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Blood biomarkers indicate 
that the preclinical stages 
of Alzheimer’s disease present 
overlapping molecular features
Alfonso Di costanzo1,5, Debora Paris2,5*, Dominique Melck2, Antonella Angiolillo1, 
Gaetano corso3, Mauro Maniscalco 4 & Andrea Motta 2*

It is still debated whether non-specific preclinical symptoms of Alzheimer’s disease (AD) can have 
diagnostic relevance. We followed the evolution from cognitively normal to AD by NMR-based 
metabolomics of blood sera. Multivariate statistical analysis of the NMR profiles yielded models 
that discriminated subjective memory decline (SMD), mild cognitive impairment (MCI) and AD. We 
validated a panel of six statistically significant metabolites that predicted SMD, MCI and AD in a blind 
cohort with sensitivity values ranging from 88 to 95% and receiver operating characteristic values from 
0.88 to 0.99. However, lower values of specificity, accuracy and precision were observed for the models 
involving SMD and MCI, which is in line with the pathological heterogeneity indicated by clinical data. 
This excludes a “linear” molecular evolution of the pathology, pointing to the presence of overlapping 
“gray-zones” due to the reciprocal interference of the intermediate stages. Yet, the clear difference 
observed in the metabolic pathways of each model suggests that pathway dysregulations could be 
investigated for diagnostic purposes.

Alzheimer’s disease (AD) represents the principal neuronal dysfunction. In 2015, ca. 50 million people lived with 
AD worldwide, to reach 75 million by 2030 and progress to 132 million by 2050, causing a dramatic increase of 
the annual healthcare costs (https ://www.alz.co.uk/resea rch/World Alzhe imerR eport 2015.pdf). The administra-
tion of drugs to symptomatic AD patients shows no clinical benefits, most likely because the treatments start 
too late throughout the pathological  process1. In addition, the beginning of the pharmacological treatment is 
also delayed because “older adults are inadequately assessed for cognitive impairment during routine visits with 
their primary care providers”2.

The AD “continuum” from cognitively normal (CN) subjects, begins with a Subjective Memory Decline 
(SMD), and via Mild Cognitive Impairment (MCI) reaches  AD3, with SMD timed 5–11 years, and MCI detected 
1 to 5 years before reaching dementia. MCI subjects may not evolve into dementia as part of them revert to 
CN or do not progress to MCI, which is usually considered the first stage of dementia, including AD. An open 
question is if subtle cognitive changes produce “molecular signs” before clinical manifestations appear. Current 
state-of-the-art diagnostic tools analyze invasively biomatrices like cerebrospinal fluid (CSF), are costly like brain 
imaging, challenging (neuropsychological screening questionnaire) and often of restricted availability, while 
functional diagnostics requires noninvasivity and cost-effective tools to map the evolution of cognitive disorders.

Since about half a liter per day of CSF is drained from the brain into the blood, and such a molecular leakage 
is certainly helped by the damaged blood–brain barrier of  AD4, blood can be considered a valuable biomatrix 
to investigate brain  neurodegeneration5,6. Support to this comes from a comparison between CSF and plasma, 
which identified common metabolic pathways for MCI and AD in both  fluids7. Recently, the development of 
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MCI/AD in older adults was predicted by using plasma  phospholipids8, but the use of the same technical platform 
and the same markers failed to replicate the  results9.

The above results confirm that “there is a signal in the blood: but the question remains, can that signal be 
translated to a replicable and useful biomarkers?”10. In addition, blood accumulates markers from all organs 
and tissues, and the presence of comorbidities and age-related medications certainly  interfere11. Presently, no 
robust and trustable blood-based biomarkers are available for diagnostic purposes. This opens several questions: 
Is this related to clinical heterogeneity of AD? Are biomarkers representative of a specific phenotype? Which is 
the acceptable prediction limit of a model based on blood biomarkers for the AD progression and diagnosis?

In this paper, nuclear magnetic resonance (NMR)-based metabolomics of sera from CN, SMD, MCI and AD 
subjects was used to verify the presence of preclinical markers characterizing the progression to AD. Metabo-
lomics investigates the disease molecular mechanisms and can distinguish phenotypical differences. Metabolites 
are downward products of transcriptome and proteome, and therefore they represent a more specific framework 
to understand complex biological  outcomes12. We obtained specific statistical models that in a blind external 
cohort of subjects predicted groups of patients with sensitivity values ranging from 88 to 95% and receiver 
operating characteristic (ROC) values from 0.88 to 0.99. However, lower values of specificity, accuracy and pre-
cision were obtained for the models involving SMD and MCI. This is in line with the pathological heterogeneity 
indicated by clinical data, and rules out a “linear” molecular evolution of the pathology, pointing to the presence 
of overlapping “gray-zones” between intermediate stages.

Results
Demographic characteristics of the study subjects. We consecutively recruited 250 study partici-
pants. After evaluation of the inclusion/exclusion criteria and acquisition of NMR spectra of serum samples (see 
Methods), we excluded 49 CN, 13 SMD, 9 MCI and 8 AD samples. The schematic diagram illustrating the overall 
study design is reported in Fig. 1.

Selected subjects were randomly allocated in two groups: the first (the training group) comprised 90 patients 
and was used to generate the statistical models based on NMR data; the second (the test group, not considered 
for the primary analysis) included 81 patients, and was used as a control set to verify blindly the models’ reli-
ability. The training set included 28 CN (15 F, 13 M), 20 SMD (13 F, 7 M), 21 MCI (13 F, 8 M), and 21 AD (14 
F, 7 M). The same four classes were present in the test set, which comprised 23 CN (10 F, 13 M), 20 SMD (13 F, 
7 M), 19 MCI (13 F, 6 M), and 19 AD (13 F, 6 M) (Fig. 1). The patient distribution was unknown to the NMR 
and statistical analysis people.

Subjects’ characteristics and results of dedicated statistical analysis are provided in Table 1 for the training set 
and in Table 2 for the test set. The effects of comorbidities and pharmacological treatments were not statistically 
significant. Major exceptions were age, education level, BMI and MMSE data (Tables 1 and 2). Accordingly, we 
applied ANCOVA (Analysis of Covariance) to determine the impact on the discriminating metabolomic bio-
markers of statistically significant covariates (see below).

During the study period, there were no changes in medication or comorbidity exacerbation in any of the 
subjects. However, to check for possible interference, we first applied principal component analysis (PCA), which 
is an unsupervised method that requires no prior knowledge of the data set, to a subset of each group of samples 
(28 CN controls, 20 SMD subjects, 21 MCI and 21 AD) in order to detect possible outliers and/or subgroups. 
Two-component PCA models (Fig. 2) were generated for all classes, obtaining the following quality parameters: 

Figure 1.  Flow diagram illustrating the study design. For clinical and NMR exclusion creiteria see text. CN, 
cognitively normal subjects; SMD, subjective memory decline; MCI, mild cognitive impairment; and AD, 
Alzheimer’s disease.
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TRAINING 
SET 1: CN 2: SMD 3: MCI 4: AD

p  value 1–2; 1–3; 
1–4 p  value 2–3; 2–4; 3–4

Anthropometric data

No 28 20 21 21 – –

Age (mean ± SD; 
y) 63.5 ± 5.3 65.1 ± 7.7 68.2 ± 7.1 79.1 ± 6.4 0.39; 0.01; < 0.001 0.18; < 0.001; < 0.001

Sex (F; %/M; %) 14; 50.0/14; 50.0 14; 70.0/6; 30.0 16; 76.2/5; 23.8 15; 71.4/6; 28.6 0.63; 0.48; 0.48 0.8; > 0.99; > 0.99

Education level 
(mean ± SD; y) 13.1 ± 3.0 11.9 ± 3.6 9.5 ± 5.3 9.4 ± 6.1 0.21; 0.004; 0.007 0.12; 0.11; 0.6

BMI 
(mean ± SD; kg/
m2)

28.3 ± 3.9 26.9 ± 5.1 27.7 ± 3.0 23.1 ± 4.1 0.28; 0.56; < 0.001 0.5; 0.01; < 0.001

MMSE 
(mean ± SD; 
score)

29.0 ± 1.8 29.2 ± 1.7 25.5 ± 3.7 15.2 ± 6.8 0.69; < 0.001; < 0.001  < 0.001; < 0.001; < 0.001

Familial AD 
(n; %) 3; 10.7 3; 15.0 2; 9.5 2; 9.5  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Familial Demen-
tia (n; %) 2; 7.1 4; 20.0 6; 28.6 5; 23.8 0,38; 0.13; 0.2 0.73; > 0.99; 0.8

Familial Neu-
rodegenerative 
Diseases (n; %)

2; 7.1 4; 20.0 3; 14.3 5; 23.8 0.38; 0.53; 0.2 0.7; > 0.99; 0.7

Smokeb (n; %) 11; 39.3 8; 40.0 8; 38.1 4; 19.0  > 0.99; > 0.99; 0.36  > 0.99; 0.4; 0.39

