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Summary

To understand the process of cardiac aging, it is of crucial impor-

tance to gain insight into the age-related changes in gene expres-

sion in the senescent failing heart. Age-related cardiac remodeling

is known to be accompanied by changes in extracellular matrix

(ECM) gene and protein levels. Small noncoding microRNAs regu-

late gene expression in cardiac development and disease and have

been implicated in the aging process and in the regulation of ECM

proteins. However, their role in age-related cardiac remodeling

and heart failure is unknown. In this study, we investigated the

aging-associated microRNA cluster 17–92, which targets the ECM

proteins connective tissue growth factor (CTGF) and thrombo-

spondin-1 (TSP-1). We employed aged mice with a failure-resistant

(C57Bl6) and failure-prone (C57Bl6 · 129Sv) genetic background

and extrapolated our findings to human age-associated heart fail-

ure. In aging-associated heart failure, we linked an aging-induced

increase in the ECM proteins CTGF and TSP-1 to a decreased

expression of their targeting microRNAs 18a, 19a, and 19b, all

members of the miR-17–92 cluster. Failure-resistant mice showed

an opposite expression pattern for both the ECM proteins and the

microRNAs. We showed that these expression changes are specific

for cardiomyocytes and are absent in cardiac fibroblasts. In cardio-

myocytes, modulation of miR-18 ⁄ 19 changes the levels of ECM

proteins CTGF and TSP-1 and collagens type 1 and 3. Together, our

data support a role for cardiomyocyte-derived miR-18 ⁄ 19 during

cardiac aging, in the fine-tuning of cardiac ECM protein levels. Dur-

ing aging, decreased miR-18 ⁄ 19 and increased CTGF and TSP-1 lev-

els identify the failure-prone heart.
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Introduction

Aging is considered a multifactorial process that is controlled by genetic

and environmental factors and ultimately leads to deterioration of body

and organ functions. Heart failure (HF) is a typical age-associated disease

and is characterized by unique physiological and morphological changes

in aged myocardium [reviewed in (Lakatta & Sollott, 2002)]. Although the

rate and mechanism through which an animal or tissue ages differ among

species, the constant remodeling and accumulation of the extracellular

matrix (ECM) are recognized as a key feature of cardiac aging in humans,

mice, and rats and contributes to the structural changes that lead to HF

with advancing age (Capasso et al., 1990; Barasch et al., 2009; Boyle

et al., 2011). In particular, the expression of the ECM proteins SPARC

(Bradshaw et al., 2010), fibronectin (Burgess et al., 2001), thrombospon-

din-2 (TSP-2) (Swinnen et al., 2009), and connective tissue growth factor

(CTGF) (Wang et al., 2010) increases with aging. Both TSP-2 knockout

mice and cardiomyocyte-specific CTGF transgenic animals develop spon-

taneous age-related cardiomyopathy (Panek et al., 2009; Swinnen et al.,

2009), confirming a role of ECM proteins in age-related cardiac remodel-

ing. However, the underlying mechanisms that drive the age-related gene

expression of ECM molecules remain elusive.

The identification of small noncoding microRNAs (miRNAs) opened

new doors for investigating the regulation of gene expression by adding

another layer of control at the post-transcriptional level. MiRNAs are

approximately 22 nucleotides long RNA molecules that can target mRNAs

for translational repression or degradation by complementary binding to

specific sequences in the protein-coding gene transcript. The first implica-

tion of miRNAs in aging was provided by a study that showed that lin-4

and its target protein lin-14 determine longevity in C. elegans by affect-

ing the insulin-like signaling pathway (Boehm & Slack, 2005). Now, miR-

NAs have emerged as important mediators of diverse age-associated

pathologies, ranging from cancer and diabetes to neurodegenerative dis-

orders (Grillari & Grillari-Voglauer, 2010), and increasing evidence dem-

onstrates altered miRNA expression profiles in aging muscle, brain, lung,

and liver [reviewed in (Chen et al., 2010)]. In addition, miRNAs are regu-

lated during cellular senescence, and complete loss of miRNA function

caused premature senescence in embryonic fibroblasts (Mudhasani et al.,

2008), putting miRNAs in the forefront of cellular senescence in different

organs and cell types (Chen et al., 2010; Grillari and Grillari-Voglauer,

2010). Their role in the heart was first suggested by expression profiling

studies showing changes in the expression of specific miRNAs in failing

human hearts (van Rooij et al., 2006; Thum et al., 2007). Further animal

models proved the involvement of specific miRNAs in cardiac develop-

ment, function, and under pathological conditions (van Rooij et al., 2007;

Zhao et al., 2007; da Costa Martins et al., 2010). Nevertheless, despite

their proven importance in aging, cardiac disease, and development, a

role for miRNAs during cardiac aging and age-related HF remains to be

elucidated.

