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Abstract

Background: Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART)
on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed
slightly different questions and have reported different outcome metrics. This study compares the predictions of several
mathematical models simulating the same ART intervention programmes to determine the extent to which models agree
about the epidemiological impact of expanded ART.

Methods and Findings: Twelve independent mathematical models evaluated a set of standardised ART intervention
scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count
threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected
individuals start treatment on average 1 y after their CD4 count drops below 350 cells/ml and 85% remain on treatment after
3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a
counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in
incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining
substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the
next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7.
Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower
than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV
transmissibility over the course of infection explained only a modest amount of the variation in model results.

Conclusions: Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter
choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce
new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment
scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new
infections. Differences between model predictions could not be explained by differences in model structure or
parameterization that were hypothesized to affect intervention impact.
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Introduction

There has recently been increasing interest in expanding

provision of antiretroviral therapy (ART) as a tool for reducing

the spread of HIV in generalised epidemics in sub-Saharan Africa

[1–5]. As momentum gathers for ‘‘HIV treatment as prevention’’,

there is an urgent need to understand how ART might contribute

to averting HIV transmissions, in addition to its direct benefits in

reducing morbidity and mortality amongst treated patients.

Mathematical modelling has supplied critical insights to discus-

sions about treatment as prevention by providing a framework for

combining information about the relationship between an infected

individual’s viral load and HIV transmissibility [6,7], the reduction

in a host’s HIV viral load when on ART [8,9], and the population-

level contact structure over which HIV is transmitted [10,11].

The idea of using medicines that suppress viral concentrations

to reduce transmission of infection was posed almost as soon as the

first HIV drugs were developed [12,13]. Early models of the

impact of ART focused on the opposing effects of reduced

transmissibility and extended survival on new HIV infections, and

whether associated increases in sexual risk behaviour would negate

the prevention benefits of ART [10,12,14–23]. Since then,

longitudinal observational data and one randomized controlled

trial have demonstrated substantial reductions in the risk of

heterosexual HIV transmission when the infective partner is virally

suppressed [24–28], and continued follow-up of individuals

receiving ART has confirmed the durability of viral suppression

[29], including in sub-Saharan Africa [30,31]. At the same time,

there have been tremendous improvements in access to treatment

in sub-Saharan Africa [32]. More recent modelling has shown

more optimism about the potential for treatment to reduce new

HIV infections in this region, with much work focused on the

setting of South Africa, home to one in six people living with HIV

globally [33].

Perhaps the most provocative of these modelling efforts has

been the study by Granich and colleagues suggesting that a

strategy involving annual testing and immediate treatment for all

HIV-infected individuals, combined with other interventions,

could eliminate HIV by the year 2050 [34]. Wagner and Blower

implemented the same model but used different assumptions about

treatment uptake amongst asymptomatic infected individuals that

they characterised as being more realistic, and concluded that

elimination would not be possible [35]. Kretzschmar et al.

highlighted how choices in model structure affect the epidemic

dynamics and intervention impact [36]. Dodd et al. showed that

the potential for treatment to eliminate HIV depends on the

patterns of sexual mixing in the population [11]. An age-structured

model by Bacaër et al. found that elimination might be possible

with less frequent testing than proposed by Granich et al., given

recent epidemic trends and increases in condom usage [37].

Bendavid et al. used a microsimulation model to highlight that, in

addition to increasing HIV testing, improving linkage to and

retention in care are essential to achieving maximal benefits of

test-and-treat interventions [38].

Other models have focused on the potential prevention benefits

of providing treatment in line with current therapeutic guidelines.

Eaton et al. estimated that 60 to 90 new infections could be

averted for every 1,000 additional persons treated with CD4 cell

count below 350 cells/ml (the current World Health Organization

recommendation for when to start treatment [39]), depending on

how well patients on treatment are retained in care [40]. The

Goals model, used in the evaluation of the new UNAIDS

Investment Framework, found that a US$46.5 billion incremental

investment over the years 2011 to 2020, incorporating expanding

access to ART, could avert 12.2 million new infections and 7.4

million deaths globally over that period [41]. Using a micro-

simulation model of the HIV epidemic in KwaZulu-Natal

Province, Hontelez et al. found that expanding access to ART

from those with CD4 cell count #200 cells/ml to those with #350

cells/ml required 28% more patients to receive treatment, but

amounted to only a 7% increase in annual investment [42].

Cumulative net costs broke even after 16 y.

Models have also sought to understand the impact of past and

current treatment policies; Johnson et al. used the ASSA2003 and

STI-HIV Interaction models to assess the relative contributions of

increased condom usage and ART scale-up to the declines in HIV

incidence in South Africa up to 2008 [43]. Finally, other

mathematical models have been used for short-term projections

as a basis for power calculations for community-randomized trials

of treatment as prevention [44].

Each of these models has predicted dramatic epidemiologic

benefits of expanding access to ART, but models appear to diverge

in their estimates of the possibility of eventually eliminating HIV

using ART, the cost-effectiveness of increasing the CD4 threshold

for treatment eligibility, and the benefits of immediate treatment

compared to treatment based on the current World Health

Organization eligibility guidelines. Directly comparing the models’

predictions is challenging because each model has been applied to

a slightly different setting, has used different assumptions regarding

other interventions, has been used to answer different questions,

and has reported different outcome metrics.

In this study we seek to understand the extent to which diverse

mathematical models agree on the epidemiological impact of

expanded access to ART by simulating the same set of

intervention scenarios across the models and focusing on

standardised outputs. The intervention scenarios are designed to

be simple enough to be consistently implemented across different

types of models in order to control several aspects of the treatment

programme and isolate the effects of model structure, parameters,

and assumptions about the underlying epidemic on estimates of

intervention impact. The purpose of this study is not to make

predictions about the impact of any particular intervention in any

specific setting, but rather to better characterise the array of

mathematical models being used to inform policy about treatment

as prevention in hyperendemic settings such as South Africa.

