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Abstract

Objective: Computerized decision-support tools may improve diagnosis of acute

myocardial infarction (AMI) among patients presenting with chest pain at the emer-

gency department (ED). The primary aim was to assess the predictive accuracy of

machine learning algorithms based on paired high-sensitivity cardiac troponin T (hs-

cTnT) concentrations with varying sampling times, age, and sex in order to rule in or

out AMI.

Methods: In this register-based, cross-sectional diagnostic study conducted retrospec-

tively based on 5695 chest pain patients at 2 hospitals in Sweden 2013–2014we used

5-fold cross-validation 200 times in order to compare the performance of an artifi-

cial neural network (ANN) with European guideline-recommended 0/1- and 0/3-hour

algorithms for hs-cTnT and with logistic regression without interaction terms. Primary

outcome was the size of the intermediate risk group where AMI could not be ruled in

or out, while holding the sensitivity (rule-out) and specificity (rule-in) constant across

models.

Results: ANN and logistic regression had similar (95%) areas under the receiver oper-

ating characteristics curve. In patients (n= 4171) where the timing requirements (0/1

or 0/3 hour) for the sampling were met, using ANN led to a relative decrease of 9.2%

(95% confidence interval 4.4% to 13.8%; from 24.5% to 22.2% of all tested patients)

in the size of the intermediate group compared to the recommended algorithms. By
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contrast, using logistic regression did not substantially decrease the size of the inter-

mediate group.

Conclusion:Machine learning algorithms allow for flexibility in sampling and have the

potential to improve risk assessment among chest pain patients at the ED.

KEYWORDS

AI (Artificial Intelligence), cardiovascular epidemiology, computer assisted diagnostic techniques,
diagnosis epidemiology, medical decision making, statistics and numerical data machine intelli-
gence

1 INTRODUCTION

1.1 Background

Chest pain is one of themost common chief complaints among patients

at the emergency department1 (ED) and constitutes amajor burden on

the health care system.2 In chest pain patients, the European Society

of Cardiology (ESC) recommends the use of high-sensitivity cardiac

troponin T (hs-cTnT) tests applied in either a 0/3-hour or a 0/1-hour

algorithm.3 According to the 0/1-hour algorithm, acute myocardial

infarction (AMI) is ruled out (low risk) either if the first hs-cTnT is

below5 ng/L or if the first hs-cTnT is<12 ng/L and the change between

the 0-hour and 1-hour samples is <3 ng/L. Conversely, AMI is ruled

in (high risk) if the first sample is >52 ng/L or if the change to the

F IGURE 1 European Society of Cardiology (ESC) 0/1-hour and 0/3-hour algorithms for ruling in or out acutemyocardial infarction based on
high-sensitivity cardiac troponin Tmeasured in ng/L. NSTEMI, non–ST-segment elevationmyocardial infarction; TnT, troponin T
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second sample is at least 5 ng/L (Figure 1). The ESC algorithms are

widely used across EDs in Europe, and have recently been studied

in the United States.3 However, the ESC algorithms have 3 specific

limitations. First, the algorithms are based on fixed thresholds and

predefined time intervals between first and second sample, which may

not be trivially achievable in a stressful ED environment. Second, they

do not provide any probabilistic assessment of the risk. Third, they still

leave a substantial proportion in an intermediate group that cannot be

accurately classified as low or high risk.4,5

1.2 Importance

Recent work has suggested that machine learning algorithms can be

used to interpret serial troponin samples in amore flexiblemanner that

does not depend on a specific time interval between samples and with

improved prediction accuracy compared with rule-based algorithms.6

However, the decision support provided by complex models is gener-

ally less explainable than rule-based algorithms and statistical models.

There is thus a trade-off between performance and explainability in

clinical prediction modeling, and added complexity is justified only if

it leads to clinically meaningful improvement in prediction accuracy.7

How much increased model complexity improves prediction accuracy

is likely to differ across applications andmust therefore be judged on a

case-by-case basis.

