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Multidrug-resistant bacteria, including carbapenem-resistant Klebsiella pneumoniae
(CRKP), are becoming an increasing health crisis worldwide. For CRKP, colistin is
regarded as “the last treatment option.” In this study, we isolated a clinical CRKP
strain named as K. pneumoniae R10-341. Phenotyping analysis showed that this strain
could transit from a colistin-sensitive to a resistant phenotype by inserting an IS4 family
ISKpn72 element into the colistin-resistance associated mgrB gene. To investigate
the mechanism of this transition, we performed genome sequencing analysis of the
colistin-sensitive parental strain and found that 12 copies of ISKpn72 containing direct
repeats (DR) are located on the chromosome and 1 copy without DR is located on
a multidrug-resistant plasmid pR10-341_2. Both types of ISKpn72 could be inserted
into the mgrB gene to cause colistin-resistance, though the plasmid-derived ISKpn72
without DR was in higher efficiency. Importantly, we demonstrated that colistin-sensitive
K. pneumoniae strain transferred with the ISKpn72 element also obtained the ability to
switch from colistin-sensitive to colistin-resistant phenotype. Furthermore, we confirmed
that the ISKpn72-containing pR10-341_2 plasmid was able to conjugate, suggesting
that the ability of causing colistin-resistant transition is transferable through common
conjugation. Our results point to new challenges for both colistin-resistance detection
and CRKP treatment.

Keywords: multidrug resistance, CRKP, mgrB, colistin, phenotype transition

INTRODUCTION

Multidrug-resistant pathogenic bacteria, such as carbapenem-resistant Klebsiella pneumoniae
(CRKP), are increasingly becoming a health crisis worldwide (Nordmann et al., 2011; Pitout et al.,
2015). Polymyxins, including polymyxin B and polymyxin E (colistin), have been regarded as
“the last treatment option” for CRKP (Biswas et al., 2012). Polymyxins are lipopeptide antibiotics
targeting the lipopolysaccharide (LPS) of the bacterial outer membrane, the main component of the
Gram-negative bacterial cell wall (Hancock, 1997; Li et al., 2006).
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The increase in infections by polymyxin-resistant bacteria
has become a great challenge to clinical treatment (Antoniadou
et al., 2007; Bogdanovich et al., 2011; Macesic et al., 2020).
In K. pneumoniae, the most common polymyxin-resistance
mechanism is achieved by LPS modification, which decreases the
negative charge of LPS and reduces its affinity to polymyxins
(Velkov et al., 2014; Liu et al., 2017). The mobile colistin
resistance gene (mcr-1) is the first reported plasmid-mediated
colistin resistance gene (Liu et al., 2016), which encodes a
phosphoethanolamine-lipid A transferase catalyzing the addition
of phosphoethanolamine (PEtN) to lipid A (Liu et al., 2016,
2017). To date, 10 variants (mcr1-10) have been identified on
a wide variety of transferable plasmids (Wang et al., 2018,
2020; Yang et al., 2018; Zhong et al., 2018; Lei et al., 2020),
leading to the widespread diffusion of mcr-mediated colistin-
resistance (Zhong et al., 2018; Nang et al., 2019). Chromosome-
mediated colistin-resistance has also been characterized by the
involvement of a small transmembrane protein MgrB and the
two-component systems (TCSs) PhoPQ, PmrAB, and CrrAB
(Gunn and Miller, 1996; Olaitan et al., 2014). To the best
of our knowledge, in contrast to mcr genes, chromosome-
mediated colistin-resistance mechanisms are considered to be
stable and have not been reported to be transferred or mobile
to other bacteria. However, inactivation of the mgrB gene has
been widely identified from clinical colistin-resistant clinical
K. pneumoniae strains (Cannatelli et al., 2013; Gaibani et al., 2014;
Olaitan et al., 2014).