Methods

Study Design
Literature and reports of meetings on related topics were

reviewed in August 2011, and researchers who had previously

developed mathematical models of the potential epidemiological

impact of expanded access to ART, calibrated to the South

African epidemic setting, were invited to participate in the model

comparison exercise by simulating a standardised set of ART

scale-up scenarios. Three aspects of the treatment programme

were systematically varied: the CD4 threshold for treatment

eligibility, access to treatment for those eligible, and the retention

of patients on treatment. The timing of ART introduction and the

rate at which individuals start treatment after becoming eligible

were also standardised. The impact of an intervention was

measured by comparing the number of new infections in the

intervention scenario with that in a counterfactual epidemic

simulation in which no ART is provided within the same model

population. The counterfactual of no ART was chosen so that

comparison between models would be independent of assumptions

Comparison of Models of ART as HIV Prevention

PLoS Medicine | www.plosmedicine.org 2 July 2012 | Volume 9 | Issue 7 | e1001245



about the historic growth in ART uptake. As such, the results

should not be interpreted as estimates of the future impact of

treatment compared to current patterns of ART coverage, but can

be generally taken as estimates of the overall net impact of

treatment in a hypothetical scenario that assumes rapid ART

scale-up and a homogenous rate of ART initiation across all ART-

eligible adults. Although different models may incidentally have

been calibrated using the same data, no standardisation was

imposed on the specific epidemiologic data used for model

calibration or on the calibration procedure itself in this exercise.

Mathematical Models
Twelve groups accepted the invitation to participate in the

model comparison exercise. The collection of models encompasses

a wide range of model structures, mechanisms for representing

HIV transmission and disease progression, overall levels of

complexity, and detail in the characterisation of treatment

programmes. Table 1 summarises the names, authors, and key

references for each model, and compares aspects of model

structure. Four of the models are agent-based microsimulation

models (i.e., models that track the behaviour and infection status of

individual people) and use random-number generators to simulate

particular events such as a new partnership formation or

transmission events. The remaining eight models are deterministic

compartmental models that stratify the population into groups

according to each individual’s characteristics and HIV infection

status and use differential or difference equations to track the rate

of movement of individuals between these groups. One of the

models, the BBH model, solves the differential equations

analytically, while the others numerically evaluate the differential

equations. Ten of the models explicitly simulate both sexes and

heterosexual HIV transmission, and six of the models include

some form of age structure, although the extent to which age

affects the natural history of HIV, the risk of HIV acquisition, and

the risk of HIV transmission varies amongst these. All of the

models simulate the national HIV epidemic in South Africa except

for the STDSIM model, which simulates the higher prevalence

Hlabisa subdistrict of KwaZulu-Natal Province, South Africa. Box

1 gives further comparative description of the structures and

parameterization of the mathematical models.

Intervention Scenarios
Three different CD4 cell count thresholds for treatment

eligibility were considered: CD4 count #200 cells/ml, CD4 count

#350 cells/ml, and all HIV-infected individuals. In each eligibility

scenario, treatment initiation was simulated under the assumption

that all eligible individuals had equal access, without prioritisation

for any subpopulations. It was further assumed that eligible

individuals with access to the intervention would initiate ART at a

constant rate after reaching eligibility, such that average time from

eligibility to treatment initiation would be 1 y.

Treatment access was defined as the proportion of eligible

individuals who eventually initiate treatment. For example, 60%

access and eligibility at CD4#350 cells/ml implies that 60% of

individuals will initiate treatment, on average 1 y after their CD4

count drops below 350 cells/ml, while 40% will never access

treatment. Seven levels of treatment access were evaluated: 50%,

60%, 70%, 80%, 90%, 95%, and 100%.

Retention was defined as the percentage of individuals

remaining on treatment after 3 y, excluding from both the

numerator and the denominator those who had died while on

treatment. The levels of retention were 75%, 85%, 95%, and

100% (no dropout), with individuals dropping out from treatment

at a constant rate such that the desired level of retention was

achieved at the 3-y time point. The prognosis and future treatment

options for individuals who dropped out from treatment were not

standardised.

Intervention Scale-Up
ART was assumed to be introduced into the population from

the beginning of year 2012, with no treatment provision prior to

this (in contrast to the rapid scale-up of treatment that has actually

occurred prior to 2012 in South Africa). Intervention scale-up was

immediate—a fraction (corresponding to the specified level of

ART access) of individuals already eligible for treatment at the

start of the intervention period were assumed to initiate treatment

at a constant rate from that point, along with individuals who

became eligible for treatment after the start of the intervention

period.

Output Metrics
The measures of intervention impact were the percentage

reduction in HIV incidence rate among adults (aged 15–49 y) in

the ART scenario versus the no-ART counterfactual, the

cumulative number of person-years of ART provided since the

introduction of ART, and the cumulative number of person-years

of ART provided per infection averted as a measure of the

‘‘efficiency’’ with which ART prevents infections. The percentage

reduction in incidence was defined by calculating the difference in

the adult HIV incidence rate between the intervention and no-

ART counterfactual in the same year and dividing this by the

incidence rate in the counterfactual scenario. The number of

person-years of ART provided per infection averted was

calculated by dividing the cumulative number of person-years of

ART by the difference between the number of new adult

infections since year 2012 in the intervention and the counterfac-

tual scenario. Each of these metrics was reported at the midpoints

of the years 2020 and 2050. Most of the models included in this

study were not designed with the intention of making realistic

projections to year 2050, but these results were included to gain

some insight into the long-term dynamics of the models.

In addition to these measures of intervention impact, each

model reported the HIV prevalence and HIV incidence rate

amongst males and females aged 15–49 y for the no-treatment

counterfactual simulation and the total size of the adult population

(age 15 y and older). Each model also produced the proportion of

the HIV-infected population in each CD4 count category (#200,

200–350, and .350 cells/ml) and in early HIV infection in year

2012, and the proportion of HIV transmissions from individuals in

each category.

The Eaton and STI-HIV Interaction models report posterior

means and 95% credible intervals for model outcomes of

interest (see Box 1). The Bendavid model completed simulations

only for 50%, 80%, and 100% access, and 75%, 85%, and

100% retention scenarios, and only simulated to year 2040, so

results for this model are reported for the year 2040 where other

model results are reported for year 2050. The BBH model

completed simulations only for the 85% and 100% retention

scenarios. The Granich model did not simulate ART for the

CD4#200 cells/ml eligibility threshold, while the STI-HIV

Interaction model did not simulate ART eligibility for all HIV-

infected individuals. As a result of these models not completing

all intervention scenarios and outputs, some analyses include

only a subset of the models. To maximise comparability, the

40% reduction in transmission due to combination with other

preventive interventions assumed by Granich and colleagues in

[34] was not incorporated here.

