B3 from Mtq2
(Figure 1A and Supplementary Figure 3A) involves
hydrogen bonds between main chain atoms and may
therefore be well adapted for interaction with proteins
with totally different sequences but similar folds.
Fourth, mutations of Trm9 residues (N§9K/L91R and
F105E) corresponding to Mtq?2 residues involved in the
interface with Trm112 confer resistance to zymocin (i.c.
inactivate Trm9) and disrupt interaction with Trm112
(Figure 3A and B). Altogether, these observations
strongly argue in favour of a similar interaction mode
between Trm112 and its three MTase partners. It is note-
worthy that the Trm9-Trm112 interaction is conserved in
human, since the tRNA MTase domain from human
Trm9 also interacts with human Trml12 (29,32).
Similarly, Mtq2 and Trm112 proteins are conserved in
eukaryotes and archaea and their interaction has been
shown in yeast and mammals. Their deletion has a
strong impact on growth and development but it is not
known if this is a direct consequence of the absence of
eRF1 methylation, leading to a termination defect
during protein synthesis. Indeed, the absence of methyla-
tion does not influence significantly in vivo readthrough in
yeast and could even have an opposite effect (26) (VHH,
SF unpublished results). In addition, it has been shown
that increased stop codon readthrough in eRF1 mutants
or [PSI'] and yeast variants does not lead to a reduction in
growth rate (60—62). In yeast, TRM 112 deletion is more
detrimental than the combined deletions of known
partners (Mtq2, Trm9, Trmll), suggesting another
function for Trm112. Preliminary results suggest that an
interaction between Trm112 and Sfhl, an essential com-
ponent of the RSC complex involved in transcription and
necessary for proper mitosis, might be biologically
relevant (27). Clearly, more studies aimed at deciphering
the role of Trm112 are needed and our crystal structure of
the Mtq2-Trm112 complex provides an excellent template
for designing future experiments towards this goal.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are indebted to J. Cicolari for technical assistance. We
thank Tony Johnson (NIMR, Mill Hill, London) for the
generous gift of S. cerevisiae CG378 strain and plasmids
pFA6a-3HA-TRP1 and pFA6a-13Myc-kanM X6, as well
as Dr K. Breunig and Dr R. Schaffrath for sharing with us
the K. lactis AWJI137 and NK40 strains, respectively. We
acknowledge SOLEIL for provision of synchrotron radi-
ation facilities and we would like to thank Dr Andrew
Thompson and Pierre Legrand for assistance with beam


http://nar.oxfordjournals.org/cgi/content/full/gkr176/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr176/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr176/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr176/DC1

6258 Nucleic Acids Research, 2011, Vol. 39, No. 14

line Proxima-1. We are indebted to Dr B. Lapeyre and
J.M. Bujnicki for sharing with us the coordinates of
their Trm11-Trm112 model.

FUNDING

The Agence Nationale pour la Recherche (grant
ANR-06-BLAN-0075-02 and ANR-07-JCJC-0105); the
Centre National pour la Recherche Scientifique; the
Human Frontier Science Program organism (grant
RGP0018/2009-C); the EU ‘3D-Repertoire’ program
(LSHG-CT-2005-512028); pre-doctoral grant from the
Université Paris-Sud 11 (to J.H.). Funding for open
access charge: Human Frontier Science Program
organism (grant RGP0018/2009-C).

Conflict of interest statement. None declared.

REFERENCES

1. Pang,C.N., Gasteiger,E. and Wilkins,M.R. (2010) Identification
of arginine- and lysine-methylation in the proteome of
Saccharomyces cerevisiae and its functional implications.

BMC Genomics, 11, 92.

2. Polevoda,B. and Sherman,F. (2007) Methylation of proteins
involved in translation. Mol. Microbiol., 65, 590-606.

3. Schubert,H.L., Blumenthal,R.M. and Cheng,X. (2003)

Many paths to methyltransfer: a chronicle of convergence.
Trends Biochem. Sci., 28, 329-335.

4. Dincbas-Renqvist,V., Engstrom,A., Mora,L., Heurgue-Hamard,V.,
Buckingham,R. and Ehrenberg,M. (2000) A post-translational
modification in the GGQ motif of RF2 from Escherichia coli
stimulates termination of translation. EMBO J., 19, 6900-6907.