In this study, we isolated a multidrug resistant K. pneumoniae
strain named R10-341 with high frequency (∼10−6) of colistin
heteroresistance (El-Halfawy and Valvano, 2015; Halaby et al.,
2016). Genetic and molecular analyses identified that insertion of
an ISKpn72 element into the mgrB gene was responsible for the
acquisition of colistin resistance. We further analyzed ISKpn72
copies in this strain and demonstrated that the ISKpn72 element
is derived from a mobile plasmid and suggested that this mobile
plasmid has the ability to render transition from colistin-sensitive
to resistant phenotype in K. pneumoniae.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Primers
The K. pneumoniae strains named R10-341 and 7097 used in
this study were isolated from the sputum samples collected from
the Tongji Hospital, Hubei Province, China. The K. pneumoniae
strains were grown in LB medium with 100 µg/mL ampicillin
at 37◦C.

For plasmid constructions, the p15A ori from plasmid
pACYC184 (Rose, 1988) and the streptomycin-resistance gene
from pTargetF (Jiang et al., 2015) were PCR amplified,
respectively. These two fragments were assembled as the
linearized vector p15A-Sm by overlap PCR, which was then
cloned with ISpla (IS fragment from pR10-341_2) or ISchr (IS
fragment from chromosome) fragment using the ClonExpress II
One Step Cloning Kit (Vazyme) to generate two plasmids named
p15A-Sm-ISpla and p15A-Sm-ISchr respectively. All primers
used in this study are listed in Supplementary Table 1.

Sequence Typing and Colistin Resistant
Gene Detection
Multilocus sequence typing (MLST) for the K. pneumoniae R10-
341 strain was performed as described (Diancourt et al., 2005).1

Colistin resistance associated genes were detected by PCR. Each
of the mcr genes was amplified using two pairs of primers.
Genes encoding the two-component systems were amplified by
PCR and confirmed by DNA sequencing in comparison with
the K. pneumoniae HS11286 strain (Accession: NC_016845). All
primers are listed in Supplementary Table 1.

Drug Susceptibility Test
MICs of antibiotics (except colistin) for K. pneumoniae
R10-341 were determined using the broth microdilution
method according to the Clinical and Laboratory Standards
Institute (CLSI) guidelines (CLSI document M100-S28)2. The
susceptibility to colistin was tested according to the guidelines
of European Committee on Antimicrobial Susceptibility Testing
(EUCAST)3. Briefly, 100 µL Cation-adjusted Mueller-Hinton
Broth containing 2-fold diluted antibiotics was added to a 96-
well plate, followed by the addition of 100 µL bacterial cells
(105
∼106 CFU/mL) to each well. The 96-well plate was incubated

at 37◦C for 16–24 h. The lowest concentration of antibiotic with
complete inhibition (clear broth) was regarded as the MIC.

Genome DNA Extraction, Whole Genome
Sequencing, and Bioinformatics Analysis
The K. pneumoniae R10-341 strain was first spread onto a LB
plate. A single colony was selected and cultured in LB medium
at 37◦C. Genomic DNA was extracted using a bacterial genomic
DNA extraction Kit (Tiangen). Genome DNA sequencing was
performed by both Hiseq X Ten (Illumina) and MinION
(Oxford Nanopore Technologies) platforms according to a
standard protocol provided by Illumina and Oxford Nanopore
Technologies. The off-machine data of Nanopore sequencing
is converted to fastq format through the Albacore software in
the MinKNOW software package4 (Payne et al., 2019). After
filtering to obtain clean reads, these reads are randomly selected
and aligned with the Nucleotide Sequence Database. De novo
genome assembly was performed with Unicycler v0.4.7 (Wick
et al., 2017). NCBI Prokaryotic Genomes Annotation Pipeline
(PGAP) was used to annotate assembled genome sequence
and to identify genes related to conjugation (Tatusova et al.,
2016). Antibiotic resistance genes and plasmid replicons were
respectively identified by ResFinder v3.0 (Zankari et al., 2012)
and PlasmidFinder v2.0 (Carattoli et al., 2014) from the Center
for Genomic Epidemiology website5. Sequence reads for the
whole-genome sequencing are available from the NCBI Sequence
Read Archive (PRJNA655367).