This study investigated the role of the miR-17–92 cluster in the aged

heart, in view of its central role in regulation of matrix genes and in cellu-

lar aging (Dews et al., 2006; Suarez et al., 2008; Shan et al., 2009). This

cluster encodes six miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-

20a, and miR-92a-1) that are located within an 800-base pair region of

human chromosome 13. Originally, the miR-17–92 cluster was linked to
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tumor genesis, and transcription of the cluster was found to be directly

activated by the proto-oncogene c-Myc (He et al., 2005) [reviewed in(van

Haaften & Agami, 2010)]. The pro-oncogenic activity of miR-17–92 par-

tially involves the regulation of the ECM proteins CTGF and thrombo-

spondin-1 (TSP-1) by the cluster members miR-18 and miR-19, through

sequence-specific targeting within the 3¢-untranslated region (3¢-UTR) of

these gene transcripts (Supporting information Fig. S1) (Dews et al.,

2006). Interestingly, cardiogenesis was severely hampered in mice defi-

cient for miR-17–92, suggesting an important role for this cluster in car-

diac development (Ventura et al., 2008). This, together with miR-18 and

miR-19 targeting CTGF and TSP-1 and the fact that ECM proteins are cru-

cial for healthy cardiac aging, has led us to hypothesize that these miRNAs

play a role in age-related cardiac remodeling. Therefore, we investigated

whether age-related changes in miR-18a, miR-19a, and miR-19b expres-

sion regulate CTGF, TSP-1, and collagen levels in rodent models of aging-

associated heart failure and in the human failing heart.

Results

HF-prone mice develop cardiac dilation and dysfunction at

old age

As a model for age-related HF in rodents, we examined age-associated

changes in cardiac function in two genetically different mouse strains, i.e.

C57Bl6 (HF resistant) and C57Bl6 · 129Sv (HF prone). Both strains devel-

oped normally, and echocardiographic analysis showed no differences in

cardiac function at 12 and 52 weeks of age. However, fractional shorten-

ing was significantly compromised in 104-week-old HF-prone mice com-

pared to age-matched HF-resistant hearts (Table 1). Indices of left

ventricular wall thickness, LVPW and IVS, indicated progressive thinning

of the LV wall with aging in HF-prone mice, followed by ventricular dila-

tion at old age (Table 1). HF-resistant mice on the other hand had no ven-

tricular dilation and showed a tendency to increased wall thickness with

aging, resulting in a preserved cardiac function at old age (Table 1). Age-

associated cardiac dysfunction in HF-prone mice was further shown by

significantly higher heart, kidney, and lung weights at old age (Table 1).

Thus, poor cardiac aging in HF-prone mice was characterized by a dilated

cardiomyopathy-like phenotype as is seen in human HF.

HF-prone hearts have more interstitial fibrosis and increased

levels of CTGF and TSP-1

Dilated cardiomyopathy is characterized by increased deposition of inter-

stitial collagen, stiffening the heart, and compromising its contractility

(Kemi et al., 2000; Burgess et al., 2001). Histological examination of car-

diac sections showed significant interstitial fibrosis in HF-prone mice as

compared to 52-week littermates and to 104-week-old HF-resistant

hearts (Fig. 1A, B). On the other hand, the mild increase in collagen in

aged HF-resistant mice was not significant (Fig. 1A, B), while accumula-

tion of interstitial collagen was similar in 12- and 52-week-old HF-resis-

tant and HF-prone mice. As expected, perivascular fibrosis increased with

aging, but was not different between HF-prone and HF-resistant hearts

(Fig. 1A, B).

The ECM proteins CTGF and TSP-1 are recognized as powerful regula-

tors of ECM remodeling and are mediators of tissue fibrosis in humans,

mice, and rats (Belmadani et al., 2007; Shi-Wen et al., 2008). We found

significantly increased cardiac transcript and protein levels of CTGF and

TSP-1 in 104-week-old HF-prone mice (Fig. 2A, B; Supporting informa-

tion Fig. S2). Vice versa, the hearts of aged HF-resistant mice had no

induction of CTGF and TSP-1 transcript or protein levels (Fig. 2A, B).

Therefore, increased interstitial fibrosis and CTGF and TSP-1 expression

characterize the HF-prone aged heart.

Opposite cardiac miR-17–92 cluster expression profiles in

HF-resistant and HF-prone aging

CTGF and TSP-1 have been identified as target genes of the miR-17–92

cluster (Dews et al., 2006), more specifically of the cluster members

miR-18a and miR-19a ⁄ b (Suarez et al., 2008; Ohgawara et al., 2009).