Dyslipidemia 
(n; %) 10; 35.7 7; 35.0 7; 33.3 5; 23.8  > 0.99; > 0.99; 0.5  > 0.99; 0.5; 0.52

Diabetes (n; %) 6; 21.4 3; 15.0 3; 14.3 2; 9.5 0.72; 0.72; 0.45  > 0.99; > 0.99; > 0.99

Hypertension 
(n; %) 10; 35.7 10; 50.0 10; 47.6 5; 23.8 0.59; 0.57; 0.56  > 0.99; 0.36; 0.36

Arrhythmia 
(n; %) 4; 14.3 5; 20.0 2; 9.5 0; 0.0 0.48; > 0.99; 0.14 0.41; 0.053; 0.48

AED (n; %) 0; 0.0 0; 0.0 1; 4.8 4; 19.0  > 0.99; 0.44; 0.04  > 0.99; 0.11; 0.35

Myocardial 
Infarction (n; %) 1; 3.6 1; 5.0 2; 9.5 1; 4.8  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Heart  Failurec 
(n; %) 2; 7.1 1; 5.0 2; 9.5 1; 4.8  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

TIA/Stroke 
(n; %) 0; 0.0 0; 0.0 2; 9.5 1; 4.8  > 0.99; 0.44; 0.19  > 0.99; > 0.99; > 0.99

Chronic Kidney 
 Diseased (n; %) 0; 0.0 1; 5.0 0; 0.0 1; 4.8  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Prior Tumors 
(n; %) 4; 14.3 3; 15.0 2; 9.5 3; 14.3  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Neurodegen-
erative Diseases 
(n; %)

0; 0.0 0; 0.0 1; 4.8 0; 0.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Alcool > 4 unit/
day (n; %) 1; 3.6 0; 0.0 0; 0.0 0; 0.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Carotid 
Atheroma or 
Aneurysms 
(n; %)

3; 10.7 2; 10.0 2; 9.5 4; 19.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Venous Insuf-
ficiency (n; %) 3; 10.7 3; 15.0 1; 4.8 3; 14.3  > 0.99; 0.63; > 0.99 0.6; > 0.99; 0.6

Asthma, COPD, 
 O2 Therapy 
(n; %)

0; 0.0 2; 10.0 1; 4.8 2; 9.5 0.18; 0.44; 0.19  > 0.99; > 0.99; > 0.99

Dysthyroidism 
(n; %) 9; 32.1 5; 25.0 3; 14.3 1; 4.8 0.76; 0.33; 0.07 0.7; 0.19; 0.60

Cirrhosis, 
Steatosis, Biliary 
Lithiasis (n; %)

3; 10.7 3; 15.0 1; 4.8 2; 9.5  > 0.99; 0.63; > 0.99 0.6; > 0.99 > 0.99

Previous Sur-
gery (n; %) 10; 35.7 10; 50.0 4; 19.0 3; 14.3 0.59; 0.37; 0.33 0.21; 0.11; > 0.99

Pharmacological Treatment

Antihyperten-
sive (n; %) 10; 35.7 9; 45.0 10; 47.6 5; 23.8 0.78; 0.60; 0.56  > 0.99; 0.36; 0.37

Lipid-lowering 
(n; %) 6; 21.4 5; 25.0 6; 28.6 2; 9.5  > 0.99; 0.75; 0.45  > 0.99; 0.41; 0.36

Hypoglycemic 
(n; %) 3; 10.7 2; 10.0 2; 9.5 1; 4.8  > 0.99; > 0.99; 0.63  > 0.99; 0.5; 0.5

Continued
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CN,  R2 = 0.410;  Q2 = 0.240; SMD,  R2 = 0.410;  Q2 = 0.174; MCI,  R2 = 0.372;  Q2 = 0.122; and AD,  R2 = 0.384;  Q2 = 0.184 
(Table S1). Cumulative  R2 and Q2 represent the goodness-of-fit and the goodness-of-prediction parameters, 
measuring how well the model fits the data, and how well the model predicts new data, respectively. For  R2 and 
 Q2 acceptable values must be ≥ 0.5, with |R2—Q2|< 0.2–0.3. In each model, no discernible patterns were identi-
fied, neither subgroups nor strong outliers. Thus, none of the variables (presence of comorbidity, therapeutic 
treatment, age, sex, etc.) generated interference. Therefore, all of the 90 samples were included in the training 
set. The PCA analysis was also applied to all 171 (training and validation) samples, and no discernible patterns 
and/or outliers were detected (Fig. S1).

class separation in the AD continuum. Figure S2 shows the NMR profiles (spectra) of serum samples 
from CN (Fig. S2A), SMD (Fig. S2B), MCI (Fig. S2C) and AD (Fig. S2D) subjects. For each sample, we acquired 
two types of one-dimensional (1D) proton spectra, namely, a standard one, and a Carr–Purcell–Meiboom–Gill 
(CPMG). The latter was used to simplify the spectra by relying on the difference between transverse  T2 relaxa-
tion time of macromolecules and metabolites and therefore avoid standard chemical separation methods. These 
spectra were used for multivariate analysis. The signals (resonances) were assigned to single metabolites by 
resorting to 2D NMR experiments (not shown), sample spiking with corresponding chemical standards, and 
literature data. Table S2 reports the assignments of the identified metabolites.

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was then applied to inves-
tigate a two-group classification at time (Table S3). Only the CN–AD  (R2 = 0.747;  Q2 = 0.428; p = 0.0004), 
CN–MCI  (R2 = 0.422;  Q2 = 0.053; p = 0.039), SMD-AD  (R2 = 0.617;  Q2 = 0.355; p = 0.002), and MCI-AD 
 (R2 = 0.594;  Q2 = 0.178; p = 0.01) models presented statistical significance. The others, including the all-class 
(CN–SMD–MCI–AD,  R2 = 0.376;  Q2 = 0.094; p = 0.90), were not considered as the relative OPLS regressions gen-
erated unreliable models (Table S3). The models showed a good class separation along the predictive component 
(x-axis), especially for the CN–AD and SMD–AD comparisons (bi-correlation plots in Fig. 2A,C, respectively), 
while some MCI samples overlap with CN (Fig. 2B) and AD (Fig. 2D) groups. Graphical overlap reflects the 
“metabolic overlap” related to the MCI status, which does not always evolve into dementia (see below).

The S-plots corresponding to the above models are reported in Fig. S3, which shows the chemical shifts (i.e., 
the spectral position of each line in an NMR spectrum) of the metabolites that discriminate the classes. For fur-
ther analysis, we selected signals that present the variable importance in the projection (VIP) > 1 and |pcorr|≥ 0.6; 
they are indicated with black dots and identified in Fig. 3. Specifically, in the CN–AD model, AD patients show 
(Table 3) higher levels of glutamine (Gln) and lower concentrations of acetate (Ace), choline (Cho), isoleucine 
(Ile), leucine (Leu) and valine (Val), with respect to the CN group. The MCI-CN comparison found (Table 3) for 
MCI an increase of glucose (Glc), Gln, Ile, Leu, tyrosine (Tyr) and Val, and the reduction of Ace, lactate (Lac), 
glutamate (Glu), histidine (His) and lysine (Lys) (Fig. 3B, and Fig. S3B). In the SMD–AD model, an increased 
concentration of Ace, Cho, methanol (MeOH) and phosphocholine (Pc)/glycerolphosphocholine (Gpc) was 
found for SMD samples (Table 3), while unsaturated and saturated fatty acids (uFA and sFA, respectively) and Glc 
signals better characterized the AD class (Fig. 3C and Fig. S3C). Finally, the MCI–AD showed (Table 3) higher 
levels of alanine (Ala), Ile, Leu and Val for MCI, whereas the AD group exhibited an increased concentration of 
Glc, glyceryl lipids and Lac (Fig. 3D and Fig. S3D).

Differences in the concentration levels of the discriminant metabolites for the four models are reported in 
the S-line plots of Fig. S4A-D, which describe the loadings values as a function of the chemical shift. Since all 
buckets are normalized to the total spectrum area (see “Materials and methods”), the up and down peaks imply 
that concentration alteration does not depend upon dilutional effects.