S. Heurgue-Hamard,V., Champ,S., Mora,L., Merkulova-Rainon,T.,
Kisselev,L.L. and Buckingham,R.H. (2005) The glutamine residue
of the conserved GGQ motif in Saccharomyces cerevisiae release
factor eRF1 is methylated by the product of the YDR140w gene.
J. Biol. Chem., 280, 2439-2445.

6. Song,H., Mugnier,P., Das,A.K., Webb,H.M., Evans,D.R.,
Tuite,M.F., Hemmings,B.A. and Barford,D. (2000) The crystal
structure of human eukaryotic release factor eRF1-mechanism of
stop codon recognition and peptidyl-tRNA hydrolysis. Cell, 100,
311-321.

7. Vestergaard,B., Van,L.B., Andersen,G.R., Nyborg,J.,
Buckingham,R.H. and Kjeldgaard,M. (2001) Bacterial polypeptide
release factor RF2 is structurally distinct from eukaryotic eRF1.
Mol. Cell, 8, 1375-1382.

8. Kisselev,L.L. and Buckingham,R.H. (2000) Translational
termination comes of age. Trends Biochem. Sci., 25, 561-566.

9. Frolova,L.Y., Tsivkovskii,R.Y., Sivolobova,G.F., Oparina,N.Y.,
Serpinsky,O.1., Blinov,V.M., Tatkov,S.I. and Kisselev,L.L. (1999)
Mutations in the highly conserved GGQ motif of class 1
polypeptide release factors abolish ability of human eRF1 to
trigger peptidyl-tRNA hydrolysis. RNA, 5, 1014-1020.

10. Korostelev,A., Zhu,J., Asahara,H. and Noller,H.F. (2010)
Recognition of the amber UAG stop codon by release factor
RF1. EMBO J., 29, 2577-2585.

11. Loh,P.G. and Song,H. (2010) Structural and mechanistic insights
into translation termination. Curr. Opin. Struct. Biol., 20, 98-103.

12. Heurgué-Hamard,V., Champ,S., Engstom,A., Ehrenberg,M. and
Buckingham,R.H. (2002) The hemK gene in Escherichia coli
encodes the N(5)-glutamine methyltransferase that modifies
peptide release factors. EMBO J., 21, 769-778.

13. Nakahigashi,K., Kubo,N., Narita,S., Shimaoka,T., Goto,S.,
Oshima,T., Mori,H., Maeda,M., Wada,C. and Inokuchi,H. (2002)
HemkK, a class of protein methyl transferase with similarity to
DNA methyl transferases, methylates polypeptide chain release
factors, and hemK knockout induces defects in translational
termination. Proc. Natl Acad. Sci. USA, 99, 1473-1478.

14.

16.

17.

18.

19.

20.

2

—_

22.

23.

24.

25.

26.

217.

28.

29.

30.

3

—

32.

Graille,M., Heurgue-Hamard,V., Champ,S., Mora,L., Scrima,N.,
Ulryck,N., van Tilbeurgh,H. and Buckingham,R.H. (2005)
Molecular basis for bacterial class I release factor methylation by
PrmC. Mol. Cell, 20, 917-927.

. Schubert,H.L., Phillips,J.D. and Hill,C.P. (2003) Structures along

the catalytic pathway of PrmC/HemK, an NS5-glutamine
AdoMet-dependent methyltransferase. Biochemistry, 42,
5592-5599.

Mora,L., Heurgue-Hamard,V., de Zamaroczy,M., Kervestin,S.
and Buckingham,R.H. (2007) Methylation of bacterial release
factors RF1 and RF2 is required for normal translation
termination in vivo. J. Biol. Chem., 282, 35638-35645.

Jin,H., Kelley,A.C., Loakes,D. and Ramakrishnan,V. (2010)
Structure of the 70S ribosome bound to release factor 2 and a
substrate analog provides insights into catalysis of peptide release.
Proc. Natl Acad. Sci. USA, 107, 8593-8598.

Trobro,S. and Aqvist,J. (2007) A model for how ribosomal
release factors induce peptidyl-tRNA cleavage in termination of
protein synthesis. Mol. Cell, 27, 758-766.