We found opposite expression profiles of the miR-17–92 cluster in

Table 1 Echocardiographic and morphometric analysis of male mice at different ages

HF resistant HF prone

12 weeks n = 8 52 weeks n = 8 104 weeks n = 9 12 weeks n = 9 52 weeks n = 7 104 weeks n = 8

FS (%) 28 ± 1.5 29 ± 1.6 29 ± 1.7 28 ± 2.0 29 ± 3.5 20 ± 2.2*†�

LVIDd (mm) 4.0 ± 0.1 4.2 ± 0.1 4.2 ± 0.1 3.8 ± 0.2 3.7 ± 0.2 4.6 ± 0.2*†

LVIDs (mm) 2.9 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 2.7 ± 0.1 2.7 ± 0.2 3.7 ± 0.3*†�

LVPWd (mm) 0.75 ± 0.03 0.84 ± 0.03* 0.90 ± 0.03* 0.99 ± 0.11 0.91 ± 0.05 0.88 ± 0.06

LVPWs (mm) 1.16 ± 0.06 1.18 ± 0.06 1.27 ± 0.04 1.40 ± 0.08� 1.22 ± 0.04 1.02 ± 0.07*†�

IVSd (mm) 0.72 ± 0.01 0.81 ± 0.03* 0.81 ± 0.04* 0.96 ± 0.15 0.91 ± 0.05 0.83 ± 0.03

IVSs (mm) 1.03 ± 0.01 1.22 ± 0.04* 1.18 ± 0.07 1.41 ± 0.18 1.37 ± 0.09 1.06 ± 0.06†

Heart rate (bpm) 482 ± 14 473 ± 11 493 ± 8 506 ± 15 521 ± 9� 502 ± 25

Body weight (g) 25.0 ± 0.3 30.8 ± 0.5* 33.2 ± 0.8*† 23.5 ± 1.1 29.8 ± 0.7* 29.8 ± 0.7*�

HW ⁄ BW ratio (mg g)1) 4.8 ± 0.1 4.8 ± 0.2 4.4 ± 0.1* 5.4 ± 0.2� 5.5 ± 0.1� 6.0 ± 0.3�

LuW ⁄ BW ratio (mg g)1) 5.7 ± 0.3 5.7 ± 0.2 6.2 ± 0.2 5.9 ± 0.3 5.9 ± 0.3 7.5 ± 1.0

LiW ⁄ BW ratio (mg g)1) 48.0 ± 0.7 47.7 ± 1.1 48.1 ± 0.9 47.0 ± 2.8 46.6 ± 1.6 53.7 ± 3.8

KiW ⁄ BW ratio(mg g)1) 8.0 ± 0.2 8.7 ± 0.3 8.7 ± 0.2 8.8 ± 0.4 11.9 ± 0.3*� 11.3 ± 0.4*�

FS, fractional shortening; HF, Heart failure; LVIDd and LVIDs, left ventricular internal diameter in diastole and systole; LVPWd and LVPWs, left ventricular posterior wall

thickness in diastole and systole; IVSd and IVSs, intraventricular septum thickness in diastole and systole; HW, heart weight; BW, body weight; LuW, lung weight; LiW,

liver weight; KiW, kidney weight.

*P £ 0.05 vs 12 weeks of age with the same genotype.

†P £ 0.05 vs 52 weeks of age with the same genotype.

�P £ 0.05 vs HF-resistant mice with the same age.
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HF-prone aging compared to aging with preserved cardiac function. At

104 weeks of age, HF-prone mice had significantly reduced expression

levels of miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a-1

as compared to 12-week littermates (Fig. 2C and Supporting informa-

tion Table S1), coinciding with the observed increased presence of their

targets TSP-1 and CTGF. Aging of HF-resistant mice, on the other hand,

was accompanied by significantly enhanced expression of these

miRNAs, except for miR-17 and miR-20a (Supporting information

Table S1).

The miR-18 ⁄ 19 – CTGF ⁄ TSP-1 axis is regulated in human age-

associated heart failure

The three miR-17–92 cluster members miR-18a, miR-19a, and miR-19b

specifically target the ECM proteins CTGF and TSP-1. To investigate the

role of these genes in human HF, we studied their expression profiles in

cardiac biopsies of idiopathic cardiomyopathy (ICM) patients at old age

with a moderately decreased or preserved systolic function (ejection frac-

tion (EF) between 40 and 55%) (Paulus et al., 2007) and severely

12 weeks old 52 weeks old 104 weeks old
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Fig. 1 Enhanced left ventricular interstitial fibrosis in old heart

failure (HF) prone mice. (A) Histological analysis of the hearts

of HF-resistant and HF-prone mice by Sirius Red staining.

Photographs show representative areas of interstitial fibrosis

(upper panel) and collagen deposition in the perivascular area

(lower panel). Scale bars represent 100 lm. (B) Quantitative

analysis of the interstitial and perivascular collagen content in

HF-resistant (12 weeks, n = 8; 52 weeks, n = 8; and

104 weeks, n = 9) and HF-prone mice (12 weeks, n = 6;

52 weeks, n = 11; and 104 weeks, n = 9) revealed increased

interstitial fibrosis in the left ventricles of 104-week-old

HF-prone mice. Perivascular fibrosis was significantly increased

in 104-week-old hearts, but was not different between

HF-resistant and HF-prone mice. Data are presented as

mean ± SEM. *P £ 0.05 vs 52-week-old HF-prone mice;

†P £ 0.05 vs 104-week-old HF-resistant mice.
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impaired cardiac function (EF < 30%) and compared them to young ICM

subjects. In line with reduced expression levels in failing hearts of old

mice, decreased miR-18a, miR-19a, and miR-19b expression was associ-

ated with severe heart failure at old age (Fig. 3A), while miRNA expres-

sion in old patients with a preserved function was not different from

young ICM patients (Fig. 3A). Additionally, CTGF and TSP-1 transcript lev-

els were significantly induced in old failing ICM hearts, which further cor-

roborates our findings in old HF-prone mice (Fig. 3B). Together, these

data suggest that regulation of CTGF and TSP-1 is the result of the shared

expression of miR-18a, miR-19a, and miR19b, enabling modest changes

in miRNA expression to control transcriptional repression.