TRAINING 
SET 1: CN 2: SMD 3: MCI 4: AD

p  value 1–2; 1–3; 
1–4 p  value 2–3; 2–4; 3–4

Antiplatelet 
(n; %) 4; 15.7 3; 15.0 2; 9.5 5; 23.8  > 0.99; > 0.99; 0.71  > 0.99; > 0.99; 0.42

Thyroid Hor-
mones (n; %) 6; 21.4 4; 20.0 2; 9.5 1; 4.8 0.99; 0.45; 0.22 0.66; 0.34; > 0.99

Antianxiety 
(n; %) 2; 7.1 0; 0.0 0; 0.0 4; 19.0 0.78; 0.75; 0.39  > 0.99; 0.17; 0.17

Antidepressant 
(n; %) 2; 7.1 2; 7.1 2; 9.5 7; 33.3  > 0.99; > 0.99; 0.07 0.97; 0.26; 0.3

Neurotrophic 
(n; %) 1; 3.6 1; 5.0 1; 4.8 4; 19.0  > 0.99; > 0.99; 0.17  > 0.99; 0.3; 0.3

I-AChE (n; %) 0; 0.0 0; 0.0 1; 4.8 2; 9.5  > 0.99; 0.44; 0.19 0.4; 0.7; > 0.99

Table 1.  Characteristics of the subjects enrolled in the training  seta. Bold values are statistically significant 
(p < 0.05). a CN, cognitively normal; SMD, subjective memory decline; MCI, mild cognitive impairment; 
AD, Alzheimer’s disease; BMI, Body mass index; MMSE, Mini Mental State Examination; AED, antiepileptic 
drugs; TIA, Transient Ischemic Attack; I-AChE, Acetylcholinesterase Inhibitors. b Current or former smokers. 
c Subjects in NYHA (New York Heart Association) classes I–II. d Subjects with glomerular filtration rate 
(GFR) > 30 ml/min/1.73  m2.
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TEST SET 1: CN 2: SMD 3: MCI 4: AD
p  value 1–2; 1–3; 
1–4 p value 2–3; 2–4; 3–4

Anthropometric data

No 23 20 19 19 - -

Age (mean ± SD; 
y) 62.8 ± 6.4 64.2 ± 7.3 68.3 ± 5.4 77.5 ± 7.4 0.5; 0.005; < 0.001 0.06; < 0.001; < 0.001

Sex (F; %/M; %) 11; 47.8/12; 52.2 12; 60.0/8; 40.0 10; 52.6/9; 47.4 12; 63.2/7; 36.8  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Education level 
(mean ± SD; y) 12.9 ± 2.6 12.0 ± 2.8 9.5 ± 3.9 9.0 ± 4.8 0.28; 0.001; 0.001  < 0.001; < 0.001; < 0.001

BMI (mean ± SD; 
kg/m2) 28.8 ± 3. 27.0 ± 3.2 26.9 ± 3.9 24.4 ± 4.4 0.08; 0.09; 0.007 0.9; 0.04; 0.07

MMSE 
(mean ± SD; 
score)

29.4 ± 2.7 29.2 ± 1.8 24.9 ± 5.5 15.4 ± 7.1 0.78; 0.001; < 0.001  < 0.001; < 0.001; < 0.001

Familial AD 
(n; %) 2; 8.7 2; 10.0 2; 10.5 2; 10.5  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Familial Demen-
tia (n; %) 1; 4.3 3; 15.0 4; 21.0 3; 15.8 0.34;0.18; 0.33  > 0.99; > 0.99; > 0.99

Familial Neu-
rodegenerative 
Diseases (n; %)

1; 4.3 3; 15.0 2; 10.5 3; 15.8 0.34; 0.68; 0.33  > 0.99; > 0.99; > 0.99

Smokeb (n; %) 8; 34.8 8; 40.0 5; 26.3 2; 10.5 0.9; 0.75; 0.52 0.74; 0.15; 0.42

Dyslipidemia 
(n; %) 8; 34.8 6; 30.0 5; 26.3 4; 21.0  > 0.99; 0.75; 0.52  > 0.99; 0.73; > 0.99

Diabetes (n; %) 4; 17.4 2; 10.0 2; 10.5 2; 10.5 0.67; 0.66; 0.67  > 0.99; > 0.99; > 0.99

Hypertension 
(n; %) 8; 34.8 7; 35.0 8; 42.1 4; 21.0  > 0.99; 0.99; 0.52  > 0.99; 0.51; 0.42

Arrhythmia 
(n; %) 2; 8.7 5; 25.0 2; 10.5 0; 0.0 0.41; > 0.99; 0.5 0.4; 0.06; 0.48

AED (n; %) 0; 0.0 0; 0.0 0; 0.0 4; 21.0  > 0.99; > 0.99; 0.1  > 0.99; 0.3; 0.2

Myocardial 
Infarction (n; %) 1; 4.3 1; 5.0 1; 5.3 1; 5.3  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Heart  Failurec 
(n; %) 1; 4.3 1; 5.0 1; 5.3 1; 5.3  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

TIA/Stroke 
(n; %) 0; 0.0 1; 5.0 2; 10.5 0; 0.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Chronic Kidney 
 Diseased (n; %) 0; 0.0 1; 5.0 0; 0.0 1; 5.3  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Prior Tumors 
(n; %) 3; 13.0 3; 15.0 1; 5.3 2; 10.5  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Neurodegen-
erative Diseases 
(n; %)

0; 0.0 0; 0.0 1; 5.3 0; 0.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Alcool > 4 unit/
day (n; %) 0; 0.0 0; 0.0 0; 0.0 0; 0.0  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Carotid Ath-
eroma or Aneu-
rysms (n; %)

2; 8.7 1; 5.0 1; 5.3 2; 10.5  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Venous Insuf-
ficiency (n; %) 2; 8.7 2; 10.0 0; 0.0 2; 10.5  > 0.99; 0.49; > 0.99  > 0.99; 0.49; 0.5

Asthma, COPD, 
 O2 herapy (n; %) 1; 4.3 1; 5.0 1; 5.3 1; 5.3  > 0.99; > 0.99; > 0.99  > 0.99; > 0.99; > 0.99

Dysthyroidism 
(n; %) 8; 34.8 4; 20.0 2; 10.5 1; 5.3 0.51; 0.17; 0.07 0.50; 0.30; 0.80

Cirrhosis, 
Steatosis, Biliary 
Lithiasis (n; %)

3; 13.0 2; 10.0 0; 0.0 1; 5.3  > 0.99; 0.25; 0.33 0.49; > 0.99; > 0.99

Previous Surgery 
(n; %) 11; 47.8 8; 40.0 3; 15.8 3; 15.8 0.78; 0.2; 0.2 0.3; 0.3; > 0.99

Pharmacological Treatment

Antihypertensive 
(n; %) 9; 39.1 9; 45.0 8; 42.1 6; 31.6  > 0.99; > 0.99; 0.77 0.76; 0.76; 0.75

Lipid-lowering 
(n; %) 6; 26.1 5; 25.0 5; 26.3 2; 10.5  > 0.99; > 0.99; 0.44 0.99; 0.42; 0.42

Hypoglycemic 
(n; %) 3; 13.0 2; 10.0 1; 5.3 1; 5.3  > 0.99; 0.44; 0.44 0.51; 0.51; > 0.99

Antiplatelet 
(n; %) 4; 17.4 3; 15.0 1; 5.3 4; 21.0  > 0.99; 0.37; > 0.99  > 0.99; > 0.99; 0.35

Continued
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Validation of the models with an independent set. The models’ performance was evaluated using a 
sample set not included in the model calculation. Specifically, we considered 81 new samples comprising 23 CN, 
20 SMD, 19 MCI and 19 AD patients. They were projected onto the corresponding statistical model, and the 
results are displayed in Fig. 4. The OPLS-DA classifications of both training and predicted sets present a good 
class discrimination along the x-axis for CN–AD (Fig. 4A) and SMD-AD (Fig. 4C), while confirming the partial 
overlap for CN–MCI (Fig. 4B) and MCI–AD (Fig. 4D).

The performance of each model is shown in Table 4, together with the predictive parameters extracted from 
the corresponding confusion matrices. ROC curves were obtained taking into account the Y predicted response 
 (YPredPS) generated by each OPLS regression.  YPredPS is the Y value predicted by the model based upon the X 
block variables (resonance intensities at given ppm). The found AUC (area under the ROC curve) values were 
as follows: 0.99 for CN–AD, 0.88 for CN–MCI, 0.96 for SMD–AD, 0.97 for MCI-AD (Table 4), confirming that 
the test set well fits the built models. Furthermore, high sensitivity (true positive rate) values were observed for 
the four models (93, 88, 95 and 92%, respectively), while specificity (true negative rate) values reached 65% for 
CN–AD, 44% for CN–MCI, 45% for SMD–AD and 50% for MCI–AD. The lower values reflect the partial overlap 
observed in the corresponding models (Fig. 3), which most likely is an indication of the heterogeneous patho-
physiology of the classes involved. Better values were obtained for precision (73, 61, 63 and 65%) and accuracy 
(79, 66, 70 and 72%); however, the presence of a between-class “uncertainty zone” requires further investigations 
on the transitional pathophysiology, to avoid false positive (FP) or false negative (FN) misclassification.

Identification of statistically significant biomarkers. To identify significant metabolites, ROC analy-
sis and the corresponding AUC were calculated together with the Student’s t test. We selected metabolites show-
ing both VIP > 1 and |pcorr|> ± 0.6, namely, Gln, Glc, His, MeOH, Tyr, Val and uFA (Table S4). After, for each class 
comparison, we applied simple and multiple logistic regressions to investigate whether a single variable (i.e., 
metabolite), or a combination of them, could improve classification of the different cognitive states.