1.3 Goals of this investigation

The primary aimof the present studywas to assess the predictive accu-

racy of a machine learning algorithm compared with the ESC 0/1 and

0/3 hour algorithms in ED chest pain patients, where the clinical task

is to rule in or out AMI based on paired cardiac hs-cTnT tests, age, and

sex. As a secondary aim, we compared the performance with a simpler

andmoreexplainable statisticalmodel, logistic regression. As aprimary

outcome measure, we used the size of the intermediate group while

keeping the sensitivity in the rule-out decision and specificity in the

rule-in decision constant across the evaluatedmethods.

2 METHODS

2.1 Study design and setting

The present study is a register-based, cross-sectional diagnostic study

conducted retrospectively in ED patients visiting any of 2 hospitals

in Region Skåne, Sweden during 2013 and 2014: (1) Skåne University

Hospital at Lund (catchment area 310 000 individuals), (2) Helsingborg

General Hospital (catchment area 250 000 individuals). The study was

approved by the regional ethics review board in Lund, Sweden (Dnr

2018–708 and 2019–03523).

The Bottom Line

Diagnosis of myocardial infarction can be challenging. This

study appliedmachine learning techniques (neural networks)

to a sample of 5695 patients in Sweden with acute chest

pain, using information on demographics and serial cardiac

biomarkers to predict acutemyocardial infarction. Using this

method, the proportion of patients with diagnostic uncer-

tainty after 2 biomarkers decreased (from 24.5% to 22.2%),

comparedwith a clinical practice guideline.

2.2 Data collection

Patient data on chief complaint, age, and sex and laboratory data on

hs-cTnT and discharge diagnosis originate from health care registers

in Region Skåne and were extracted from the existing EXPECT (Eval-

uation of Unknown Predictors of Electrocardiographic Changes – a

Transnational study) database.8,9 The hs-cTnT tests were analyzed

using the RocheCobas e602 (RocheDiagnostics, Basel, Switzerland) at

the time of the ED visit. This assay has a limit of blank of 3 ng/L, limit of

detection 5 ng/L, and the 99th percentile is 14 ng/L.10

2.3 Selection of participants

The inclusion of study participants is charted in Figure 2. Potentially

eligible patients included all adults (≥18 years) who presented to the

EDs with chest pain as chief complaint. Subsequent visits by the same

patient during the study period were excluded from the database. ST-

segment elevation myocardial infarction cases were not included, as

this diagnosis is not based on troponin results. As study cohort for the

present investigation, we selected a subset of patients who had a first

hs-cTnT sample drawn within 4 hours of arrival and a second hs-cTnT

taken at least 30minutes but no>8 hours after the first.

2.4 Reference standard

As reference standard for AMI at the index visit we used the diag-

nosis made by the attending physician at the hospital ward or the

responsible emergency physician in the event of discharge from the

ED. AMI diagnoses were made in accordance with the universal AMI

definition 2013–201411,12 on the basis of a rise and/or fall of hs-cTnT

with at least 1 value above 14 ng/L, together with symptoms, ECG

changes, or imaging evidence of infarction. The reference standardwas

validated against a reference of expert adjudication for a subset of

patients (n = 838) included in a separate study.13,14 The overall agree-

ment was 97%, with 78% sensitivity and 99% specificity (Supplemen-

tary Table E1).
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F IGURE 2 Flow chart for enrolment in the study cohort. AMI, acutemyocardial infarction; TnT, troponin T

2.5 Index test-Development of machine-learning
and statistical models

We developed 2 different models to predict AMI, an artificial neural

network (ANN) and a statistical logistic regression (LogReg) model,

using Python 3.7 with Tensorflow version 1.14. Both models were

developed on the same data using the same inputs and outputs. The

inputs to the models were age, sex, and 2 serial hs-cTnT measure-

ments togetherwith the rate of changebetween them thatwere all log-

transformed and normalized (mean zero, standard deviation one). The

output was index visit AMI (yes/no). Both models can be used for the

standard 0/1- and 0/3-hour sampling schemes but also allow for flexi-

bility in the timing between the 2 hs-cTnTmeasurements.