The miR-18 ⁄ 19 – CTGF ⁄ TSP-1 axis is regulated in aged

cardiomyocytes in vitro

To gain further insight into the role of the miR-17–92 cluster in aging

of cardiomyocytes, neonatal rat cardiomyocytes (NRCMs) were aged

in vitro, and miRNA levels were determined.

Aging of cardiomyocytes in vitro was validated by comparing the lipo-

fuscin content in 4- and 21-day-old NRCMs to the intracellular accumula-

tion of lipofuscin in the hearts of 12- and 104-week-old C57Bl6 mice.

Lipofuscin, being autofluorescent, nondegradable biological ‘garbage’, is

a hallmark of aging in postmitotic cells, such as cardiomyocytes and neu-

rons (Terman & Brunk, 2004). On high magnification examination using

electron microscopy, accumulation of lipofuscin was rarely observed in

the hearts of 12-week-old mice, whereas a large amount of intralysoso-

mal lipofuscin inclusions was detected in 104-week-old mice (Fig. 4A).

Prolonged culturing of NRCMs resembles the aging process in mice, as

lipofuscin was hardly detected at 4 days but had accumulated at

21 days, while the characteristic sarcomere structures were maintained

(Fig. 4A). Using optical imaging lipofuscin content per cardiomyocyte

increased >150-fold after 21 days compared to 4-day-old NRCMs

(Fig. 4B).

Beside lipofuscin accumulation, the aged myocardium is hallmarked by

increased matrix deposition. To study the production of collagen in aged

cardiomyocytes, we determined collagen type 1A1 and 3A1 levels.

RT-PCR analysis showed significant induction of the thin collagen type

3A1, but not the thicker type 1A1, in 21-day-old NRCMs (Fig. 4C), further

strengthening the aged phenotype of these cells. Taken together, pro-

longed culturing of NRCMs resembles two common characteristics of car-

diac aging in vivo and was therefore used to study age-related changes in

cardiomyocytes in vitro.
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GAPDH

TSP-1

CTGF
GAPDH

TSP-1

(A)

(B)

(C)

Fig. 2 Opposite expression profiles in heart failure (HF)-resis-

tant versus HF-prone mice. CTGF, TSP-1, miR-18a, miR-19a,

and miR-19b levels in aged HF-resistant (12 weeks, n = 8;

52 weeks, n = 8; and 104 weeks, n = 9) and HF-prone mice

(12 weeks, n = 6; 52 weeks, n = 11; and 104 weeks, n = 9).

(A and B) Immunoblotting was performed on four mice per

age-group and revealed significant induction of CTGF and

TSP-1 protein expression in failing hearts of 104-week-old

HF-prone mice, whereas CTGF and TSP-1 levels were reduced

in old HF-resistant mice. Immunoblots show representative

protein bands of TSP-1, CTGF, and GAPDH. (C) RT-PCR analy-

sis showed increased expression of miR-18a, miR-19a, and

miR-19b in 104-week-old HF-resistant hearts, whereas age-

matched HF-prone mice had decreased expressions. miRNA

expression and CTGF and TSP-1 protein levels were normalized

for GAPDH expression and presented as mean ± SEM.

*P £ 0.05 vs 12 weeks of age; †P £ 0.05 vs 52 weeks of age;

$P = 0.05 vs 12 weeks of age.
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RT-PCR analysis showed that the expression levels of all members of

the miR-17–92 cluster were reduced in aged cardiomyocytes, except miR-

92a-1 (Fig. 4D and Supporting information Table S2). Importantly, miR-

18a, miR-19a, and miR-19b were among the most strongly repressed

miRNAs. Along with reduced expression of these miRNAs, CTGF and TSP-

1 transcript and protein levels were significantly induced in aged cardio-

myocytes (Fig. 4E, F). These findings confirm the expression profiles in

aged HF-prone mice and again suggest that miR-18a, miR-19a, and miR-

19b could transcriptionally repress CTGF and TSP-1 levels in cardiomyo-

cyte aging and HF at old age.

Cardiomyocyte CTGF and TSP-1 and collagen production are

regulated by miR-18 ⁄ 19

To investigate the cardiac localization of miR-18 and -19, we performed

in situ hybridization. MiR-18a and miR-19b are abundantly expressed in

the adult mouse heart and are predominantly localized in the perinuclear

area of cardiomyocytes (Fig. 5A–C). This was corroborated by the finding

that miR-18a and miR-19b expression was higher in cardiomyocytes com-

pared to cardiac fibroblasts (Fig. 5D). Importantly, the abundant expres-

sion of miR-18a and miR-19b in cardiomyocytes coincides with low levels

of CTGF and TSP-1, whereas in cardiac fibroblasts, relatively low levels of

miR-18a and miR-19b were associated with high CTGF and TSP-1 tran-

scription (Fig. 5E).