Specifically, for the CN–AD model (Fig. 5A) we selected Gln and Val. The corresponding ROC curves showed 
AUC values of 0.78 ± 0.05 for Val and 0.84 ± 0.04 for Gln, while for their combination it increases to 0.89 ± 0.03. 
The associated box-and-whisker plots (Fig. S5A) show that in AD Gln increases its concentration (left panel, 
p < 0.001), while Val decreases (right panel, p < 0.001). For the CN–MCI comparison (Fig. 5B), we considered 
Tyr, Gln and His. Their combination revealed no additional contribution with respect to each variable: Tyr + Gln 
resulted in the same AUC value as for the Gln variable alone (AUC = 0.78 ± 0.05), while Tyr alone showed a value 
of 0.66 ± 0.06. Similarly, AUC value for His + Gln equals the one related to the His alone (AUC = 0.78 ± 0.05; 
not shown). In this model, both Tyr (left panel) and Gln (right panel) present a higher concentration in MCI 
compared to CN (Fig. S5B, p < 0.05 and p < 0.001, respectively). No marked improvement was observed for the 
Glc–Val combination in the MCI and AD comparison (Fig. 5C), with AUC = 0.77 ± 0.05 for Glc + Val, whereas 
AUC = 0.76 ± 0.05 for Val and AUC = 0.71 ± 0.06 for Glc, separately. In AD, their concentration respectively 
increases (left panel) and decreases (right panel) with respect to MCI (Fig. S6A, p < 0.05 and p < 0.001, respec-
tively). Finally, for the SMD–AD classification, we found a higher value AUC = 0.82 ± 0.05 for the combination of 
MeOH and uFA (Fig. 5D) with respect to separated variables (AUC = 0.77 ± 0.05 for uFA and AUC = 0.63 ± 0.06 
for MeOH). In AD, their concentrations decreased (left panel) and increased (right panel) (Fig. 5B, p < 0.001 
and p < 0.05, respectively).

Figure S7 shows the concentration levels and the ANOVA test significance for the selected metabolites in the 
four classes. In AD, the Glc concentration (panels A) is higher with respect to CN, SMD and MCI (p < 0.05), and 
can only differentiate AD from other classes, but no other discrimination can be obtained. MeOH and Val (panels 
D and F, respectively) present a lower concentration in AD. MeOH can discriminate AD from CN (p < 0.05) 
and SMD (p < 0.001), while Val separates AD from the other classes (p < 0.001). Tyr (panel E) is a useful marker 
to discriminate CN from MCI (p < 0.05), while Gln (panel B) shows a good discriminating power between CN 
and SMD (p < 0.05), and between SMD and AD (p < 0.05). Discrimination between CN and AD, and between 

TEST SET 1: CN 2: SMD 3: MCI 4: AD
p  value 1–2; 1–3; 
1–4 p value 2–3; 2–4; 3–4

Thyroid Hor-
mones (n; %) 5; 21.7 4; 20.0 1; 5.3 0; 0.0  > 0.99; 0.37; 0.07 0.11; 0.1; > 0.99

Antianxiety 
(n; %) 1; 4.3 1; 5.0 2; 10.5 4; 21.0 0.36; 0.68; > 0.99  > 0.99; 0.34; 0.66

Antidepressant 
(n; %) 2; 8.7 1; 5.0 2; 10.5 6; 31.6  > 0.99; > 0.99; 0.24  > 0.99; 0.1; 0.25

Neurotrophic 
(n; %) 0; 0.0 0; 0.0 1; 5.3 3; 15.8  > 0.99; 0.46; 0.1  > 0.99; 0.23; 0.6

I-AChE (n; %) 0; 0.0 0; 0.0 0; 0.0 2; 10.5  > 0.99; 0.8; 0.7  > 0.99; 0.48; 0.4

Table 2.  Characteristics of the subjects enrolled in the test  seta. Bold values are statistically significant 
(p < 0.05). a CN, cognitively normal; SMD, subjective memory decline; MCI, mild cognitive impairment; 
AD, Alzheimer’s disease; BMI, Body mass index; MMSE, Mini Mental State Examination; AED, antiepileptic 
drugs; TIA, Transient Ischemic Attack; I-AChE, Acetylcholinesterase Inhibitors. b Current or former smokers. 
c Subjects in NYHA (New York Heart Association) classes I–II. d Subjects with glomerular filtration rate 
(GFR) > 30 ml/min/1.73  m2.
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MCI and AD, could also be obtained using Gln (p < 0.001). On the contrary, His presents a steady concentra-
tion decrease (panel C), with an efficient separation for CN and MCI (p < 0.05), as well as between CN and AD 
(p < 0.001), and between SMD and AD (p < 0.001).

Notably, the enrolled subjects presented statistically significant differences in age, BMI and education level 
both in the training (Table 1) and the test (Table 2) sets [differences in the Mini Mental State Examination 
(MMSE) are a direct indication of the AD evolution]. To account for their possible influence as covariates on 
measured metabolites and remove their potential effect on NMR variables, we performed ANCOVA for both 
sets. After means’ correction [i.e., factoring out (excluding) the influence of such covariates], the p-value for the 
selected metabolites resulted < 0.05, with the difference between the metabolite levels in the (HS, SMD, MCI and 
AD) classes remaining statistically significant.

Pathway topology analysis. The biological relevance of the data was evaluated by investigating the meta-
bolic pathways that appear to be significantly dysregulated. In particular, we conducted pathway enrichment 
analysis, combined with pathway topological analysis, for each set of markers derived from the binary class 
discriminations. The found pathways are depicted in Fig. 6, which reports the impact of each pathway versus the 
p value. In the CN–AD comparison, among the 11 detected pathways, we inferred the Ala, Asp and Glu metabo-

Figure 2.  PCA scores plots representing each single class model for the training set (90 total samples). CN, 
cognitively normal subjects (A, green squares); SMD, subjective memory decline (B, blue squares); MCI, mild 
cognitive impairment (C, purple squares); and AD, Alzheimer’s disease (red squares). All class-models indicate 
that the samples are homogeneous as no outliers were detected. The labels t[1] and t[2] along the axes represent 
the scores (the first 2 partial least-squares components) of the model, which are sufficient to build a satisfactory 
classification model.
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lism (p = 5.75 × 10–4; impact 0.23) as the most probable (Fig. 6A). For the CN and MCI comparison, amid the 
17 identified pathways, we obtained Gln and Glu (p = 2.82 × 10–4; impact 0.36), Ala, Asp and Glu (p = 5.84 × 10–

3; impact 0.22), and His (p = 1.05 × 10–3; impact 0.14) metabolisms (Fig. 6B). The SMD–AD model yielded 3 
pathways, and the methane metabolism pathway (p = 2.81 × 10–2; impact 0.18) was the most probable (Fig. 6C). 
Finally, the MCI–AD comparison indicated, among the 10 detected pathways, Val, Leu and Ile metabolism 
(p = 5.00 × 10–6; impact 0.25), Val, Leu and Ile degradation (p = 5.00 × 10–6; impact 0.25), and starch and sucrose 
metabolisms (p = 5.00 × 10–2; impact 0.13) (Fig. 6D). Interestingly, the found pathways are all different for each 
comparison, implying that the physiopathology of SMD, MCI and AD is due to dysregulation of specific path-
ways that could be differently targeted and evaluated for diagnostic purposes.

By combining all markers found in the CN–AD continuum, we obtained 26 potential pathways, but Gln and 
Glu (p = 6.02 × 10–11; impact 0.29), Ala, Asp and Glu (p = 5.45 × 10–9; impact 0.21), His (p = 2.47 × 10–5; impact 

Figure 3.  Biplot representing the co-chart of loadings with samples and covariance for each single class model 
of the training set: (A), CN subjects (green squares) vs. AD patients (red squares); (B), CN (green squares) 
vs. MCI subjects (purple squares); (C), MCI (purple squares) vs. AD (red squares); (D), SMD subjects (blue 
squares) vs. AD (red squares). For each model, relevant signals were highlighted (black dots, VIP > 1 and 
|pcorr|≥ 0.6). Ace, acetate; Leu, leucine; Val, valine; Ile, isoleucine; Gln, glutamine; Lac, lactate; His, histidine; 
Lys, lysine; Glu, glutamate; Glc, glucose; PC, phosphocholine; GPC, glycerolphosphocholine; MeOH, methanol; 
Cho, choline; sFA, saturated fatty acids; uFA, unsaturated fatty acids.
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0.14), and Tyr (p = 9.64 × 10–3; impact 0.05) metabolisms were the most relevant networks (Fig. S8), which cor-
respond to those found for the CN–MCI model (Fig. 6B).