Comparison of Models of ART as HIV Prevention
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Box 1. Comparative Description of Mathematical Models

This box elaborates on the comparison of aspects of the
models’ structure, assumptions, and parameterization pre-
sented in Table 1. Specific details about the structure and
implementation of each of the models are available in the
references included in Table 1 or from the HIV Modelling
Consortium (http://www.hivmodelling.org/plos-medicine-
special-collection).
Many of the models allow individuals to have different
propensities for sexual risk behaviour. Each of the micro-
simulation models allows individuals to have both long-term
(or marital) partnerships and short-term (or informal or
casual) partnerships that are different in duration, and
individuals have heterogeneous propensities to form short-
term partnerships. In the STDSIM model a proportion of the
population engages in commercial sex work partnerships; in
the EMOD model a proportion can have transitory partner-
ships, a third partnership type that is shorter than a casual
partnership. Among the microsimulation models, EMOD and
STDSIM explicitly simulate the sexual partnership network,
while the Bendavid and Synthesis Transmission models
calculate the risk of acquiring HIV for an individual in a
partnership by sampling the distribution of viral load across,
respectively, the entire population and potential partners.
The deterministic models assume that sexual contacts occur
instantaneously. The BBH, Granich, and HIV Portfolio models
assume that all individuals form new contacts at the same
rate and mix homogeneously. The other deterministic
models stratify the population into risk groups that form
new contacts at different rates (Eaton, Fraser, and Goals:
three groups; STI-HIV Interaction: two groups). The STI-HIV
Interaction and Goals models additionally include commer-
cial sex workers, and the Goals model includes transmission
among men who have sex with men and injecting drug
users. The STI-HIV Interaction model separates both the low-
and high-risk groups into those with short-term or long-term
partnerships or both. The Eaton, Fraser, and STI-HIV
Interaction models all include a degree of ‘‘assortative’’
mixing (preferential partnership formation with those in the
same risk group), and all partnerships are formed in the same
risk group in the Goals model, except for low-risk men and
women who are married to high-risk partners. The CD4 HIV/
ART model does not explicitly model sexual mixing but
rather calculates the number of new HIV infections by
multiplying the current number of HIV-infected adults by a
fixed force of infection calculated from the Spectrum model
projection for South Africa.
All of the models except for the Granich model simulate
different stages of HIV infection that affect the transmissi-
bility of an individual, including a period of elevated
infectiousness during the first few weeks of infection and
increased transmission during later stage infection. Param-
eters governing the relative transmissibility during early
infection are based principally on two sources: a meta-
analysis of HIV transmission per coital act by Boily et al. [68],
which estimated a 10-fold increase in transmission relative to
asymptomatic infection (BBH, CD4 HIV/ART, Goals, and STI-
HIV Interaction), or a reanalysis of data from Rakai, Uganda
[70], by Hollingsworth et al. [69], which estimated a 26-fold
increase (Eaton, EMOD, Fraser, and Synthesis Transmission).
Relative transmissibility after the early stage is according to
clinical stage (asymptomatic and AIDS: BBH, CD4 HIV/ART,
EMOD, Goals; asymptomatic, pre-AIDS, and AIDS: STDSIM,
STI-HIV Interaction) or CD4 count (Eaton, Fraser, and HIV
Portfolio). The Bendavid and Synthesis Transmission models
simulate the change in viral load for infected individuals and

associate HIV transmission with this according to an
empirically described relationship [6]. Many models assume
an increased risk of male-to-female transmission compared
to female-to-male transmission, and attenuation in female-
to-male transmission due to male circumcision. The Goals,
STDSIM, and Synthesis Transmission models include an
increased risk of HIV transmission in the presence of other
sexually transmitted infections.
The models that simulate each individual’s viral load
(Bendavid and Synthesis Transmission) mechanistically relate
reduction in transmission on treatment to the effect of ART
on viral load, while the other models all assume a reduction
in transmission of greater than 90% for individuals on ART.
The Bendavid, Eaton, and Synthesis Transmission models
simulate a period of a few months of incomplete viral
suppression after ART initiation before the full reduction in
infectiousness is achieved. These three models and EMOD
include a return to higher infectiousness during treatment
failure. The remaining models assume a fixed reduction in
transmissibility as soon as treatment is started, until either
death on ART or dropout from treatment. The Bendavid and
Synthesis Transmission models simulate switching to sec-
ond-line ART upon an immunologic (Bendavid) or virologic
(Synthesis Transmission) failure event. The Synthesis Trans-
mission model is the only model to explicitly simulate
heterogeneous adherence to treatment between patients
and the emergence and impact of resistance. The models
vary in their assumptions about what happens to an
individual after dropping out from treatment. The CD4
HIV/ART, Fraser, Goals, Granich, and HIV Portfolio models
return individuals who drop out to an untreated state,
allowing them to restart treatment in exactly the same
manner as those that have never been treated, while the
Bendavid, STDSIM, STI-HIV Interaction, and Synthesis Trans-
mission models do not allow individuals to start treatment
again in the implementation for this exercise. Eaton allows
individuals to restart treatment, but only once, and EMOD
allows half of individuals to restart treatment after they once
again satisfy the eligibility criterion.
Eleven of the models simulate the South African national HIV
epidemic, while the STDSIM model has been calibrated
specifically to the higher prevalence Hlabisa subdistrict of
KwaZulu-Natal Province, South Africa. Nine models were
calibrated to reproduce the historical time series of HIV
prevalence in South Africa, while the BBH, HIV Portfolio, and
Bendavid models were initialized using the current epidemic
state in the years 2009, 2011, and 2012, respectively, and
simulated forward from that point.
Most of the models were calibrated to yield a single set of
model parameters and outputs. Two of the models (Eaton
and STI-HIV Interaction) were calibrated using a Bayesian
framework allowing for uncertainty in model parameters,
which produces a joint posterior distribution of parameter
combinations consistent with the observed HIV epidemic
[43,84]. The STI-HIV Interaction model allows for uncertainty
in sexual behaviour, the natural history of HIV infection, and
the effect of ART, while the Eaton model only allows for
uncertainty in sexual behaviour and sexual mixing parame-
ters.
Many of the models include facilities to simulate HIV testing
and diagnosis, retention in care prior to treatment eligibility,
and other processes related to achieving successful treat-
ment, but these were not implemented for this exercise in
order to conform to the simple intervention scenarios.

Comparison of Models of ART as HIV Prevention
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Scenarios Representing the Existing ART Programme in
South Africa

In a separate analysis, seven of the models (CD4 HIV/ART,

Eaton, Fraser, Goals, Granich, STDSIM, and STI-HIV Interac-

tion) were used to estimate the impact that the existing scale-up of

ART in South Africa has had on HIV incidence and prevalence

by comparing model simulations that include the ART scale-up

over the past decade with the no-ART counterfactual. Models

either used an existing calibration to the number of people on

ART in South Africa (Fraser and STDSIM) or were calibrated

using estimates of the number of adults starting and on ART in

each year from 2001 to 2011 [45] (CD4 HIV/ART, Eaton, Goals,

Granich, and STI-HIV Interaction).