Pavlov,M.Y., Freistroffer,D.V., Dincbas,V., MacDougall,J.,
Buckingham,R.H. and Ehrenberg,M. (1998) A direct

estimation of the context effect on the efficiency of termination.
J. Mol. Biol., 284, 579-590.

Liu,P., Nie,S., Li,B., Yang,Z.Q., Xu,Z.M., Fei,J., Lin,C., Zeng,R.
and Xu,G.L. (2010) Deficiency in a glutamine-specific
methyltransferase for the release factor causes mouse embryonic
lethality. Mol. Cell. Biol., 30, 4245-4253.

. Figaro,S., Scrima,N., Buckingham,R.H. and Heurgue-Hamard,V.

(2008) HemK?2 protein, encoded on human chromosome 21,
methylates translation termination factor eRF1. FEBS Lett., 582,
2352-2356.

Heurgue-Hamard,V., Graille,M., Scrima,N., Ulryck,N., Champ,S.,
van Tilbeurgh,H. and Buckingham,R.H. (2006) The zinc finger
protein Ynr046w is plurifunctional and a component of the eRF1
methyltransferase in yeast. J. Biol. Chem., 281, 36140-36148.
Alkalaeva,E.Z., Pisarev,A.V., Frolova,L.Y., Kisselev,L.L. and
Pestova,T.V. (2006) In vitro reconstitution of eukaryotic
translation reveals cooperativity between release factors eRF1 and
eRF3. Cell, 125, 1125-1136.

Kong,C., Ito,K., Walsh,M.A., Wada,M., Liu,Y., Kumar,S.,
Barford,D., Nakamura,Y. and Song,H. (2004) Crystal structure
and functional analysis of the eukaryotic class II release factor
eRF3 from S. pombe. Mol. Cell, 14, 233-245.

Ander,M. and Aqvist,J. (2009) Does glutamine methylation affect
the intrinsic conformation of the universally conserved GGQ
motif in ribosomal release factors? Biochemistry, 48, 3483-3489.
Polevoda,B., Span,L. and Sherman,F. (2006) The yeast translation
release factors Mrflp and Sup45p (eRF1) are methylated,
respectively, by the methyltransferases Mtqlp and Mtq2p.

J. Biol. Chem., 281, 2562-2571.

Mazauric,M.H., Dirick,L., Purushothaman,S.K., Bjork,G.R. and
Lapeyre,B. (2010) Trm112p is a 15-kDa zinc finger protein
essential for the activity of two tRNA and one protein
methyltransferases in yeast. J. Biol. Chem., 285, 18505-18515.
Hu,Z., Qin,Z., Wang,M., Xu,C., Feng,G., Liu,J., Meng,Z. and
Hu,Y. (2010) The Arabidopsis SMO2, a homologue of yeast
TRMI112, modulates progression of cell division during organ
growth. Plant J., 61, 600-610.

Fu,D., Brophy,J.A., Chan,C.T., Atmore,K.A., Begley,U.,
Paules,R.S., Dedon,P.C., Begley,T.J. and Samson,L.D. (2010)
Human AlkB homolog ABHS Is a tRNA methyltransferase
required for wobble uridine modification and DNA damage
survival. Mol. Cell. Biol., 30, 2449-2459.

Okada,K., Muneyoshi,Y., Endo,Y. and Hori,H. (2009)
Production of yeast (m2G10) methyltransferase (Trm11 and
Trm112 complex) in a wheat germ cell-free translation system.
Nucleic Acids Symp. Ser., 53, 303-304.

. Purushothaman,S.K., Bujnicki,J.M., Grosjean,H. and Lapeyre,B.

(2005) Trm11p and Trm112p are both required for the
formation of 2-methylguanosine at position 10 in yeast tRNA.
Mol. Cell. Biol., 25, 4359-4370.

Songe-Moller,L., van den Born,E., Leihne,V., Vagbo,C.B.,
Kristoffersen,T., Krokan,H.E., Kirpekar,F., Falnes,P.O. and
Klungland,A. (2010) Mammalian ALKBHS possesses tRNA



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

methyltransferase activity required for the biogenesis of multiple
wobble uridine modifications implicated in translational decoding.
Mol. Cell. Biol., 30, 1814-1827.