Table 3.  Metabolite variation observed in the models established within the training set. a Upward arrows 
indicate a higher concentration of the metabolites in the corresponding class with respect to the other one. 
Metabolites in bold present VIP > 1 and |pcorr|≥ ± 0.6. Ace, acetate; Ala, alanine; Cho, choline; Glc, glucose; 
Gln, glutamine; Glu, glutamate; Gpc, glycerolphosphocholine; His, histidine; Ile, isoleucine; Lac, lactate; Leu, 
leucine; Lys, lysine; MeOH, methanol; Pc, phosphocholine; sFA, saturated fatty acids; Tyr, tyrosine; uFA, 
unsaturated fatty acids; Val, valine.

Model 1 Model 2

CN–ADa CN–MCIa

CN Metabolite AD CN Metabolite MCI

Gln ↑ Glc, Gln, Ile, Leu, Tyr, Val ↑

↑ Ace, Cho, Ile, Leu, Val ↑ Ace, Lac, Glu, His, Lys

Model 3 Model 4

SMD–ADa MCI–ADa

SMD Metabolite AD MCI Metabolite AD

Ace, Cho, MeOH, Pc/Gpc ↑ Glc, Glyceryl lipids, Lac ↑

↑ uFA, sFA, Glc ↑ Ala, Ile, Leu, Val

Figure 4.  Predicted scores plot representing classification of the test set obtained with samples projection onto 
the OPLS-DA models assessed by the training set. Squares represent the training set samples (ts), while triangles 
refer to the validation set samples (ps, predicted set). (A), CN vs. AD; (B), CN vs. MCI; (C), MCI vs. AD; (D), 
SMD vs. AD.
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Table 4.  Parameters summarizing the performance of each model on the test set. a The area under the ROC 
curve (AUC) of the receiver operating characteristic (ROC) curve was calculated for each binary classifier in 
terms of the associated  YPredPS values in predicting the class membership for samples of the test set.  YPredPS is 
the Y value predicted by the model based upon the X block variables (resonance intensities at given ppm). An 
 YPredPS value close to 1 would indicate that the subject is likely to belong to the class. An  YPredPS value close 
to 0 would indicate that the subject is unlikely to belong to the class. b Sensitivity, Specificity, Precision and 
Accuracy levels were obtained from the constructed Confusion Matrix combining the different fractions of 
true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values for each classification. 
c p value for the OPLS-DA reliability (p < 0.05).

Classification performance

OPLS-DA ROC (AUC)a Sensitivity (%)b Specificity (%)b Precision (%)b Accuracy (%)b CV-ANOVA p valuec

Model 1: CN–AD 0.99 93 65 73 79 0.003

Model 2: CN–MCI 0.88 88 44 61 66 0.01

Model 3: SMD–AD 0.96 95 45 63 70 0.001

Model 4: MCI–AD 0.97 92 50 65 72 0.008

Figure 5.  Simple and multiple logistic regressions of selected variables for each discriminating model: (A), CN 
vs. AD; (B), CN vs. MCI; (C), MCI vs. AD; (D), SMD vs. AD. Receiver operating characteristic (ROC) curve and 
the corresponding area under the ROC curve (AUC) of each classifier are reported together with the Student’s 
t-test applied on the normalized buckets concentration.
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correlations. We found no correlation between metabolomic data and clinical analysis in any study group. 
In all groups, there was no correlation between found metabolites and comorbidity parameters, between metab-
olomic profiles and pharmacological therapies, and between metabolites and any of the anthropometric param-
eters of the experimental and validation sets (Tables 1 and 2).

Discussion
We applied NMR-based metabolomics and PLS–DA statistical analysis to sera aiming at uncovering preclinical 
signatures of AD. We profiled 28 CN, 20 SMD, 21 MCI and 21 AD subjects as training set, and then validated 
the found models with a second independent cohort of 81 people, not included in the primary analysis. From 
NMR data, we obtained four statistically significant PLS–DA models, namely CN–AD (p = 0.004), SMD–AD 
(p = 0.002), CN–MCI (p = 0.039) and MCI–AD (p = 0.01). Clear class discrimination was observed for the CN–AD 
and SMD–AD models, while some overlap was present for CN–MCI and MCI–AD (Fig. 3B,D, respectively). 
The clinical spectrum of AD indicates that there is no definite cut-off point to discriminate intermediate grades 
(SMD and MCI), as well as normal aging and dementia. Furthermore, neuropathological studies have shown 

Figure 6.  Pathway analysis overview showing the altered metabolic pathways associated with blood markers 
derived from discriminant class analysis: (A), CN vs. AD; (B), CN vs. MCI; (C), SMD vs. AD and (D), MCI 
vs. AD. For each class comparison, metabolites used presented both VIP ≥ 1 and |pcorr|≥ 0.6. The most relevant 
networks are labeled considering the pathway impact and the p value.
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that patients with AD often have heterogeneous brain pathology and a considerable number of patients exhibits 
brain changes, indicating the interference of other concomitant neurodegenerative  disorders13. Therefore, the 
intermediate diagnostic uncertainty in the models may reflect the physiological overlapping “gray-zone” and 
the pathological heterogeneity.

The blind test of an independent cohort confirmed the validity of the found models. CN–AD and SMD–AD 
showed an AUC of 0.99 and 0.96, respectively, while for the CN–MCI and MCI–AD models we calculated an 
AUC of 0.88 and 0.97, respectively. Sensitivity was high (from 88 to 95%) for the four models, while specificity 
reached 65% for CN–AD, 45% for SMD–AD, 44% for CN–MCI and 50% MCI–AD (Table 4). Interestingly, lower 
values of specificity were observed for CN–MCI (44%), SMD–AD (45%) and MCI–AD (50%) models, which 
all involve an intermediate class. Notably, for the CN-to-AD conversion, Casanova et al. reported a specificity 
of 65.7% for the sera of 93 patients of the Baltimore Longitudinal Study of Aging, and 36% for the sera of 100 
patients from the Age, Gene/Environment Susceptibility-Reykjavik Study, while sensitivity was 51% and 47%, 
 respectively9. Specificity values are in line with ours (Table 4), but our AUC and sensitivity values (99% and 93%) 
compared with 92% and 90% reported by Mapstone et al.8. The discrepancy could be related to methodological 
differences (they both used mass spectrometry) and the use of a cohort of different size, but the intrinsic hetero-
geneity of the pathology and the possible involvement of the gut-brain axis in neurological diseases in population 
from different countries should also be  considered14,15. Interestingly, the data by Mapstone et al.8 and Casanova 
et al.9 referred to a panel of plasma phospholipids, while the parameters of our classification performance were 
based upon a panel of different metabolites (amino acids, glucose, fatty acids, etc.). This implies that, regardless 
of the panel used, discriminating metabolites are all affected by complementary “boundary conditions” that can 
influence the predictive parameters of the models.

With the term “uncertainty zone”, we identify a between-class overlap at molecular level, most likely due to 
concomitant  factors16. First, intermediate and contiguous classes (for example, SMD and MCI) show overlapping 
pathophysiology with common molecular features, as subjects do not always progress to dementia, and some 
individuals revert to normal cognition or remains stable. Second, mixed pathologies are frequently observed 
in AD, therefore showing commonalities with molecular aspects of other forms of dementia. Third, the cor-
rect threshold values for metabolites specific for each class are  unknown16. Consequently, the biomarker-based 
diagnosis currently lacks specificity, and the derived phenotypes and endotypes have not prognostic value (i.e., 
likelihood of progression from SMD to MCI, and to AD)16.

The CN–MCI and MCI–AD models present a specificity that compares with the reversion rate of MCI 
(towards CN, ranging from 30 to 50%), and the MCI progression rate (towards AD, comprised between 4 and 
40%), with two-to-five year follow-up17. In addition, magnetic resonance imaging evaluation of the structural 
brain changes confirms that 43% of the stable MCI subjects has an AD-like pattern of atrophy, while 57% of the 
stable MCI subject had a CN-like  pattern18.

Since SMD may evolve into MCI in a 13-month intervalwith a percentage between 5.6 and 18.9%19, and 
ca. 62% of subjects with mental decline do not disclose  SMD20, the reduced sensitivity of the SMD–AD model 
appears to be  justified21. This suggests that, with respect to molecular classification, the clinical classes could be 
unstable presenting different evolution further depending on the heterogeneous nature of SMD/MCI22. As an 
indirect confirmation, our SMD–MCI model was statistically non-significant (p = 0.68).