Five models (Bendavid, CD4 HIV/ART, Eaton, Goals, and

Granich) constructed short-term projections of HIV incidence in

South Africa assuming different trajectories for continued ART

scale-up from 2011 to 2016, the period covered by South Africa’s

national strategic plan [46]. Starting from the number of patients

on ART in mid-2011, the numbers of adults starting ART in each

of the years from mid-2011 through mid-2016 was specified. A

‘‘baseline’’ scenario was considered in which 400,000 adults would

start ART in each of the next 5 y (approximately the number who

started ART in 2009), for a total of 2 million new adults initiating

ART. Three other scenarios were considered for the total numbers

starting ART over the same period: (i) ‘‘low’’—1.2 million start

ART; (ii) ‘‘medium’’—3 million start ART; and (iii) ‘‘high’’—3.9

million start ART. (The exact number starting in each year is

listed in Table 2.) The HIV incidence rate at the midpoint of 2016

and the cumulative number of new adult HIV infections over the

period 2011 to 2016 were reported for each of these scenarios. For

these projections, assumptions regarding CD4 distributions at

ART initiation and rates of retention were based on actual

treatment guidelines and programme experiences, but were not

standardised across models.

Results

Figure 1 shows HIV prevalence and HIV incidence in 15- to 49-

y-old males and females simulated by each of the models under the

counterfactual assumption of no ART provision.

Other epidemiologic statistics are presented in Table 3. The

estimates of adult male HIV prevalence in year 2012 ranged

between 10% and 16%, and estimates of female prevalence

between 17% and 23%. Male HIV incidence in year 2012 ranged

between 1.1 and 2.0 per 100 person-years, and female incidence

ranged between 1.7 and 2.6. The STDSIM model calibrated to

KwaZulu-Natal Province simulated a considerably larger burden

of HIV, consistent with observation [47], with prevalences in year

2012 of 23% and 33% in males and females, respectively, and

incidence rates of 3.0 and 3.9 per 100 person-years, respectively.

All of the sex-stratified models simulated higher HIV prevalence in

adult women than in men, with sex ratios in HIV prevalence in

year 2012 between 1.2 and 1.7, and all of the models except for

Bendavid simulated higher incidence in year 2012 in females than

in males.

Nearly all of the models projected declines in HIV incidence

after 2012 in the absence of ART, but the magnitude of the

projected natural changes between 2012 and 2050 varied widely

from almost no change (Goals and Granich) to greater than 45%

reduction (Bendavid and Synthesis Transmission).

Model projections of future national population growth in the

absence of ART varied widely, ranging from a 6% reduction to a

13% increase in the population aged 15 y and older between the

years 2012 and 2020. For comparison, the low and high variants

for the projected total population growth from the United Nations

Population Division over the same period (which incorporates

some assumptions about ART provision) are 1.5% and 6.1% [48].

Impact of ART on HIV Incidence
Figure 2 presents the outcomes of an intervention starting in

year 2012 with ART eligibility at CD4 count #350 cells/ml,

reaching 80% of those requiring treatment, and retaining 85% of

patients on ART after 3 y. This scenario reflects an optimised

implementation of the current World Health Organization

treatment guidelines [39] and the Joint United Nations Pro-

gramme on HIV/AIDS definition for ‘‘universal access’’ of

reaching 80% of those in need [32]. Compared to the no-

treatment counterfactual scenario, ART provision reduced inci-

dence in year 2020 by 35% to 54% across all models (Figure 2A).

There was much greater variation, however, in the estimated long-

term impact of the intervention. In year 2050, the range of the

predicted reduction in incidence was from 32% to 74%. The

relative impact of the ART intervention on HIV incidence

decreased between 2020 and 2050 in four models and increased in

seven.

Number of Person-Years of ART per Infection Averted
There was considerable variation between models in estimates

of the number of person-years of treatment per infection averted.

For the scenario described above, the range of estimates for the

number of person-years of ART per infection averted between

2012 and 2020 was between 6.3 and 18.7, and over the period

2012 to 2050, the range was 4.5 to 20.2 (Figure 2B). The four

models with the greatest estimates of the number of person-years

of ART provided per infection averted (Eaton, EMOD, STI-HIV

Interaction, and Synthesis Transmission) all explicitly included

variation in transmission by age (e.g., allowing for reduced impact

Table 2. Number of adults starting ART each year in the short term.

Year ‘‘Low’’ Future Scale-Up ‘‘Baseline’’ Future Scale-Up ‘‘Medium’’ Future Scale-Up ‘‘High’’ Future Scale-Up

2012 400,000 400,000 600,000 800,000

2013 200,000 400,000 600,000 900,000

2014 200,000 400,000 600,000 900,000

2015 200,000 400,000 600,000 700,000

2016 200,000 400,000 600,000 600,000

Total 1,200,000 2,000,000 3,000,000 3,900,000

Number of adults (age 15 y and older) initiating ART between midpoint of the previous year and the midpoint of indicated year.
doi:10.1371/journal.pmed.1001245.t002
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through ART provision to older adults who are less sexually active

and hence less likely to expose susceptible individuals), whereas the

other models did not assume reduced transmission by older people.

(STDSIM allows for decreased sexual activity for those older than

50 and has the lowest estimate of person-years of ART per infection

averted, but simulates a much higher HIV incidence.)

Determinants of Programme Impact
The impact on incidence of increasing access from 50% to

100%, improving 3-y programme retention from 85% to 100%,

and changing the CD4 threshold for treatment eligibility, is

shown for each model in Figure 3. The reduction in incidence

increases approximately linearly with access in all models. In
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most models, improvements in retention in care led to greater

impact of treatment on HIV incidence. The benefit of improving

retention was minimal for the Fraser, Granich, and HIV Portfolio

models. Each of these models regards individuals who have

dropped out of treatment identically to untreated eligible

individuals, allowing them to start treatment again on average

within 1 y. In several models, improved retention means that the

impact improves more rapidly with increasing access (i.e., the

slope in reduction in incidence as access increases is steeper for

higher retention).

Figure 4 shows how the number of person-years of ART

provided per infection averted up to year 2020 varied in relation to

the intervention programme. There were no consistent trends

across all models. In some models, with earlier initiation of

treatment, fewer years of ART were required per infection averted

(efficiency increases), whereas the opposite was predicted in others.