Next, we performed a series of functional studies to determine the role

of miR-18a and miR-19b in the regulation of CTGF and TSP-1 and colla-

gen production in cardiomyocytes and cardiac fibroblasts. Overexpression

of miR-18a and miR-19b, using miRNA mimics, resulted in significant

repression of CTGF and TSP-1 mRNA and protein expression in cardio-

myocytes (Fig. 5F and G; Supporting information Fig. S3A). Vice versa,

blunting of miR-18a and miR-19b using antagomirs was sufficient to

increase CTGF and TSP-1 transcript and protein levels in cardiomyocytes

(Fig. 5F, G; Supporting information Fig. S3A). Cardiac fibroblasts demon-

strated decreased CTGF and TSP-1 transcript levels upon introduction of

miR-18a and miR-19b; however, this did not result in reduced protein lev-

els (Fig. 5H, I). Along the same line, endogenous miRNA inhibition was

not sufficient to enhance CTGF and TSP-1 transcript and protein expres-

sion in cardiac fibroblasts (Fig. 5H, I; Supporting information Fig. S3B).

These results show that regulation of CTGF and TSP-1 by miR-18a and

miR-19b is uniquely restricted to the cardiomyocyte.

CTGF and TSP-1 are pro-fibrotic (Belmadani et al., 2007; Shi-Wen

et al., 2008), and therefore, we investigated whether their regulating

miRs-18a and miR-19b were also capable of affecting collagen produc-

tion. Indeed, overexpression of miR18a and miR-19b in cardiomyocytes

repressed collagen 1A1 and 3A1 mRNA levels, while inhibition of these

miRNAs using antagomirs significantly enhanced collagen transcription

(Fig. 6A). In contrast, collagen 1A1 and 3A1 transcription was not

affected by either miR-18a and miR-19b overexpression or inhibition in

neonatal rat cardiomyocytes and cardiac fibroblasts (NRCFs), indicating

that collagen expression in cardiac fibroblasts is unrelated to these miR-

NAs (Fig. 6B). Thus, in concordance with CTGF and TSP-1 regulation by

miR-18a and miR-19b in cardiomyocytes, these data strongly imply that

miR-18a and miR-19b contribute to the induction of collagen synthesis in

aged cardiomyocytes via the regulation of the pro-fibrotic CTGF and

TSP-1.

Discussion

With aging, cardiac function declines as the result of cardiomyocyte loss,

left ventricular hypertrophy, dilation and accumulation and remodeling

of the extracellular matrix (Lakatta & Sollott, 2002). It is well accepted

that genetic changes significantly contribute to the aging process in the

heart (Bodyak et al., 2002; Park & Prolla, 2005). Because of the highly

accessible mRNA microarray technique, most studies primarily focused on

the regulation of gene expression by transcriptional control. With the dis-

covery of miRNAs, now the emphasis is being expanded to the post-tran-

scriptional level of regulation that gives rise to these age-specific gene

profiles.

A study showing that the miRNA lin-4 and its target protein lin-14

determine life span in C. elegans has paved the way for exploring the role

of miRNAs in aging (Boehm & Slack, 2005). Now, increasing evidence on

miRNAs as mediators of age-associated pathologies, together with

reports of age-related changes in miRNA expression in aged organs and

senescent cells, points toward miRNA regulation as a common biological

mechanism that underlies aging and cellular senescence in different

organs and cell types (Mudhasani et al., 2008; Chen et al., 2010; Grillari

and Grillari-Voglauer, 2010). Nevertheless, so far no studies have

addressed the role of miRNAs in the old heart and aging of cardiomyo-

cytes.

In the present study, we showed extensive changes in the expression of

the miR-17–92 cluster in a model of age-related heart failure in mice. We

were able to extrapolate our findings to patients, which confirm the well-

recognized highly conserved nature of microRNAs and their target sites.

Initially, the miR-17–92 cluster was linked to cancer pathogenesis and

was thought to be pro-tumorgenic because of its regulation by c-Myc

(Dews et al., 2006). However, the cluster was later found to be tumor

suppressive in multiple forms of cancer (Zhang et al., 2006). Tumor sup-

pressor mechanisms can induce cellular senescence and contribute to the

aging process (Campisi, 2003), turning the miR-17–92 cluster into a

(A)

(B)

Fig. 3 CTGF and TSP-1 expression are elevated in human heart failure (HF). RT-

PCR analysis of miR-18a, miR-19a, miR-19b, CTGF, and TSP-1 transcript levels in

myocardial biopsies from idiopathic cardiomyopathy (ICM) patients at older age

with normal (n = 5) and severely impaired (n = 9) cardiac function. Transcript levels

were compared to the expression in young ICM subjects with a preserved cardiac

function (n = 5). (A) MiR-18a, miR-19a, and miR-19b expression was significantly

decreased in older ICM patients with HF. (B) CTGF and TSP-1 transcript levels were

significantly induced in older patients with a compromised cardiac function, when

compared to younger ICM subjects. All data were normalized for GAPDH

expression and presented as mean ± SEM. *P £ 0.05 vs young ICM patients.