Accordingly, model parameters involving MCI and SMD probably reflect the heterogeneity of the states, as 
suggested by the values of precision (repeatability) and accuracy (trueness) (Table 4), which mirror how well 
the method performs. It is worth mentioning that—different forms of neurodegeneration, although being char-
acterized by dissimilar manifestations, present similar pathophysiological and clinical  processes23. The above 
data strongly suggest that the “uncertainty zone” originating from overlapping pathophysiological features in the 
AD process generates a partial similarity at molecular level. From the discriminating metabolites, we extracted 
the altered pathways that are statistically relevant in the progress of AD. Interestingly, they show that although 
the pathway Val, Leu and Ile biosynthesis is altered in CN–AD and MCI–AD models, and Ala, Asp and Glu 
metabolism is affected in CN–AD and MCI–AD comparisons, they present different impact percentage (x axis) 
and p parameters (y axis) in the different models (Fig. 6). This would suggest that the altered pathways derived 
even in the presence of overlapping pathophysiological features may become a more sensitive target in the CN-
to-AD evolution, and be used to define specific molecular characteristics that could reduce the uncertainty in 
the classification  models16.

cn–AD. For CN–AD, serum metabolite profiling revealed significant perturbations in amino acid metabo-
lism pathways involved in neurotransmission, namely Ala, Asp and Glu metabolism, and Val, Leu and Ile bio-
synthesis (Fig. 6A). The AD patients, compared to CN, showed higher levels of Gln and lower concentrations of 
Ace, choline, Ile, Leu and Val (Fig. 3A and Fig. S3A).

Bloodstrem Gln is basically produced by muscles, but this can be safely excluded as the enrolled AD patients 
were 79.1 ± 6.4 years of age in the training set (Table 1), and 77.5 ± 7.4 in the test set (Table 2). Since 90% of the 
Gln pool is generated by the neurotransmitter Glu taken up into  astrocytes24, the Gln excess may be due to imbal-
ance in the Glu–Gln conversion therefore reducing the availability of neurotransmitter  Glu25,26. Considering 
the CSF leakage into the blood, also favored by the blood–brain barrier damage in  AD4–6, we postulate that the 
observed Gln increase for AD with respect to CN may suggest an increase of Gln in the brain. In AD, inflamma-
tion induces oxidative stress, and a systemic inflammatory response can amplify the Gln need of the immune 
cells, generating a Gln flow from the  brain27.

Ace, mainly produced by intestinal flora, can easily enter the brain from plasma. From the brain, Ace can 
revert back to plasma or go into  astrocytes28, undergoes conversion to acetyl CoA and enters the TCA cycle, while 
a little quantity is involved into lipid pathways. Finally, it is integrated into amino acids, primarily Glu and Gln. 
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As such, Ace reduction in AD patients with respect to CN subjects could be part of the molecular mechanisms 
responsible for the Gln increase, as they both act in astrocytes, where Gln is produced. Ace, one of the short-
chain fatty acids (SCFAs), regulates various leukocytic acticities, and seems to influence leukocyte mobility to 
the inflammation  foci29. Furthermore, according to the mevalonic acid pathway, Ace units produce cholesterol 
that that can activate the NLRP3 inflammasome, which significantly affects the AD pathogenic process. In fact, 
in an animal model, its inhibition efficaciously avoided spatial memory loss and reduced Aβ  precipitation30.

Cho is a precursor of the neurotransmitter acetylcholine (of which Ace is a precursor), Pc (a cell membrane 
constituent), and glycerophosphocholine (a cerebral osmolyte). Cho changes are generally associated with cho-
linergic deficiency in human brain of MCI and  AD31, as observed in both necropsy brain samples and CSF, and 
are thought to be responsible for the decline in learning and memory  abilities32. The reduction of Ace could also 
bring about a decrease of acetylcholine so as to compromise the neurotransmitter activity.

Impairment in the Val, Leu and Ile (branched-chain amino acids, BCAAs) biosynthetic pathway could reduce 
their concentrations in AD. They are sources of energy and provide nitrogen for neurotransmitter synthesis. 
BCAAs are metabolized via transamination by the branched-chain aminotransferases, which are overexpressed 
in the brain of AD patients. Their overexpression leads to alterations in BCAA metabolism, which affect neuro-
transmitter synthesis and may contribute to the pathogenic mechanisms observed in  AD33. Furthermore, Val, Leu 
and Ile are also linked to behavioral changes, and can induce mental retardation and neurological  degeneration34. 
The serum level of Val has been reported to be reduced in AD and Huntington’s disease  patients35.

Leu is a key regulator of the mechanistic target of rapamycin complex 1 (mTOR), which regulates the aging 
rate across invertebrates and mammals, and yields significant neuroprotective effects, improving cerebrovascular 
and cognitive function in mouse models of  AD36. It was suggested that mTOR activation is significantly involved 
in blood–brain barrier (BBB) misfunctioning in AD, and that rapamycin and/or their analogs could be utilized 
to restore BBB  integrity36. As such, the Leu reduction observed in AD, with respect to CN, could participate in 
the impairment of the mTOR altering the BBB and the molecular functioning of the cerebrovascular  system36.

Alteration of Leu concentration also affects the Gln–Glu cycle via the so-called Leu–Glu  cycle37. In the astro-
cyte compartment, through transamination, Leu donates its amino group to α-ketoglutarate to give rise to Glu 
and start the cycle, and its reduction may impair the Gln–Glu cycle in AD.

CN–MCI. The main altered pathways in CN–MCI model were Gln and Glu metabolism, Ala, Asp and Glu 
metabolism, His metabolism, and Tyr metabolism (Fig. 6B). In MCI we found the predominance of Glc, Gln, 
Val, Ile, Leu and Tyr, and the reduction of Ace, Lac, Glu, His and Lys (Fig. 3B and Fig. S3B).

The human brain is almost completely dependent on Glc (and pyruvate) metabolism to meet energy demand. 
The increased concentration of Glc detected in MCI patients suggests an altered Glc metabolism with respect to 
 CN38, as energy deficiency in the neuronal production due to modified rate of carbohydrate catabolism has been 
frequently reported for  AD39. During the AD progression, accumulated β-amyloids inhibit Glu uptake through 
diminished Glc intake, altering Glu–Gln metabolism as shown by an increase in the concentration of  Gln40, as 
here observed for MCI. The imbalance in the Glu–Gln conversion may again justify the increase/decrease of Gln/
Glu we observed, and the reduced availability of neurotransmitter Glu, may cause memory loss in MCI subjects.

As for the CN–AD model, accumulation of Val, Leu and Ile in MCI could be an indication of deficiency in 
the BCAAs degradation system, with the implications above described. Furthermore, the increase of Leu in MCI 
could be an attempt to activate the mTOR system to stimulate neuroprotective  effects36, and/or restore the Glu 
 concentration37 in MCI.

His is essential for the brain synthesis of histamine. Increased brain His and histamine, especially in the 
hypothalmus, have been shown to occur in AD  patients7. His, via its imidazole ring, is an antioxidant compound, 
and its concentration reduction in MCI compared with CN could be related to the oxidative stress associated 
with neurodegeneration. In fact, a decrease in imidazole containing amino acids has been observed in plasma, 
urine and CSF of AD  patients41.

Tyr derives from Phe, and can generate dopamine, epinephrine, noradrenaline, and norepinephrine, all 
involved in neurotransmission. Its brain concentration can be increased by oral consumption, but peripheral 
Tyr absorption and metabolism may change with  aging42. In humans, Tyr administration potentiated central 
catecholamine synthesis, which is also important for working  memory43. Disturbance of Tyr pathway has recently 
been reported for plasma samples of AD patients in a comparison with CN  subjects44.

Lys is involved in the l-carnitine synthesis, which transports fatty acids to mitochondria to produce energy. 
In fact, carnitine concentration was reduced in the CSF of MCI and AD with respect to control  subjects45. Finally, 
it has been shown that malfunctioning of mitochondria and deficiency of the respiratory complexes are involved 
in  neurodegeneration46.

Lac is crucial for energy metabolism and formation of  memory47, and is a marker of acute  inflammation48. 
Lac concentration was reduced in Aβ25–25-treated rat model of AD, while MCT2 (one of the monocarboxylate 
transporters that promote Lac transport into neurons) was reduced in the AD brain. This suggests diminished 
supply of energy substrate and reduced neuronal Lac uptake, and points to reduced metabolism in the AD 
 brain49. Altered level of Lac has been reported for CSF samples from AD patients, which is paralleled by higher 
pyruvate  levels50.

SMD–AD. In the SMD–AD comparison, the main altered pathways are methane metabolism and fatty acid 
metabolism (Fig. 6C). In AD, we found increased uFA and sFA and Glc, and a decreased Ace, Cho, MeOH and 
Pc/Gpc moieties (Fig. 3C and Fig. S3C).

The dysregulation of methane metabolism and the reduced concentration of MeOH in AD may indicate an 
involvement of the human microbiota in the SMD-to-AD evolution. In fact, Methanosphaera stadtmanae, a 
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methanogenic species isolated from the human colon, is implicated in the reduction of MeOH to methane with 
 H2, and the synthesis of  ATP51. In a rat model, in which focal ischemia and reperfusion were used to induce 
brain oxidative stress,  H2 suppressed brain injury and its progressive damage because of its potent antioxidative, 
antiapoptotic and anti-inflammatory  activities52. Interestingly, methanogens increase progressively with age in 
the human intestinal tract, reaching their highest concentrations in the  elderly53. Therefore, it is tempting to 
speculate that dysregulation of the methanogenic metabolism could modifies  H2 availability, affecting its neutral-
izing action against brain reactive oxygen species.