0 20 40 60 80 100
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STI−HIV
STDSIM
Portfolio
Granich
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Fraser
EMOD
Eaton

Bendavid
BBH
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Transmission

CD4
HIV/ART
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95% CI
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Figure 2. Impact of treatment for a scenario with eligibility at CD4#350 cells/ml, 80% access, and 85% retention. (A) The percentage
reduction in HIV incidence in the years 2020 and 2050 when eligibility for treatment is at CD4 count #350 cells/ml, 80% of individuals are treated, and
85% are retained on treatment after 3 y. (B) The cumulative number of person-years of ART provided per infection averted for the same scenario.
Horizontal lines indicate 95% credible intervals (CI). For the Bendavid model, results in year 2040 are reported in the right panels.
doi:10.1371/journal.pmed.1001245.g002
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For all of the models except the Granich model, which does not

include increased transmissibility during late-stage infection, it

might be expected that treating at lower CD4 count would be

more efficient, as it targets treatment towards individuals with the

highest current infectiousness (as in the BBH, Bendavid, CD4

HIV/ART, Eaton, and Goals models). However this could be

counteracted if stage of infection interacts with other processes

such as decreased propensity to form new partnerships with

ageing. For half of the models (BBH, Eaton, EMOD, Fraser,

Goals, Granich, and HIV Portfolio), increasing the percentage of

the population with access to treatment reduced the amount of

treatment per infection averted, at least at earlier CD4 initiation

thresholds. This increased efficiency is indicative of increasing

returns due to ‘‘herd immunity’’ at high intervention coverage

levels.

Treatment Eligibility and the Theoretical Impact of ‘‘Test
and Treat’’

The models varied in their predictions as to the relative benefit

of increasing treatment eligibility from a CD4 threshold of #200

cells/ml (national guidelines in some settings and close to actual

experience in many) to #350 cells/ml (international guidelines)

compared to further increasing eligibility to all infected individuals

(Figure 3). The Bendavid, CD4 HIV/ART, Goals, HIV Portfolio,

and Synthesis Transmission models all predicted that there would

be only a relatively modest benefit in moving from initiation at

#200 cells/ml to #350 cells/ml, and a much greater benefit in

moving from initiation at #350 cells/ml to immediately upon

diagnosis of HIV infection. In contrast, the BBH model simulated

very little benefit in moving from the #350 cells/ml threshold to

immediate eligibility. The Eaton, Fraser, and EMOD models

showed similar benefits associated with each of the increments at

moderate levels of access.

One important argument that has been made for immediate

ART is that commitment of a large amount of ART now could

reduce the cumulative amount of ART required in the future as a

result of averted HIV infections [2,49]. Whether such savings

could occur was evaluated by investigating whether the cumulative

person-years of treatment through year 2050 to implement

immediate treatment is less than the amount of ART required

when treating after the CD4 count falls below 350 cells/ml for the

same levels of access and retention. In six (BBH, CD4 HIV/ART,

Fraser, Goals, HIV Portfolio, and STDSIM) out of eleven models

(excluding STI-HIV Interaction) this was not the case: increasing

eligibility from CD4#350 cells/ml to immediate initiation always

required more person-years of treatment, even with ‘‘perfect’’

ART programmes (100% access and 100% retention). However,

for the EMOD model, expanding eligibility from CD4#350 cells/

ml to all HIV-infected adults required fewer cumulative person-

years of treatment in all intervention scenarios (including access as

low as 60% and retention in care as low as 75%). The Synthesis

Transmission model found expanding access to be ART-saving

with 70% access and retention above 95%, or with 80% access

and retention above 85%. The other three models that found that

expanding access could be ART-saving required more demanding

assumptions about programmes: according to the Granich model,

immediate initiation would be ART-saving if access were above

90% and retention above 95%; according to the Eaton model,

access and retention would need to exceed 95%; and according to

the Bendavid model, access and retention would both need to be

100%.

In an intervention treating all HIV-infected adults with 95%

access and 95% retention, three (CD4 HIV/ART, EMOD, and

HIV Portfolio) out of nine models (excluding BBH, Bendavid, and

STI-HIV Interaction) predicted that HIV incidence would fall

below 0.1% per year by 2050. The Granich model, which was

used to argue the case for HIV elimination using treatment,

projected that incidence in South Africa would be 0.13% under

this scenario, a 92% reduction (in the original published

projections, there was an assumption that risk of infection would

fall by an additional 40% due to other interventions [34]).

Understanding Differences between Model Predictions
One factor expected to influence how much ART reduces HIV

is the fraction of all transmission that occurs after individuals reach

treatment eligibility thresholds, in the absence of any treatment

[50]. Figure 5A shows the proportion of transmissions that occur

from individuals in each CD4 count range in the counterfactual

simulation in year 2012. Of the models that include a period of

early infection, the percentage of new infections that occurs during

this stage is between 4% and 28%, while between 20% and 51% of

transmission results from individuals with CD4 cell count #200

cells/ml.

These percentages of transmission after ART eligibility can be

compared with the percentage reduction in incidence in year 2020

(Figure 5B). Here, it is assumed that access is 80% and 3-y

retention in care is 85%. Although this comparison explains why,

within one model, earlier treatment initiation reduces HIV

incidence more, the amount of between-model variation in

projected impact explained by the distribution of transmission by

CD4 count is modest. R2 values for this relationship were 0.28,

0.20, and 0.40 for eligibility at CD4#200, eligibility at CD4#350,

and immediate eligibility, respectively. The correlation did not

improve when considering higher access or higher retention

scenarios.

Two other factors hypothesized to explain the differences

between the model projections are different assumptions about the

efficacy of ART in reducing transmission—between 90% and

99%—and different assumptions about the outcomes of individ-

uals who drop out from treatment programmes. To test the

importance of these factors, selected intervention scenarios were

repeated under the artificial assumption that an individual never

transmits after initiating treatment (treatment is 100% efficacious

at preventing transmission, and retention on treatment is 100%).

This assumption increased the intervention impact in every

model, but, surprisingly, did not reduce the variation in the

results between models or improve the ability of factors such as

different model assumptions about CD4 progression, HIV

transmission, or the future trajectory of HIV incidence to explain

the variation.

Estimates of the Current Impact of ART in South Africa
Figure 6 shows the estimated impact of the current ART

programme in South Africa on HIV prevalence and incidence.