$P = 0.06 in failing vs nonfailing hearts of older ICM patients.
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potential mediator of aging. Indeed, overexpression of miR-17 and miR-

20a inhibited senescence in primary human fibroblasts by blunting the

activation of p21WAF1, while inhibition of miR-17 caused senescence in

anaplastic thyroid cancer cells (Takakura et al., 2008; Hong et al., 2010).

Furthermore, miR-17–92 expression is consistently down-regulated in

multiple models of aging, i.e. after irradiation (Maes et al., 2008), p53

induction (Brosh et al., 2008), or stress-induced senescence (Li et al.,

2009), and in old human skin, bone-marrow-derived mesenchymal stem

cells, T cells (Hackl et al., 2010), and peripheral blood mononuclear cells

(Noren Hooten et al., 2010). These reports are in line with our data show-

ing repression of the miR17–92 cluster in old failing hearts. In addition,

we demonstrate that the miR-17–92 cluster is part of the senescence sig-

nature of the aged cardiomyocyte.

From the six members of the miR-17–92 cluster, miR-18a, miR-19a,

and miR-19b were among the most strongly repressed miRNAs in aged

cardiomyocytes and hearts of old failure-prone mice. Several studies have

linked these specific cluster members, and not the other cluster members,

to the matricellular proteins CTGF and TSP-1 (Dews et al., 2006; Suarez

et al., 2008; Ohgawara et al., 2009). Interestingly, CTGF upregulation in

age-induced cardiac disease correlates with TGF-b induction, cardiac

fibrosis, and left ventricular stiffening (Koitabashi et al., 2007; Wang

et al., 2010). The role of TSP-1 in cardiac aging was not reported so far,

but another member of the family of thrombospondins, TSP-2, was

recently shown to be up-regulated in aged hearts and to protect against

age-related cardiac dysfunction (Swinnen et al., 2009). Here, we showed

increased expression of CTGF and TSP-1 in age-related HF both in mice

and human.

Traditionally, it has been assumed that CTGF and TSP-1 are predomi-

nantly expressed by fibroblasts in the heart. However, several studies have

recognized that during cardiac remodeling, CTGF and TSP-1 are also

secreted by cardiomyocytes to regulate their surrounding ECM environ-

ment (Ohnishi et al., 1998; Chen et al., 2000; Frangogiannis et al.,

2005). Moreover, a role for miRNAs in regulating CTGF expression in car-

diomyocytes has been established by Duisters et al., (2009), who showed

that increased CTGF transcription during pathological LV hypertrophy in

(young) hearts is controlled by miR-30 and miR-133. Our in vitro results

support a role for miR-18a, miR-19a, and miR-19b in regulating CTGF

and TSP-1 expression in the aged cardiomyocyte. Here, miRNA mimics of

miR-18a and miR-19b blunted the expression of CTGF and TSP-1, and

vice versa, inhibition of these miRNAs enhanced CTGF and TSP-1 levels. In

cardiac fibroblasts, overexpression of miR-18a and miR-19b also

decreased CTGF and TSP-1 transcription; however, inhibition of these

miRNAs was not sufficient to increase CTGF and TSP-1. This may be

attributed to the fact that a fibroblast produces large amounts of CTGF

4 days 21 days

12 weeks, in vivo

4 days, in vitro 21 days, in vitro

104 weeks, in vivo 4 days, in vitro 21 days, in vitro

CTGF
GAPDH

TSP-1

(A) (B)

(C)

(E) (F)

(D)

Fig. 4 Aging-induced expression profiles in cardiomyocytes

in vitro. (A) Electron microscopic images of the left ventricle of

12- and 104-week-old mice, and 4- and 21-day-old neonatal

rat cardiomyocytes (NRCMs) showing perinuclear accumula-

tion of lipofuscin in cardiomyocytes of 104-week-old mice and

NRCMs after 21 days in culture. Scale bars represent 2 lm. (B)

Two-photon ⁄ confocal images and quantification of autofluo-

rescent lipofuscin granules (green) in cultured cardiomyocytes.

Nuclei are stained with Hoechst (blue). Scale bars represent

100 lm. (C) RT-PCR analysis showed significant induction of

collagen type 3A1 (COL3A1), but not collagen type 1A1

(COL1A1) in cultured NRCMs. (D) RT-PCR analysis revealed

decreased miR-18a, miR-19a, and miR-19b expression in aged

NRCMs after 21 days in culture. (E) CTGF and TSP-1 transcript

levels increased with NRCM aging in vitro. (F) Immunoblotting

confirmed the increase in CTGF and TSP-1 protein induction

during cardiomyocyte aging. All in vitro experiments were per-

formed with n = 3 per group, and protein and transcript levels

were normalized for GAPDH expression. Data were presented

as mean ± SEM. *P £ 0.05 vs 4-day-old NRCMs.
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and TSP-1 while it contains relatively low amounts of miR-18a and miR-

19b. These results imply that the age-related regulation of CTGF and TSP-

1 expression by miR-18a and miR-19b in the heart is uniquely restricted to

the cardiomyocyte to control its surrounding ECM.