Logistic regression can be regarded as a special case of neural net-

work without any hidden layers and was thus implemented as a triv-

ial neural network in the Tensorflow package. The ANN was a multi-

layer perceptron modeled with 1 hidden layer of 10 neurons between

the inputs and the output node. To reduce the stochastic nature of

the ANN and smooth the probability distribution we trained 10 iden-

tical networks using bagging, that is, the training data were bootstrap-

resampled for each network and their outputs were combined by tak-

ing themean of their probabilities. Each network used Relu activations

on the hidden layer and was trained using the Adam optimizer and a

dropout with a rate of 0.1.15

2.6 Validation procedure

ANN and LogReg both give a number between 0 and 1 as output that

reflects the estimated probability of AMI conditioned on the input

data. To reliably estimate the predictive accuracy of the 2 models we

carried out stratified 5-fold cross-validation 200 times each for ANN

and LogReg, respectively. Each patient thus received 200 estimated

probabilities that were then averaged to get a final probability esti-

mate basedoneachmodel separately. The cross-validation setup effec-

tively emulated a situation with a held-out test set, however, allowing

the entire data set to be used for testing. Importantly, each patient was

assessed by a model that was trained on data not including that very

patient. In additional evaluation with calibration of rule-in and rule-

out thresholds,we computed the corresponding probabilities averaged

over all models when evaluated on their own training data, enabling a

comparison between the influence of calibrating thresholds on deriva-

tion versus validation data.

2.7 Data analysis

Initial evaluation of ANN and LogReg was carried out using the area

under the receiver operating characteristic curve (AUC), calculated

overall and stratifiedbyage, sex, hospital, and timeofhs-cTnT sampling.
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The ANN and LogReg models were further evaluated against exist-

ing ESC rule-in/rule-out algorithms for hs-cTnT–a 0/1-hour algorithm

and a 0/3-hour algorithm in the subset of patients with the tests

required for these algorithms (Figure 1). These algorithms rely on 2

serial hs-cTnT samples taken 1 or 3 hours apart. Based on the hs-cTnT

values and the algorithms, we assigned patients into one of the risk

groups (Rule-in, Intermediate, Rule-out). For the 0/1h algorithm we

followed the ESC guidelines16 and considered cases where the second

sample was taken between 30 minutes and 1.5 hours after the first.

In the 0/3h case the ESC does not prescribe specific levels of hs-cTnT

change nor does it assign patients to an intermediate group. Instead,

we followed Thygesen et al17 who defined such thresholds.We consid-

ered cases where the second sample was taken at least 2.5 hours after

the first to qualify for this algorithm.

As primary outcome measure we used the size of the intermediate

group that was obtained when the sensitivity (rule-out) and specificity

(rule-in) were kept constant across models and algorithms. We deter-

mined rule-out and rule-in thresholds for the probabilities obtained

from ANN and LogReg by calibrating them against the performance

of the ESC algorithms. Specifically, we selected the probability thresh-

old for rule-out that yielded a negative predictive value (NPV) and

sensitivity at least as high as the corresponding metrics for the ESC

algorithms. Similarly, we selected the probability threshold for rule-in

that yielded a positive predictive value (PPV) and specificity at least

as high as those of the ESC algorithms. As an additional analysis,

we instead used the probabilities predicted on the training folds to

calibrate the ANN and LogReg thresholds for rule-in and rule-out. We

used bootstrap resampling (20 000 replications) on the data set with

the averaged final probability estimates to obtain 95% confidence

intervals (CIs) both for AUC and the primary outcomemeasure (size of

the intermediate group). Model calibration was assessed by using the

Hosmer-Lemeshow test calculated for the final probability estimates

grouped in deciles.

3 RESULTS

3.1 Characteristics of study subjects

A total of 12 384 patients had at least 1 hs-cTnT sample analyzed.

The mean age of these patients was 59 years and 7% had AMI at the

index visit (Table 1). The 5 695 patients with 2 serial samples hs-cTnT

taken were older (mean age 66 years) and hadmore comorbidities and

a higher risk of AMI (14%; Table 1). Figure 3 shows the association

between the 2 hs-cTnT samples among patients with or without AMI

at the index visit.