The CD4 HIV/ART, Eaton, Goals, Granich, and STI-HIV

Interaction models used estimates of the number of adults

starting treatment in South Africa in each year between 2001

and 2011 from [45], and the Fraser and STDSIM models used

Figure 3. Proportion reduction in HIV incidence in year 2020. For each model, the proportion reduction in HIV incidence in year 2020 for
increasing access levels from 50% to 100% (horizontal axis). ART eligibility thresholds are indicated by line colour; 85% retention is indicated by solid
lines, and perfect 100% retention is indicated by dashed lines.
doi:10.1371/journal.pmed.1001245.g003

Comparison of Models of ART as HIV Prevention

PLoS Medicine | www.plosmedicine.org 12 July 2012 | Volume 9 | Issue 7 | e1001245



5

10

15

20

25 BBH Bendavid CD4
HIV/ART

5

10

15

20

25 Eaton

Pe
rs

on
−y

ea
rs

 o
f A

R
T 

pe
r i

nf
ec

tio
n 

av
er

te
d

EMOD Fraser

5

10

15

20

25 Goals Granich Portfolio

50 60 70 80 90 100
5

10

15

20

25 STDSIM

50 60 70 80 90 100

STI−HIV
Interaction

ART access
50 60 70 80 90 100

Synthesis
Transmission

ART eligibility: CD4 < 200   CD4 < 350   all

Comparison of Models of ART as HIV Prevention

PLoS Medicine | www.plosmedicine.org 13 July 2012 | Volume 9 | Issue 7 | e1001245



existing calibrations to ART coverage levels in the Western

Cape and KwaZulu-Natal Provinces, respectively. All of the

models predicted that ART should already have had a

substantial impact on the HIV epidemic, estimating that HIV

incidence in year 2011 was between 17% and 32% lower than it

would have been in the absence of ART. The increasing impact

on HIV incidence over time mirrors the steep increase every

year in the number of people starting treatment during this

period.

The impact on prevalence was more modest and less consistent

across models. The Eaton and STI-HIV Interaction models

estimated that prevalence is around 8% higher than it would have

been without treatment (an absolute increase in prevalence of one

percentage point) due to the increased survival for those infected

with HIV. The Fraser and Granich models suggest that this effect

is offset by the reductions in incidence, so that there is no net

change in prevalence. It is unlikely that standard surveillance

methods based on monitoring trends in prevalence would have

detected this impact, despite the significant underlying reductions

in incidence.

The estimated potential impact of further ART scale-up is

summarised in Table 4. In the baseline scenario, where 400,000

people are started on ART each year, the models estimated that

incidence would be reduced in 2016 by between 13% and 26%

compared to the incidence rate in 2011. If 800,000 fewer people

are put on ART, then between 39,000 and 186,000 more new

adult HIV infections would occur over the period 2012 to 2016

than under the baseline scenario. If more people are put on

ART—3.0 or 3.9 million over the next 5 y—then the models

estimated that the number of new infections over the 5-y period

would be reduced by 64,000 to 327,000 and 270,000 to 521,000,

respectively, compared to the baseline. The table underscores that

there are still substantial potential preventive benefits from

expanding ART coverage in South Africa. The models that

tended to estimate the greatest reduction in incidence in

hypothetical programmes over the medium term (CD4 HIV/

ART, Goals, and Granich) also tended to project greater

reductions in incidence over the short term in these more realistic

scenarios.

Discussion

The mathematical models used to simulate the impact of

treatment on HIV incidence in South Africa are diverse in their

structure, level of complexity, representation of the HIV transmis-

sion process and the ART intervention, and parameter choices. All

twelve of the models compared in this analysis predicted that

treatment could substantially reduce HIV incidence—even using

past or existing treatment guideline eligibility criteria, provided that

coverage is high. Only three (CD4 HIV/ART, EMOD, and HIV

Portfolio) out of nine models (excluding BBH, Bendavid, and STI-

HIV Interaction), however, predicted that treatment could reduce

HIV incidence below 0.1% by year 2050 (the definition of

‘‘elimination’’ established by [34]), even with very high access and

Figure 4. Cumulative number of person-years of ART provided per infection averted through year 2020. The cumulative person-years of
ART provided per infection averted through the year 2020 for increasing access levels from 50% to 100% (horizontal axis), assuming 85% retention after
3 y. ART eligibility thresholds of are indicated by line colour. Varying retention did not affect trends between access and efficiency for any models.
doi:10.1371/journal.pmed.1001245.g004
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retention. When simulating the historical scale-up of ART in South

Africa, the models indicated that ART may already have reduced

HIV incidence by between 17% and 32% in 2011, compared to

what would have been expected in the absence of ART.

Although there have been ad hoc informal model comparison

exercises [51], collections of work using standardised assumptions

for interventions [52], and thorough model comparisons involving

a few research groups [53,54], to our knowledge, this exercise is

the first to bring together such a large number of independent

modelling groups to examine the same set of interventions. We

hope that this will provide a foundation for much more

collaborative work.

In this study we set out to test whether different models of the

potential impact of treatment on new HIV infections in South

Africa would make similar predictions when implementing the

same intervention scenarios. We found substantial consistency

between the model projections of the impact of ART interventions

on HIV incidence in the short term (8 y). However, there was

more variation in the predicted longer term (38 y) reductions in

incidence, and models also produced divergent estimates of the

number of person-years of ART provided per infection averted.

While establishing where models agree and disagree about the

epidemiological impact of ART represents an important scientific

finding in itself, the substantial variation in the long-term impact

and efficiency of interventions demands further investigation and

explanation.

Based on epidemiological theory and previous modelling

studies, we hypothesized a number of model attributes that might

explain differences in model predictions about the impact of ART,

including the amount of transmission in different stages of HIV

infection, the assumed efficacy of ART for preventing transmis-

sion, opportunities for treatment reinitiation following dropout

from a treatment programme, the age and sex structure of the

population, future population growth rates, the degree of

heterogeneity and assortativity in sexual mixing, the future

trajectory of HIV incidence in the absence of intervention, and

the inclusion of changes in sexual behaviour over the past decade.

There was indeed substantial variation between the models in their

characterisation of each of these aspects of the system, largely

reflecting the true uncertainties that persist even after decades of

tremendous research into the epidemiology of HIV in South

Africa. We were able to show that crude differences in the

proportion of transmission at each stage of infection explained a

modest amount of the variation in the short-term impact of ART,

but less of the long-term impact. However, beyond this, findings

from the models did not appear to clearly support any of these

hypotheses in univariate analyses, likely because of the large

number of processes that interact nonlinearly to create HIV

epidemics and interventions. For example, projecting a seemingly

simple quantity such as the number of person-years of ART that

will be provided in an intervention depends on future population

growth, the natural trend in the epidemic, the proportion of HIV-

infected individuals qualifying for treatment, retention and

survival on ART, and the impact that ART provision has on

future HIV incidence. This situation contrasts with that of an

earlier exercise that compared predictions of the impact of male
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circumcision interventions [51], where the relationship between

the established efficacy of the intervention and population-level

impact was less complicated.