In conclusion, our study is the first to show that miRNA expression of

the miR-17–92 cluster changes with cardiac aging and associates

decreased miR-18a, miR-19a, and miR-19b expression with age-related

remodeling in the heart. Our results suggest that up-regulation of these

19b

CTGF

TSP-1
Cardiomyocyte

TSP-1
Fibroblast

CTGF

CTGF

CTGF

GAPGH

GAPGH

Scrambled miR-18a miR-19a/b

TSP-1

TSP-1

scr 18a
Mimic

19bscr 18a
Mimic

19b

CTGF
GAPGH

TSP-1
scr 18a

Antagomir

CTGF
GAPGH

TSP-1
19bscr 18a

Antagomir

(A) (B) (C) (D)

(E)

(G)

(I)

(F)

(H)

Fig. 5 MiR-18a and miR-19b regulate CTGF and TSP-1 expression in cardiomyocytes. (A–C) In situ hybridization showed the abundant expression of miR-18a and miR-19b in

the myocardium of adult C57Bl6 mice, most of it expressed by cardiomyocytes. Black arrows indicate the cardiomyocyte nucleus and illustrate the perinuclear localization of

these miRNAs. (D and E) Comparison of the expression profiles in cultured neonatal rat cardiomyocytes (NRCMs) and neonatal rat cardiac fibroblasts (NRCFs) shows that

abundant expression of miR-18a and miR-19b in NRCMs is paralleled by low CTGF and TSP-1 transcript levels. (F and G) Immunoblotting revealed that manipulating miR-18a

and miR-19b function by overexpression of these miRNAs using mimics in NRCMs was sufficient to decrease CTGF and TSP-1 protein expression, while inhibition with

antagomirs enhanced CTGF and TSP-1 levels. (H and I) In contrast to NRCMs, immunoblotting in cultured NRCFs showed that CTGF and TSP-1 protein expression was not

suppressed by overexpression of miR-18a and miR-19b, nor did inhibition of these miRNAs result in increased CTGF and TSP-1 levels. Mimic and antagomir experiments were

performed with n = 4 per group, and data were normalized for GAPDH expression. Data were presented as mean ± SEM. *P £ 0.05 vs scrambled control oligonucleotides.
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miRNAs in the aged failure-protected heart blunts the expression of TSP-1

and CTGF to dampen the fibrotic remodeling process that contributes to

the functional decline with age. Although we do not show direct regula-

tion of CTGF and TSP-1 by these miRNAs, previous data have proven a

direct mechanism (Suarez et al., 2008; Ohgawara et al., 2009). This study

provides evidence for the involvement of miRNAs in regulating cardiac

aging and identifies them as potential new therapeutic targets for the

modulation of aging-induced cardiac remodeling.

Methods

An expanded Methods section is available in the Data S1.

Mice

Male C57Bl6 mice were obtained from Janvier (Le Genest Saint Isle,

France), and mice on a C57Bl6 · 129Sv genetic background were gener-

ated within the animal facility of the University of Maastricht. All animals

were housed under standard day–night rhythm and ad libitum conditions

until 12, 52, and 104 weeks of age. Cardiac function was assessed under

sedation (2% isoflurane), followed by removal of the hearts for further

histological and molecular analyses. For histology, hearts were fixed in

1% paraformaldehyde, embedded in paraffin, and stained with Sirius

red. For high magnification analysis, hearts were fixed in 2.5% glutaral-

dehyde. Electron microscopic images were made with a Philips CM100

(F.E.I., Eindhoven, The Netherlands).

This study was approved by the Institutional Animal Research Commit-

tee and conforms with the guidelines for the use of laboratory animals

formulated in the Dutch law on care and use of experimental animals.

Patients

Nineteen subjects diagnosed with ICM were included based on age

and cardiac function. Five old patients (60.5 years ± 0.8) with pre-

served cardiac function (ejection fraction between 40 and 55%) and

no signs of coronary artery disease (EF: 45.6% ± 9.2) and nine ICM

patients at older age (67.0 years ± 4.3) with a severely compromised

cardiac function (EF: 18.9% ± 3.0) were compared to a group of five

young patients (33.2 years ± 4.4) with preserved cardiac function (EF:

46.5% ± 4.4). This study occurred in line with the recommendations

of the institutional ethics committee of the University Hospital

Maastricht.

In vitro experiments

Neonatal rat cardiomyocytes and cardiac fibroblasts were isolated from

1- to 3-day-old Lewis rats as described previously (De Windt et al.,

1997).