Huang,B., Lu,J. and Bystrom,A.S. (2008) A genome-wide screen
identifies genes required for formation of the wobble nucleoside
S-methoxycarbonylmethyl-2-thiouridine in Saccharomyces
cerevisiae. RNA, 14, 2183-2194.

Kalhor,H.R. and Clarke,S. (2003) Novel methyltransferase for
modified uridine residues at the wobble position of tRNA.

Mol. Cell. Biol., 23, 9283-9292.

Jablonowski,D., Zink,S., Mehlgarten,C., Daum,G. and
Schaffrath,R. (2006) tRNAGIu wobble uridine methylation by
Trm9 identifies Elongator’s key role for zymocin-induced cell
death in yeast. Mol. Microbiol., 59, 677-688.

Studte,P., Zink,S., Jablonowski,D., Bar,C., von der Haar,T.,
Tuite,M.F. and Schaffrath,R. (2008) tRNA and protein methylase
complexes mediate zymocin toxicity in yeast. Mol. Microbiol., 69,
1266-1277.

Begley,U., Dyavaiah,M., Patil,A., Rooney,J.P., DiRenzo,D.,
Young,C.M., Conklin,D.S., Zitomer,R.S. and Begley,T.J. (2007)
Trm9-catalyzed tRNA modifications link translation to the DNA
damage response. Mol. Cell, 28, 860-870.

Longtine,M.S., McKenzie,A. III, Demarini,D.J., Shah,N.G.,
Wach,A., Brachat,A., Philippsen,P. and Pringle,J.R. (1998)
Additional modules for versatile and economical PCR-based gene
deletion and modification in Saccharomyces cerevisiae. Yeast, 14,
953-961.

Toulmay,A. and Schneiter,R. (2006) A two-step method for the
introduction of single or multiple defined point mutations into the
genome of Saccharomyces cerevisiae. Yeast, 23, 825-831.
Printen,J.A. and Sprague,G.F. Jr (1994) Protein-protein
interactions in the yeast pheromone response pathway: SteSp
interacts with all members of the MAP kinase cascade. Genetics,
138, 609-619.

Wolf,K., Breunig,K. and Barth,G. (2003) Non-conventional Yeasts
in Genetics, Biochemistry and Biotechnology: Practical Protocols
Chapter 28. Springer, Berlin, New York, pp. 179-183.
Martin,J.L. and McMillan,F.M. (2002) SAM (dependent) I AM:
the S-adenosylmethionine-dependent methyltransferase fold.

Curr. Opin. Struct. Biol., 12, 783-793.

Holm,L., Kaariainen,S., Rosenstrom,P. and Schenkel,A. (2008)
Searching protein structure databases with DaliLite v.3.
Bioinformatics, 24, 2780-2781.

Yang,Z., Shipman,L., Zhang,M., Anton,B.P., Roberts,R.J. and
Cheng,X. (2004) Structural characterization and comparative
phylogenetic analysis of Escherichia coli HemK, a protein
(NS)-glutamine methyltransferase. J. Mol. Biol., 340, 695-706.
Lu,J., Huang,B., Esberg,A., Johansson,M.J. and Bystrom,A.S.
(2005) The Kluyveromyces lactis gamma-toxin targets tRNA
anticodons. RNA, 11, 1648-1654.

Leulliot,N., Bohnsack,M.T., Graille,M., Tollervey,D. and Van
Tilbeurgh,H. (2008) The yeast ribosome synthesis factor Emgl is
a novel member of the superfamily of alpha/beta knot fold
methyltransferases. Nucleic Acids Res., 36, 629-639.

De la Pena,M., Kyrieleis,0.J. and Cusack,S. (2007) Structural
insights into the mechanism and evolution of the vaccinia

virus mRNA cap N7 methyl-transferase. EMBO J., 26,
4913-4925.

Cheng,Z., Saito,K., Pisarev,A.V., Wada,M., Pisareva,V.P.,
Pestova,T.V., Gajda,M., Round,A., Kong,C., Lim,M. et al. (2009)
Structural insights into eRF3 and stop codon recognition by
eRF1. Genes Dev., 23, 1106-1118.

49.

50.

51.

52.

53

54.

55.

56.

57.

58.

59.

60.

6l.

62.