Furthermore, the methane metabolism, via methane, MeOH and formaldehyde, generates formate and then 
serine, which is important in neurological and psychiatric  disorders54. It is an essential precursor of sphingolip-
ids, which are also involved in lipid metabolism. In particular, the level of triglycerides has been associated with 
the serine  metabolism55, which could establish a link between methane metabolism and lipid involvement in 
AD (vide infra).

Interestingly, modulation of gut microbiota by administrating nonabsorbable antibiotic improved the per-
formance on a cognitive task in patients affected by hepatic encephalopathy and  MCI56. Moreover, variations in 
gut microbiota was found in Parkinson’s disease (PD) patients, who showed a 78%-reduction of Prevotellaceae 
in the feces of PD patients with respect to  controls57.

The brain metabolism of FA is substantially altered in patients with different AD grading, and FA have been 
implicated in AD  progression58. Additionally, high levels of free FA favor amyloid deposition and tau hyper-
phosphorylation, which are involved in the AD  pathogenesis59. Dysregulation of sFA metabolism is present in 
MCI plasma and in AD CSF, with FA omega oxidation observed in the plasma of AD  patients7. The Pc decrease 
we observed in SMD, and the alterations in sFA and uFA, indicate a possible membrane destabilization related 
to imbalance in the levels of sFA/uFA, which are part of the phospholipids’  structure60.

Cho variations are generally linked to cholinergic deficiency in MCI and AD human  brain31. Decreased Cho 
moiety (including Gpc and PE), together with the reduction of Ace, the precursor of acetylcholine, could com-
promise the neurotransmitter cycling in AD with respect to SMD. In addition, the glyceryl lipids diacylglycerols 
(see below) are produced from phosphatidylcholines in the synthesis of sphingomyelins via the transfer of the 
Pc headgroup to a  ceramide61, which could affect the Pc level and be involved in the production of ceramide for 
the NLRP3  activation30.

MCI–AD. In the MCI–AD comparison, the main pathways involved were Val, Leu and Ile biosynthesis, Ala, 
Leu and Ile degradation, and starch and sucrose metabolism (Fig. 6D). Furthermore, in AD an increase of Glc, 
Lac and glyceryl lipids, and lower levels of Ala, Ile, Leu and Val were detected (Fig. 3D and Fig. S3D).

Ala is a downstream product of taurine, which is found at high concentrations in the mammalian brain with 
neuroprotective and neurotrophic roles. Taurine can inhibit β-amyloid  neurotoxicity62, and it is reduced in AD 
 sera63. Therefore, lower Ala in AD would imply impairment in the taurine activity with respect to MCI. In the 
Ala, Asp and Glu pathway, Ala is downstream of the neurotransmitter N-acetylaspartate, whose concentrations 
in cortical gray matter decrease with  age64.

Glyceryl lipids are the esterification of fatty acids to the hydroxyl groups of glycerol. It has been reported that 
 plasma65 and the frontal  cortex66 of AD patients show higher levels of diacylglycerols (DAGs). DAGs are critical 
components of membranes, are involved in lipid metabolism and are essential for lipid-based  signaling61. In 
particular, cell membrane breakdown is involved in acute and chronic neurodegeneration because it alters perme-
ability, fluidity and ionic  homeostasis67. Finally, high concentration of lipids is one of the key vascular factors for 
AD  pathogenesis68. Therefore, it appears that increased levels of glyceryl lipids DAGs characterize the AD evolu-
tion (we found glyceryl lipids increased in AD with respect to MCI), reaching high discriminating levels in AD.

Starch and sucrose metabolism belongs to the carbohydrate metabolism, which allows the cells to access 
energy. A dysregulation of such metabolism was found comparing genes differently expressed in AD with the 
control expression in the human temporal  cortex69. The increased concentration of Glc in AD profiles compared 
to MCI could be linked to this. The AD incidence is augmented in subjects with  diabetes70, and in those with 
higher Glc  levels71. The glycation reaction between Glc and glycolysis metabolites with cellular components 
(DNA, lipids and proteins) produces advanced glycation endproducts (AGEs), which are reported in the early 
AD stages, and may take part in the development of neurofibrillary tangles and senile  plaques72. Furthermore, in 
AD brain, the macrophage migration inhibitory factor (MIF) undergoes glycation and oxidation, which prevent 
the MIF stimulation of glial  cells73. Since it also act as immunomodulator and insulin regulator, it is hypothesized 
that modified MIF relates hyperglycemia, oxidative stress and altered AD innate immune  system73.

In parallel, defects in brain Glc homeostasis are reported to be inherent in AD pathological mechanisms, 
and may start many years prior to the clinical manifestations’ onset. Furthermore, in AD, brain areas exposed 
to senile plaques and neurofibrillary tangles present considerably increased levels of Glc in tissues, which are 
linked to greater severity of both plaque deposition and tangles  pathology38. More importantly, higher levels 
(i.e., last measured fasting plasma Glc concentration) as well as greater increases over time in plasma fasting 
Glc are associated with higher brain tissue Glc concentrations, confirming the exchange of metabolites between 
blood and  brain38.

The number of subjects involved in the study could be a possible shortcoming. However, we considered all 
the four stages of the AD continuum and enrolled a blind control set of patients including again the four classes. 
We obtained robust group discrimination and a diagnostic performance in line with previous  studies8,9, ruling 
out overfitting of the models that could affect the results. An overfitting model usually yields a poor performance 
as it amplifies minor data fluctuations.

The objective of this study was to uncover AD prodromal signs in blood, a minimally invasive biomatrix, 
since a diseased central nervous system can drive a peripherally detectable  biosignature74,75. The finding that in 
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AD patients plasma and CSF present overlapping perturbed metabolic  pathways7, strengthens the relationship 
between peripheral blood and neurodegenerative brain changes. Genetically engineered mouse models, although 
helpful for understanding AD pathogenesis and therapeutics, might present metabolic differences that could not 
include all the human AD features. In fact, it has been reported that the metabolic profile of mice and humans’ 
brains diverges consistently with their genetic/evolutionary  lineage76. Therefore, it is important to investigate 
also human biomatrices to gain a clinically useful description of metabolite alterations induced by AD.

One problem that should be addressed relates to the reported variable and often contrasting results observed 
with the proposed panels of biomarkers. This is certainly linked to methodological aspects (the different technical 
methods used, the number of enrolled subjects, samples’ conservation, etc.). However, evidence is accumulat-
ing that AD is a heterogeneous and multifactorial disorder, resulting in different phenotypes/endotypes77, each 
characterized by different pathological and molecular mechanisms, prognosis, and therapy response. As such, 
the “uncertainty zone” observed in our models could be a manifestation of the AD multifactoriality, which 
should be addressed when analyzing blood biomarkers. For example, the six-metabolite panel we validated 
from peripheral blood was able to classify SMD, MCI and AD with sensitivity values ranging from 88 to 95% 
and ROC values from 0.88 to 0.99. Nonetheless, the values of specificity (44 to 65%), accuracy (66 to 72%) and 
precision (61 to 73%) attributable to the heterogeneity of SMD and MCI in the progression towards AD may 
limit the applicability of blodd-based biomarkers.

From the discriminating metabolites, we extracted the altered pathways that are statistically relevant in the 
progress of AD. Interestingly, they show that although the pathway Val, Leu and Ile biosynthesis is altered in 
CN–AD and MCI–AD models, and Ala, Asp and Glu metabolism is dysregulated in CN–AD and MCI–AD, they 
present different impact percentage (x axis) and p parameters (y axis) in the different models (Fig. 6). This would 
suggest that the altered pathways derived even in the presence of overlapping pathophysiological features is a 
more sensitive target in the CN-to-AD evolution, and could be used to define specific molecular characteristics 
that could reduce the uncertainty in the classification  models16. Interestingly, from all metabolites found in the 
CN-to-AD continuum, we found that the most relevant networks (Fig. S8), correspond to those found for the 
CN–MCI model (Fig. 6B). This suggests that MCI represents the most relevant metabolic breakdown, pointing 
to those pathways as the primary targets for prodromal and preclinical investigations.

It is concluded that blood-based biomarkers require a careful evaluation for the assessment of early neu-
rodegeneration because of the molecular overlap. A step forward would be to define the molecular threshold 
of biomarkers that characterize the metabolic phenotype/endotype of each class. However, the pathological 
heterogeneity suggested by clinical data from which our results seem to derive, rule out a “linear” molecular 
evolution of the pathology, pointing to the presence of overlapping “gray-zones” due to the reciprocal interfer-
ence of the intermediate stages.