3.2 Main results

The ANN model obtained an AUC of 95.1%, compared with 94.5%

for the LogReg model (Figure 4). AUCs were for both models higher

among younger than among older patients (Supplementary Table E2).

TABLE 1 Baseline characteristics of (1) all adult ED patients with
chest pain with at least 1 sample of high-sensitivity cardiac troponin T
(hs-TnT), (2) present study cohort with 2 samples taken

One sample

(n= 12 384)

Study cohort -

Two samples

(n= 5695)

Age, years, mean (SD) 58.9 (18.8) 65.6 (16.0)

≤65, n (%) 7177 (58.0) 2517 (44.2)

Sex, n (%) female 5882 (47.5) 2496 (43.8)

Hospital, n (%) Lund 7097 (57.3) 3346 (58.8)

Time between hs-TnT samples, n (%)

One sample 6548 (52.9) 0 (0.0)

0 (0.0)

0.5 – 1.5 h 944 (7.6) 944 (16.6)

1.5 – 2.5 h 1524 (12.3) 1524 (26.8)

≥ 2.5h 3227 (26.0) 3227 (56.7)

Disease history and treatments, n (%)

AMI 1431 (11.6) 974 (17.1)

Unstable angina 483 (3.9) 344 (6.0)

Coronary artery bypass grafting 1231 (9.9) 849 (14.9)

Percutaneous coronary

intervention

726 (5.9) 525 (9.2)

Heart failure 1143 (9.2) 714 (12.5)

Hypertension 4110 (33.2) 2449 (43.0)

Chronic obstructive pulmonary

disease

706 (5.7) 426 (7.5)

Diabetes 1549 (12.5) 989 (17.4)

Renal failure 446 (3.6) 309 (5.4)

Peripheral artery disease 588 (4.7) 373 (6.5)

AMI at index visit, n (%) 880 (7.1) 779 (13.7)

AMI, acutemyocardial infarction; ED, emergency department.

No marked differences in AUC with respect to sex, hospital, or time

betweenhs-cTnT sampleswereobserved. The requirements of theESC

algorithms for the timing between the 2 hs-cTnT samples were met

for 4 171 of the 5 695 patients. The 0/1h- and 0/3h-algorithms, each

applied to patients meeting their respective time criteria, together

ruled out AMI in 2307 (55.3%) of these patients with 96.9% sensitiv-

ity and 99.3%NPV (Table 2). A total of 842 patients (20.2%)were ruled

in with 89.7% specificity and 55.9% PPV. The remaining intermediate

risk patients (1022; 24.5%) had a 6.8% AMI risk. For ANN, the derived

probability thresholds were ≤ 0.02164 for rule-out and ≥ 0.1278 for

rule-in. The intermediate group decreased to 928 patients (22.2%; rel-

ative decrease 9.2%, 95% CI 4.4%–13.8%), while maintaining similar

NPV and PPV as for the ESC algorithms. The LogReg model decreased

the intermediate group only marginally to 1 007 patients (24.1%; rel-

ative decrease 1.5%, 95% CI -3.2% to 5.8%), with corresponding prob-

ability thresholds of ≤ 0.03159 and ≥ 0.1363 for rule-out and rule-in,

respectively. ANN led to a more substantial decrease in the size of the

intermediate group than LogReg also in the complete testing set with

all sampling times included (Supplementary Table E3).
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F IGURE 3 Plot of the first and second hs-cTnT sample (n= 5 695)
using log-scaled axes. The dashed orange lines indicate the 99th
percentile (14 ng/L). ANN, artificial neural network; hs-cTnT,
high-sensitivity cardiac troponin T