Having investigated the extent to which differences in ART

programmes determine differences in results, the natural focus for

future model comparison studies should be to explore the

contribution of other hypotheses through incrementally standard-

ising biological, behavioural, and demographic model parameters,

and calibrating models to the same levels of HIV prevalence and

incidence. A systematic approach to standardising model param-

eters would identify which parameters most significantly influence

the results and guide priorities for future data collection. The HIV

Modelling Consortium (http://www.hivmodelling.org) will coor-

dinate such research efforts in coming months to investigate the

extent to which variation in model predictions is driven by

differences in underlying models of sexual mixing, or different

models of the natural history of infection and epidemic trajectory.

Although our experiment and analysis has focused on how

factors included in models can affect model predictions, it is

important to note that if all models exclude an important aspect of

the system, they could all be wrong. Early models of the impact of

ART on HIV incidence were very focused on the concern that

increased sexual risk behaviour might offset the reduction in

transmission for those on treatment, but for this exercise all of the

models assumed that population risk behaviour would not change

in response to the introduction of ART. This may be a reasonable

assumption given consistent evidence that patients report safer

sexual behaviour after starting ART [55–59] and given the relative

lack of information from sub-Saharan Africa about how the

untreated and HIV-negative population responds to the availabil-

ity of treatment [60]. But in other epidemic settings the availability

of ART has been associated with receding gains in protective

behaviour [61–63], and monitoring this in sub-Saharan African

settings will be a priority for surveillance over coming years. The

models also all assumed high efficacy of ART to reduce

transmission. True effectiveness will depend on adherence and

the level of viral suppression, which is mainly determined by

adherence levels. While there are some data from South Africa on

viral suppression rates outside carefully controlled trial settings

[64], further information on this and on patterns of acquired and

transmitted resistance will help in the calibration of models. Only

one of the models in this exercise (Synthesis Transmission)

explicitly incorporated the effect of antiretroviral drug resistance

on the impact of ART interventions. Models have predicted that

antiretroviral drug resistance could be widespread in sub-Saharan

Africa in coming decades [20], which could eventually lead to the

spread of transmitted drug resistance [65,66]. This could affect the

long-term costs and efficacy of treatment-as-prevention strategies

[67].

Another finding from systematically comparing models is that

often seemingly independent modelling studies rely on the same

limited data. Nearly all of the models relied on two sources to

derive parameters for elevated infectiousness during the first few

weeks of infection [68,69], but both of these sources are based

principally on data from a few retrospective couples in Rakai,

Uganda [70] (see [71]). This highlights both how invaluable these

data are and also the importance of recognising the dependencies

between seemingly independent modelling studies. However, even

using the same data, models may reach different conclusions. The

Eaton, EMOD, and Fraser models all in some way used the

estimates of early HIV infectivity from [69] but estimate very

different contributions of this stage to overall HIV transmission

(Figure 4A), and the three models all reached different conclusions
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from those in another recent modelling study relying on these

same estimates [72].

The purpose of this exercise was not to draw conclusions or

recommendations about specific ART intervention strategies, but

rather to test the hypothesis that a range of different models would

come to similar conclusions about the impact of ART on HIV

incidence when the same interventions were modelled. The

simulated interventions were artificially simple and stylized to

enable comparison between models. These did not explicitly

simulate the steps of HIV testing, diagnosis, linkage to care, and

adherence to ART required to achieve the access levels specified in

the intervention scenarios (although several of the models include

facility for this and have investigated this in independent analyses).

Interpretation of models simulating high levels of treatment

coverage should be cautioned by data suggesting that at present

fewer than one-third of patients in sub-Saharan Africa are

continuously retained in care from HIV diagnosis to ART

initiation [73], and that barriers remain to access to and uptake

of HIV testing [32]. The models assumed that all individuals

eligible for treatment were equally likely to access treatment,

which might not be true in practice (for example, women are more

likely to start treatment than men [74]). The comparison scenario

(counterfactual) against which interventions were evaluated

assumed no treatment at all, which made it easier to compare

models, but is clearly not the relevant benchmark for policy-

makers. This study has also considered treatment in isolation from

other interventions, even as there is broad consensus that

‘‘combination prevention’’ strategies are presently the best strategy

for attacking the epidemic [41,75].

We hope that this study will help to characterise the models that

are being used to investigate questions related to the impact of

HIV treatment and enable those who rely on models for decision-

making to think critically about how the assumptions underlying

models affect the results. The relative consistency between models’

estimates of the short-term epidemiological impact of ART,

including the impact of the existing ART programme, provides

some reassurance that model projections on this time scale may be

relatively robust to the substantial uncertainties in parameters and

systems. This is a significant result considering that such short-

term projections are often the most relevant for policy and

resource allocation questions. On the other hand, the substantial

variation in long-term epidemiological impacts and efficiency of

ART, upon which arguments of substantial epidemic reduction

and cost savings hinge, suggests that results in these areas from any

single model should be extrapolated with caution. Care should be

taken to ensure that models evaluating the long-term costs,

benefits, and cost-effectiveness of treatment programmes ade-

quately communicate the degree and myriad sources of uncer-

tainty that influence these outputs.

A common question when faced with a diversity of model results

is whether some models are ‘‘better’’ or ‘‘worse’’. Without data

against which to test the predictions of models, it is not possible to

answer this question in a study such as this, nor is this the correct

question to be asking. Rather, users of model outputs should ask

whether models include the necessary components to capably

answer the specific questions at hand, and whether the models

make credible assumptions in light of the information available,

and choose models accordingly. Evaluated along these guidelines,

the most appropriate models will vary between applications, so

there is no single ‘‘best’’ model. However, in this exercise, the

models that tended to project more ‘‘pessimistic’’ outcomes for the

interventions seemed to do so for important reasons. For example,

models that estimated poorer efficiency of ART for averting

infections tended to be those that simulated ART provision for

those at older ages, who might be at lower risk of transmitting, or

included the elevated risk of transmission for those failing

treatment, whereas models with more optimistic predictions

assumed that risk behaviour did not vary by age or that

transmission was fully suppressed immediately upon beginning

treatment until death on ART or dropout. Artificial convergence

of models should be avoided when true uncertainties persist about

the system. It is incumbent upon modellers to incorporate and

communicate uncertainty in projections, and identify which

components of the system account for the uncertainty. For this

exercise, only one model (STI-HIV Interaction) included a

comprehensive analysis accounting for uncertainty about basic

epidemiology and intervention efficacy. While the focus of the

study was on variation between models, it is interesting to observe

that the 95% credible interval representing parameter uncertainty

for this model encompassed the point estimates of the other eleven

models.