Materials and methods
Subject population and sample collection. Two hundred fifty participants were consecutively recruited 
from the Centre for Research and Training in Medicine for Aging (CeRMA), University of Molise (Italy). Of 
them, 50 subjects were excluded, and 29 sera gave NMR spectra unsuitable for analysis, amounting to a total of 
171 subjects considered in the study. Patients with Alzheimer’s clinical syndrome were diagnosed according to 
National Institute on Aging/Alzheimer’s Association (NIA–AA)  criteria78. MCI subjects showed both subjective 
and objective memory impairment, SMD participants presented only memory complaints with a normal score 
on the memory tests, and CN showed neither subjective nor objective memory impairment (see Supplementary 
data for details). Depression at screening was assessed with the Geriatric Depression Scale (GDS)79, and partici-
pants with a GDS score of 6 or more were considered depressed and excluded from the study. The patients on 
treatment with cerebro-active drugs underwent a washout period of at least 14 days before assessment. Subjects 
were sampled including risk factors for AD, as well as different types of medication used to treat comorbidities 
in AD (see Supplementary Information for details).

After evaluation of the inclusion/exclusion criteria and acquisition of NMR spectra of serum samples (see 
Supplementary Information), we excluded 79 partecipant (49 CN, 13 SMD, 9 MCI and 8 AD) samples. Therefore, 
a total of 171 subjects were considered in the study. Subjects were randomly allocated in two groups: the first (the 
training group, Table 1) comprised 90 patients and was used to generate the statistical models based on NMR 
data; the second (the test group, Table 2), not considered for the primary analysis, included 81 patients, and was 
used as a control set to verify blindly the models’ reliability. The first 90 subjects included: 28 CN (15 F, 13 M), 
20 SMD (13 F, 7 M), 21 MCI (13 F, 8 M), and 21 AD (14 F, 7 M). The same four classes were present in the test 
set, which included 23 CN (10 F, 13 M), 20 SMD (13 F, 7 M), 19 MCI (13 F, 6 M), and 19 AD (13 F, 6 M) (Fig. 1). 
The patient distribution was unknown to the NMR and statistical analysis people.

The study was approved by the Regional Health Autority of University of Molise. Written informed consent 
was obtained from subjects or caregivers, who were completely informed about the procedures. The ethical 
principles of the Declaration of Helsinki, and the national and international guidelines for human research 
were followed.

Venous blood was collected with standard clinical procedures between 7:30 and 8:00 am after an overnight 
fasting of ca. 12 h. For collection we used vacutainer serum tubes (Becton & Dickinson, Milan, Italy); samples 
were coagulated at room temperature for 10 min, and then a 10-min centrifugation at 3,000 g was applied. 
Supernatants, frozen in liquid nitrogen, were packed with dry ice, and sent by courier to the NMR laboratory. 
Upon arrival, they were stored at − 80 °C until measurements.
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Sample preparation. Stored sera were rapidly defrosted and 330 µl of every serum were diluted with 300 µl 
of saline solution 0.9% sodium chloride in water (pH 7.4), and 70 µl of  D2O, and were transferred into 5-mm 
NMR tubes for acquisition.

NMR spectra acquisition. Two1H-NMR spectra were acquired for each serum sample on a Bruker Avance 
III–600 MHz spectrometer (BrukerBioSpin GmbH, Rheinstetten, Germany), equipped with a TCI CryoProbe 
fitted with a gradient along the Z–axis, at a temperature of 27 °C: (1) a standard one-dimensional (1D) proton 
spectrum; and (2) a  T2-edited 1D spectrum where signals from proteins and others macromolecules were atten-
uated with use of short spin–spin relaxation times employing the Carr–Purcell–Meiboom–Gill (CPMG) pulse 
sequence with water  presaturation80, and using a fixed inter echo delay to eliminate diffusion and J-modulation 
effects. These spectra were analyzed with multivariate analysis. Moreover, two-dimensional (2D) clean total-
correlation spectroscopy (TOCSY) and heteronuclear single quantum coherence (HSQC) experiments were 
acquired to identify metabolite signals. Spectral signals were referenced to the lactate doublet assumed to reso-
nate at δ = 1.33 ppm  for1H, and δ = 20.76 ppm  for13C, as added reference compounds can bind nonspecifically to 
serum albumin and others proteins thus affecting reference chemical shift and peak resolution (see Supplemen-
tal Information for details).

Statistical analysis. Power analysis. To determine sample size, we resorted to a strategy we reported 
 previously81. Since for projection methods like OPLS analysis no standard methods exist, the power of the analy-
sis, our study was considered as a pilot study for which no a priori power analysis was possible. Our results were 
used to backward calculate the power of our analysis since biomarkers and their variations that could discrimi-
nate classes were unknown before analysis. The parameters 1-α and 1-β were varied from 95 to 99.9%, and from 
80 to 99.9%, respectively, and the percentages of accuracy obtained in the validation tests (vide infra) were used 
for Unexposed and Exposed subjects. For 1 − α = 95% and 1 − β = 80%, we obtained 18 ± 2 CN, 16 ± 3 SMD, 15 ± 2 
MCI and 17 ± 2 AD; while for 1 − α = 99.9% and 1 − β = 99.9%, we obtained 19 ± 3 CN, 18 ± 2 SMD, and 17 ± 3 for 
MCI and AD. The number of the subjects used in this study for each group is in agreement with (or is larger 
than) those obtained with backward analysis, although typical values are 1 − α = 95% and 1 − β = 80%, and a value 
of 99.9% for both is an extreme setting.

Spectral and multivariate analysis. Spectral and multivariate analysis was carried out as  reported81. Using 
AMIX 3.6 software package (BrukerBioSpin GmbH, Rheinstetten, Germany), we performed an automatic data 
reduction to integrated regions (“buckets”) of 0.04 ppm each. The procedure was applied to the spectral region 
between 0.04 and 9.40 ppm of all spectra. The region containing the residual irradiated water resonance (4.72–
5.10 ppm) was not considered, and normalization to the total spectrum area was achieved for the integrated 
section. To discriminate according to their NMR profiles, we applied multivariate statistical analysis using pro-
jection methods. We next imported the obtained data format (X matrix) into SIMCA-P + 14 package (Umetrics, 
Umeå, Sweden), and carried out PCA and OPLS-DA82. We initially analyzed the first batch of 90 samples and 
used it to create the training set that was employed to predict the second batch of 81 samples used as blind 
test set. As data pre-treatment for PCA, we applied mean-centering since all spectra did not show large differ-
ences. Then, for OPLS-DA, Pareto scaling turned out to be suitable to better appreciate clusters and the spectral 
variables that influenced class distribution. PCA was conducted to decrease data dimensionality and to uncover 
potential clusters of the CN, SMD, MCI and AD classes. After assessment of class homogeneity for every class, 
we applied supervised OPLS-DA, where a matrix Y comprising dummy variables was used. To build predictive 
models, we performed supervised regressions on two groups at a time. Visualization was achieved through 
scores plots, which also highlighted putative markers useful for classification. OPLS-DA models were validated 
by an internal iterative cross-validation with 7 rounds permutation test response (800 repeats), and CV-ANOVA 
(ANOVA testing of Cross-Validated predictive residuals) The models built with the training set were to classify 
the test set patients. Selected isolated signals with |pcorr|≥ 0.6, VIP > 1 (Variable Importance in the Projection) 
were then considered for Student’s t-test and ANOVA test with Bonferroni correction, after ANCOVA (Analysis 
of Covariance) data adjustment for the statistically significant covariates (namely, age, BMI and education level) 
in both training and test sets (Tables 1 and 2), elaborated with the OriginPro 9.1 software package (OriginLab 
Corporation, Northampton, USA) and R software [R core team (https ://www.r-proje ct.org/).

ROC curve analysis. ROC curves were constructed reporting sensitivity (y-axis) vs. 1-specificity (x-axis), and 
area under the ROC curve (AUC) was calculated for each OPLS-DA model directly on  YpredPS values in SIMCA-
P + 14. Next, ROC curves on selected signals were obtained importing normalized buckets values in the Orig-
inPro package. ROC curves accounting for the combination of multiple metabolite responses were obtained 
with multilinear logistic regression (MLR) included in the Origin software. Values of AUC > 0.97, 0.93–0.96, 
0.75–0.92 and 0.6–0.74 are interpreted as “excellent,” “very good,” “good” and “reasonable,” respectively. An AUC 
of 0.5 indicates a test with no discriminatory power.

Pathway analysis. Relevant metabolites highlighted from the statistical models were addressed to pathway 
analysis in order to identify the most significant metabolic networks involved in the conditions under study. 
Metabolite identifiers (KEGG code) together with their corresponding normalized bucket intensities were used 
for pathway enrichment analysis and pathway topological analysis, employing the MetaboAnalyst platform 
(www.metab oanal yst.ca). We selected the Homo sapiens library, and Global Test and Relative Betweenness Cen-
trality were chosen for pathway enrichment analysis and pathway topological analysis, respectively.

https://www.r-project.org/
http://www.metaboanalyst.ca
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