Table 3 shows the agreement between the individual classifications

obtained fromANNand LogReg in the complete testing set. The largest

difference off the left-to-right agreement diagonal were 229 patients

without AMI that ANN ruled out but that LogReg placed in the inter-

mediate group. Corresponding comparisons with ESC are presented

in Supplementary Table E4 and E5. The predicted probabilities of AMI

obtained from ANN and LogReg were compared in Figure 5. Two large

clusters of likely and unlikely cases emerged where both models agree

(bottom left and top right of Figure 5). The most striking outliers

were 15 patients without AMI where the LogReg model assigned a

high (> 0.5) estimated probability of AMI, whereas the neural network

assigned a very low probability (below the rule-in threshold). These

patients were all young (aged 20–30) with very high but typically sta-

ble levels of hs-cTnT. Neither ANNnor LogReg had completely satisfac-

tory calibration according to theHosmer-Lemeshow test (P<0.001 for

both models). In particular, the 20% lowest probability estimates from

ANN (below 0.001) tended to be falsely too low. The LogReg model,

on the other hand, failed to capture accurately the increase in AMI

risk in the range 0.15 – 0.60, as also suggested by the curved-shaped

association between the estimates fromANN and LogReg in this range

(Figure 5).

TABLE 2 Number of patients (among the 4 171 qualifying for either of the 0/1h or 0/3h algorithm) ruled in and out by the ESC algorithms
comparedwith the artificial neural network (ANN) and logistic regression (LogReg) models. Sensitivity and specificity for ANN and LogRegwere
calibrated against the ESC algorithms

ESC algorithms ANN LogReg

NoAMI AMI Total n (%) NoAMI AMI Total n (%) NoAMI AMI Total n (%)

Rule-out, n (%) 2290 17 2307 (55.3) 2363 17 2380 (57.1) 2291 17 2308 (55.3)

Sensitivity, % 96.9 96.9 96.9

NPV, % 99.3 99.3 99.3

Intermediate, n (%) 953 69 1022 (24.5) 880 48 928 (22.2) 952 55 1007 (24.1)

Rule-in, n (%) 371 471 842 (20.2) 371 492 863 (20.7) 371 485 856 (20.5)

Specificity, % 89.7 89.7 89.7

PPV, % 55.9 57.0 56.7

AMI, acutemyocardial infarction; ESC, European Society of Cardiology; NPV, negative predictive value; PPV, positive predictive value.

TABLE 3 Agreement in individual classifications from the artificial neural network (ANN) and logistic regression (LogReg) models, stratified on
outcome (AMI vs no AMI; n= 5695)

Patients with AMI (n= 779)

LogReg rule out LogReg intermediate LogReg rule-in

ANN rule-out 18 6 0

ANN intermediate 4 48 12

ANN rule-in 0 16 675

Patients without AMI (n= 4916)

LogReg rule out LogReg intermediate LogReg rule-in

ANN rule-out 2929 229 5

ANN intermediate 133 966 108

ANN rule-in 0 121 425

AMI, acutemyocardial infarction.
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F IGURE 4 Receiver operating characteristic curves for the
artificial neural network (ANN) and the logistic regression (LogReg)
models (n= 5 695). AUC, area under the curve

3.3 Additional results

When the ANN probability thresholds were calibrated based on

the training set the rule-out threshold increased (from 0.02164

to 0.02477) whereas the rule-in threshold remained similar (test:

0.1278, training: 0.1247). This led to decreased rule-out sensitivity and

decreased size of the intermediate group (Supplementary Table E6).

For LogReg, calibration on the training set also increased the rule-out

threshold (from 0.03159 to 0.03229) and the rule-in threshold was

similar (test: 0.1363, training: 0.1358). This led to a decreased rule-out

sensitivity, which also decreased the size of the intermediate group.

4 LIMITATIONS

The algorithms were trained and tested on a selected subsample with

2 hs-cTnT analyzed and are therefore not necessarily generalizable

to settings where indications for ordering a second sample are differ-

ent. Additionally, the results may not generalize to settings where the

prevalence of AMI differs at entry to the ED presentation.18 Another

limitationwas that we used routine care diagnoses. However, although

misclassifications in these diagnoses may bias the estimated magni-

tude of the performance difference toward the null, it should not

affect the ranking of the compared algorithms. A further limitation

was observed in the sensitivity analyses where both ANN and logis-

tic regression were highly dependent on the choice of probability

thresholds. Careful prospective validation, including detailed assess-

ment of model calibration, is therefore warranted before implementa-

tion in clinical practice,7 in order to ensure that safety requirements

are met. Another challenge with the clinical implementation is that the

F IGURE 5 Comparison of probabilities of AMI from the logistic
regression and artificial neural networkmodels (n= 5 695). The
dotted lines denote the probability thresholds calibrated against the
ESC algorithms for ruling patients in or out. The closer to the diagonal,
themore themodels agree. AMI, acutemyocardial infarction; ESC,
European Society of Cardiology