Fortunately there will be important new opportunities in the

near future to test, validate, and improve epidemiological models

of HIV treatment. These include comparing projections to the

experience of expanded ART in industrialised countries [61,63],

the observed impact of ART in well-characterised communities

[76], and results of a number of community-randomized trials of

treatment as prevention that will soon be underway [44]. As new

data are reported, the accuracy of models projecting the impact of

treatment as prevention should improve, and we expect that

validated and scientifically based model projections will continue

to be central in understanding how ART can have the greatest

impact in mitigating the global HIV epidemic.
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Editors’ Summary

Background. Following the first reported case of AIDS in
1981, the number of people infected with HIV, the virus that
causes AIDS, increased rapidly. In recent years, the number of
people becoming newly infected has declined slightly, but
the virus continues to spread at unacceptably high levels. In
2010 alone, 2.7 million people became HIV-positive. HIV,
which is usually transmitted through unprotected sex,
destroys CD4 lymphocytes and other immune system cells,
leaving infected individuals susceptible to other infections.
Early in the AIDS epidemic, half of HIV-infected people died
within eleven years of infection. Then, in 1996, antiretroviral
therapy (ART) became available, and, for people living in
affluent countries, HIV/AIDS gradually became considered a
chronic condition. But because ART was expensive, for
people living in developing countries HIV/AIDS remained a
fatal condition. Roll-out of ART in developing countries first
started in the early 2000s. In 2006, the international
community set a target of achieving universal ART coverage
by 2010. Although this target has still not been reached, by
the end of 2010, 6.6 million of the estimated 15 million
people in need of ART in developing countries were
receiving ART.

Why Was This Study Done? Several studies suggest that
ART, in addition to reducing illness and death among HIV-
positive people, reduces HIV transmission. Consequently,
there is interest in expanding the provision of ART as a
strategy for reducing the spread of HIV (‘‘HIV treatment as
prevention’’), particularly in sub-Saharan Africa, where one in
20 adults is HIV-positive. It is important to understand
exactly how ART might contribute to averting HIV transmis-
sion. Several mathematical models that simulate HIV
infection and disease progression have been developed to
investigate the impact of expanding access to ART on the
incidence of HIV (the number of new infections occurring in
a population over a year). But, although all these models
predict that increased ART coverage will have epidemiologic
(population) benefits, they vary widely in their estimates of
the magnitude of these benefits. In this study, the
researchers systematically compare the predictions of 12
mathematical models of the HIV epidemic in South Africa,
simulating the same ART intervention programs to deter-
mine the extent to which different models agree about the
impact of expanded ART.

What Did the Researchers Do and Find? The researchers
invited groups who had previously developed mathematical
models of the epidemiological impact of expanded access to
ART in South Africa to participate in a systematic comparison
exercise in which their models were used to simulate ART
scale-up scenarios in which the CD4 count threshold for
treatment eligibility, access to treatment, and retention on
treatment were systematically varied. To exclude variation
resulting from different model assumptions about the past
and current ART program, it was assumed that ART is
introduced into the population in the year 2012, with no
treatment provision prior to this, and interventions were
evaluated in comparison to an artificial counterfactual
scenario in which no treatment is provided. A standard
scenario based on the World Health Organization’s recom-
mended threshold for initiation of ART, although unrepre-
sentative of current provision in South Africa, was used to
compare the models. In this scenario, 80% of HIV-infected
individuals received treatment, they started treatment on

average a year after their CD4 count dropped below 350 cells
per microliter of blood, and 85% remained on treatment
after three years. The models predicted that, with a start
point of 2012, the HIV incidence would be 35%–54% lower in
2020 and 32%–74% lower in 2050 compared to a counter-
factual scenario where there was no ART. Estimates of the
number of person-years of ART needed per infection averted
(the efficiency with which ART reduced new infections)
ranged from 6.3–18.7 and from 4.5–20.2 over the periods
2012–2020 and 2012–2050, respectively. Finally, estimates of
the impact of ambitious interventions (for example, imme-
diate treatment of all HIV-positive individuals) varied widely
across the models.

What Do These Findings Mean? Although the mathe-
matical models used in this study had different characteris-
tics, all 12 predict that ART, at high levels of access and
adherence, has the potential to reduce new HIV infections.
However, although the models broadly agree about the
short-term epidemiologic impact of treatment scale-up, their
longer-term projections (including whether ART alone can
eliminate HIV infection) and their estimates of the efficiency
with which ART can reduce new infections vary widely.
Importantly, it is possible that all these predictions will be
wrong—all the models may have excluded some aspect of
HIV transmission that will be found in the future to be
crucial. Finally, these findings do not aim to indicate which
specific ART interventions should be used to reduce the
incidence of HIV. Rather, by comparing the models that are
being used to investigate the feasibility of ‘‘HIV treatment as
prevention,’’ these findings should help modelers and policy-
makers think critically about how the assumptions underly-
ing these models affect the models’ predictions.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001245.

N This study is part of the July 2012 PLoS Medicine Collection,
‘‘Investigating the Impact of Treatment on New HIV
Infections’’

N Information is available from the US National Institute of
Allergy and Infectious Diseases on HIV infection and AIDS

NAM/aidsmap provides basic information about HIV/AIDS
and summaries of recent research findings on HIV care and
treatment

N Information is available from Avert, an international AIDS
charity on many aspects of HIV/AIDS, including informa-
tion on HIV/AIDS treatment and care, on HIV treatment as
prevention, and on HIV/AIDS in South Africa (in English and
Spanish)

N The World Health Organization provides information about
universal access to AIDS treatment (in English, French, and
Spanish); its 2010 ART guidelines can be downloaded

N The HIV Modelling Consortium aims to improve scientific
support for decision-making by coordinating mathematical
modeling of the HIV epidemic

N Patient stories about living with HIV/AIDS are available
through Avert; the charity website Healthtalkonline also
provides personal stories about living with HIV, including
stories about taking anti-HIV drugs and the challenges of
anti-HIV drugs
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