For aging of cardiomyocytes in vitro, NRCMs were cultured for 4 and

21 days, and autofluorescent lipofuscin was excited using a laser at

488 nm, with confocal detection at 510–560 nm (Nikon Eclipse E600FN,

Tokyo, Japan). Hoechst-stained nuclei were excited with a two-photon

COL1A1

COL3A1

Cardiomyocyte

COL3A1

Fibroblast

COL1A1

(A)

(B)
Fig. 6 MiR-18a and miR-19b regulate collagen 1A1 and 3A1

expression in cardiomyocytes in vitro. RT-PCR analysis for the

induction collagen 1A1 (COL1A1) and collagen 3A1 (COL3A1)

in cultured neonatal rat cardiomyocytes and cardiac fibroblasts

after manipulation with miR-18a and miR-19b mimics and

antagomirs. (A) Overexpression of miR-18a and miR-19b in

cardiomyocytes significantly reduces collagen 1A1 and colla-

gen 3A1 transcript levels, while inhibition of these miRNAs

using antagomirs significantly induced transcription of both

collagen types. (B) Collagen 1A1 and 3A1 expression in cul-

tured cardiac fibroblasts seemed unrelated to miR-18a and

miR-19b, as no significant repression or induction was

observed in NRCFs after treatment with miR-18a and miR-19b

mimics or antagomirs, respectively. All experiments were per-

formed with n = 4 per group, and data were normalized for

GAPDH transcript levels. Data were presented as mean ± SEM.

*P £ 0.05 vs scrambled control oligonucleotides.
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Spectra-Physics Tsunami laser (Spectra-Physics, Irvine, CA, USA) centered

at 800 nm and visualized at 400–480 nm. The lipofuscin content per car-

diomyocyte was determined using Leica Qwin image processing and anal-

ysis software (Leica. Microsystems Cambridge Ltd, Cambridge, UK).

For the overexpression or inhibition of miR-18a and miR-19b, NRCMs

and NRCFs were transfected with 80 nm miRIDIAN hairpin inhibitor

(antagomiR) miR-18a (#IH-300487-06) or miR-19b (#IH-300489-05), or

with miRIDIAN mimic miR-18a (#C-300487-05), or miR-19b (#C-300489-

03) (Dharmacon, Colorado, CO, USA). Cells transfected with miRIDIAN

microRNA hairpin inhibitor negative control #1 (#IN-001005-01) and

miRIDIAN microRNA mimic negative control #2 (#CN-002000-01) served

as control groups.

RNA isolation and Real-time PCR

Total RNA was extracted from homogenized cells and heart tissues

using the mirVANA miRNA isolation kit (Ambion, Austin, TX, USA)

according to the manufacturer’s protocol. Gene transcript levels of

CTGF, TSP-1, collagen 1A1, and collagen 3A1 (primer sequences are

listed in Supporting information Table S3), or miRNA expression were

detected with the MyIQ Single Color Real-Time PCR detection System

(Bio-Rad, Hercules, CA, USA). MiR-17, miR18a, miR-19a, miR-19b, miR-

20, and miR-92a-1 expression was measured using miRNA-specific

miScript Primer Assays (Qiagen, Hilden, Germany). All expression levels

were presented relative to glyceraldehydes-3-phosphate dehydrogenase

(GAPDH).

Immunoblotting

Proteins were extracted from left ventricular heart tissue and in vitro from

NRCM and NRCFs. Protein lysates were separated by SDS–PAGE and

transferred to a polyvinylidene fluoride membrane (Immobilon-P,

0.45 lm pore size). The membranes were probed overnight at 4�C with a

primary antibody to detect CTGF (#GTX26992; GeneTex Inc., Irvine, CA,

USA), TSP-1 (in-house rabbit anti-human TSP-1 was kindly provided by

MF Hoylaerts (Moura et al., 2008), University of Leuven, Belgium), and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (#RDI-TRK5G4-

6C5; Fitzgerald Inc., Concord, MA, USA). Protein levels were determined

using Quantity One software (Bio-Rad, Hercules, CA, USA) and presented

relative to GAPDH protein expression.

In Situ Hybridization

Mouse left ventricular heart tissue was used for miRNA in situ hybridiza-

tion as described previously (Nuovo, 2010). Double DIG-labeled locked

nucleic acid (LNA) hybridization probes complementary to mouse mature

miR-18a (5DIGN ⁄ CTATCTGCACTAGATGCACCTTA ⁄ 3DIG_N) (#38462-

15), miR-19b (5DIGN ⁄ TCAGTTTTGCATGGATTTGCACA ⁄ 3DIG_N) (#380

92-15), and a scrambled probe (5DIGN ⁄ GTGTAACACGTCTATACGCC-

CA ⁄ 3DIG_N) (#99004-15) were purchased from Exiqon (Vedbaek,

Denmark).

Statistical analysis

All data are expressed as mean ± standard error of the mean (SEM). Dif-

ferences between groups were evaluated by Student’s t-test or one-way

ANOVA with Bonferroni post hoc test when appropriate. Differences in

interstitial and perivascular fibrosis were analyzed by two-way ANOVA and

Bonferroni post hoc test. Probability values <0.05 were considered statis-

tically significant.
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