ANNwould generally require retraining on new populations whenever

deployed across hospitals in order to ensure that unbiased probability

estimates aremaintained. TheANNmay also require continuous learn-

ing and recalibration if population drift occurs within a particular set-

ting. Finally, it shouldbenoted thatwedidnot extend theLogRegmodel

to incorporate interaction termsbetween the input variables, for exam-

ple, between age and troponin levels. Doing so would most likely have

decreased the performance gap versus ANN while at the same time

increasing the LogRegmodel complexity.

5 DISCUSSION

Two salient findings emerged from the present study: (1) our decision-

support models using age, sex, and two non-specific time sampling tro-

ponins had an improved performance compared to the ESC algorithms;

and (2)ANNwithhidden layers in our setting led to improved classifica-

tion of AMI compared with a more explainable method based on logis-

tic regression.

As the primary performance metric, we used the size of the inter-

mediate groupwhere AMIwas not ruled in or out. The improvement in

performance observed using this metric may seemmodest but implies

that almost 1 out of the 10 patients kept in the intermediate group by

the ESC algorithms can be safely discharged if ANN is used. Similar

performance improvement was observed irrespectively of the timing

of the sampling. A practical advantage with both ANN and LogReg is

that a numeric estimate of the AMI risk is obtained that may guide the
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clinical decision further and not just a classification as is the case with

the ESC algorithms. This is a particular advantage as health care sys-

tems in, for example, Europe and the United States may have different

regulatory requirements and tolerances of risk and thus may have dif-

ferent preferred thresholds for ruling out AMI.6

There are only a few previous attempts to use machine learning

within this field.6,19,20 Our results are in line with the most recent

of these studies, Than et al6, where improved prediction accuracy of

their machine algorithm relative to the ESC 0/1 and 0/3 hour algo-

rithms were reported using hs-cTnI. We extend their results by using

hs-cTnT and by showing that the improvement goes beyond what can

be obtained with more straightforward logistic regression approaches

that do not incorporate dynamic interactions between input variables.

A major reason for the improvement is most likely not so much the

“black box” power of ANN as such, but rather the more elaborate han-

dling by the ANN of how level and changes in cardiac troponin concen-

tration and demographic variables interact with respect to the likeli-

hood of AMI.

Age is a strong risk factor for AMI and males have elevated risks at

younger ages than females.21 A previous study showed that theNPVof

ahs-cTnT<5ng/Latpresentationwas similarly high inmenandwomen

and when stratified by age or cardiovascular risk factors.22 However,

the independence of the prognostic value of troponin does not neces-

sarily extend to situations with paired hs-cTnT and varying time sam-

pling schemes. We saw that the risk predictions and classifications by

the ANN for specific troponin patterns differed with age. By contrast,

classifications did not seem tovarywith sex.Our expectation is that the

performance advantage of using ANN versus more explainable models

that do not allow for dynamic interactions will increase further if addi-

tional input features such as pain history, ECG, and comorbidities are

used.13 Another potentially interesting usageof theANNmethodology

is when only the first hs-cTnT sample is available together with other

clinical data as a support tool to guide the decision to rule in, rule out,

or order a second sample.

In summary, versatile algorithms that are not bound to specific

sampling schemes or fixed tolerances of risk have the potential to

improve risk assessment among patients presenting with chest pain at

the ED. Compared to the explainable models (the ESC algorithm and

the logistic regression model), the machine learning model with hid-

den layers candetect interactionsbetween for example, troponin levels

and demographic variables that could potentially aid the physicians in

reducing the intermediate risk group of patients. However, the inter-

mediate group was still considerable. Adding other relevant features

from the current ED visit, as well as from previous health care records,

is therefore a topic for additional investigations.
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