Nucleic Acids Research, 2011, Vol. 39, No. 14 6259

Kobayashi, K., Kikuno,I., Kuroha,K., Saito,K., Ito,K., Ishitani,R.,
Inada,T. and Nureki,O. (2010) Structural basis for mRNA
surveillance by archaeal Pelota and GTP-bound EF1{alpha}
complex. Proc. Natl Acad. Sci. USA, 107, 17575-17579.

van den Elzen,A.M., Henri,J., Lazar,N., Gas,M.E., Durand,D.,
Lacroute,F., Nicaise,M., van Tilbeurgh,H., Seraphin,B. and
Graille,M. (2010) Dissection of Dom34-Hbs! reveals independent
functions in two RNA quality control pathways. Nat. Struct.
Mol. Biol., 17, 1446-1452.

Liu,M. and Douthwaite,S. (2002) Resistance to the macrolide
antibiotic tylosin is conferred by single methylations at 23S
rRNA nucleotides G748 and A2058 acting in synergy.

Proc. Natl Acad. Sci. USA, 99, 14658—-14663.

Das,K., Acton,T., Chiang,Y., Shih,L., Arnold.E. and
Montelione,G.T. (2004) Crystal structure of RImAI: implications
for understanding the 23S rRNA G745/G748-methylation at the
macrolide antibiotic-binding site. Proc. Natl Acad. Sci. USA, 101,
4041-4046.

. Alexandrov,A., Grayhack,E.J. and Phizicky,E.M. (2005) tRNA

m7G methyltransferase Trm8p/Trm82p: evidence linking activity
to a growth phenotype and implicating Trm82p in maintaining
levels of active Trm8p. RNA, 11, 821-830.

Anderson,J., Phan,L. and Hinnebusch,A.G. (2000) The Gcd10p/
Gedl4p complex is the essential two-subunit
tRNA(1-methyladenosine) methyltransferase of Saccharomyces
cerevisiae. Proc. Natl Acad. Sci. USA, 97, 5173-5178.

Mao,X. and Shuman,S. (1994) Intrinsic RNA (guanine-7)
methyltransferase activity of the vaccinia virus capping enzyme
D1 subunit is stimulated by the D12 subunit. Identification of
amino acid residues in the D1 protein required for subunit
association and methyl group transfer. J. Biol. Chem., 269,
24472-24479.

Ozanick,S.G., Bujnicki,J.M., Sem,D.S. and Anderson,J.T. (2007)
Conserved amino acids in each subunit of the heteroligomeric
tRNA mlAS8 Mtase from Saccharomyces cerevisiae contribute to
tRNA binding. Nucleic Acids Res., 35, 6808-6819.

Schwer,B., Hausmann,S., Schneider,S. and Shuman,S. (2006)
Poxvirus mRNA cap methyltransferase. Bypass of the
requirement for the stimulatory subunit by mutations in the
catalytic subunit and evidence for intersubunit allostery.

J. Biol. Chem., 281, 18953-18960.

Alexandrov,A., Martzen,M.R. and Phizicky,E.M. (2002) Two
proteins that form a complex are required for 7-methylguanosine
modification of yeast tRNA. RNA, 8, 1253-1266.

Leulliot,N., Chaillet,M., Durand,D., Ulryck,N., Blondeau,K. and
van Tilbeurgh,H. (2008) Structure of the yeast tRNA m7G
methylation complex. Structure, 16, 52-61.

Henri,J., Rispal,D., Bayart,E., van Tilbeurgh,H., Seraphin,B. and
Graille,M. (2010) Structural and functional insights into
Saccharomyces cerevisiae Tpal, a putative prolylhydroxylase
influencing translation termination and transcription.

J. Biol. Chem., 285, 30767-30778.

Merritt,G.H., Naemi,W.R., Mugnier,P., Webb,H.M., Tuite, M.F.
and von der Haar,T. (2010) Decoding accuracy in eRF1 mutants
and its correlation with pleiotropic quantitative traits in yeast.
Nucleic Acids Res., 38, 5479-5492.

Wilson,M.A., Meaux,S., Parker,R. and van Hoof,A. (2005)
Genetic interactions between [PSI+] and nonstop mRNA decay
affect phenotypic variation. Proc. Natl Acad. Sci. USA, 102,
10244-10249.