1https://bigsdb.pasteur.fr/klebsiella/
2https://clsi.org/standards/products/microbiology/documents/m100-preorder/
3https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_
documents/Recommendations_for_MIC_determination_of_colistin_March_
2016.pdf
4https://github.com/Albacore/albacore
5http://www.genomicepidemiology.org/
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IS Element Analysis
For analyzing the IS elements in K. pneumoniae R10-341, the IS
element inserted into the mgrB gene in colistin resistant colonies
was first identified by PCR and DNA sequencing. This IS element
sequence was analyzed in ISfinder database6 and was named as
ISKpn72 based on suggestion from ISfinder. The sequence of the
ISKpn72 element was then aligned with the K. pneumoniae R10-
341 genome sequence using BLASTn.

Amino acid sequences of transposases used in the
phylogenetic tree analyses of the IS elements were downloaded
from ISfinder database. Phylogenetic tree was constructed based
on average distance using Jalview 2.11 (Waterhouse et al., 2009).

Conjugation Analysis
Since K. pneumoniae R10-341 is resistant to several antibiotics
but is relatively sensitive to tetracycline, we constructed a
tetracycline-resistant (TcR) E. coli K-12 strain as the recipient
in conjugation experiment using a CRISPR/Cas9 system (Jiang
et al., 2015). Briefly, the E. coli K-12 strain was first transformed
with a Cas9 expressing plasmid pCas, and the sgRNA expressing
plasmid pTargetF-EclacZ (targeting the lacZ gene) was then
co-transformed with a DNA repairing fragment containing
tetracycline-resistance gene from pACYC184 plasmid (Rose,
1988). The colonies resistant to tetracycline were screened.
A single colony from 50 µg/ml tetracycline-containing LB agar
plate was confirmed by DNA sequencing and was named as
K12-TcR for subsequent conjugation tests.

Conjugation was performed by mixing an overnight donor
(K. pneumoniae R10-341) and logarithmic phase recipient (K12-
TcR) at a ratio of 4:1 in a total volume of 1 mL as described
(Wu et al., 2019). The mixture was then concentrated and spotted
onto LB agar without antibiotics at 37◦C for 2–4 h to allow
conjugation to occur. Since the pR10-341_2 plasmid contains
streptomycin resistance gene (Table 1), the conjugated bacterial
mixture was plated on LB agar containing 50 µg/ml tetracycline
and 50 µg/ml streptomycin to screen for transconjugants
carrying plasmid pR10-341_2. Transconjugants were confirmed
by PCR using primers paired to K. pneumoniae R10-341 (Kpn-
F-FR), K12-TcR (Ec-F-FR), and pR10-341_2 plasmid (P-F-
FR), respectively.

6http://www-is.biotoul.fr

FIGURE 1 | Sensitivity test of the K. pneumoniae R10-341 strain to colistin.
E. coli K-12 and K. pneumoniae 7097 were used as control strains. The depth
of the color increases with the OD600 values.

RESULTS

Characterization of a Multi-Drug
Resistant Klebsiella pneumoniae
R10-341 Strain
The K. pneumoniae R10-341 strain was a clinical isolate from
a sputum sample collected before antibiotic treatment from
Tongji Hospital in Wuhan, China. This K. pneumoniae R10-
341 strain was classified as ST11 and was resistant to different
classes of antibiotics, including beta lactams, aminoglycosides,
chloramphenicol, rifamycin, quinolones, sulfonamides and
macrolides (summarized in Table 1). When testing the minimal
inhibitory concentration (MIC) of colistin for this strain, we
observed that some of the wells in the 96-well plate tested were
resistant, while other wells showed colistin-sensitive phenotype
(Figure 1). To exclude the possibility that the tested strain was
a mixture of colistin sensitive and resistant, DNA sequences
of known colistin resistance associated genes were tested in
K. pneumoniae R10-341 parental strain. As summarized in
Table 2, phoPQ, pmrAB, crrAB, and mgrB genes were the same
as those in drug-sensitive strain, and the mcr1-8 genes could
not be successfully amplified in K. pneumoniae R10-341 strain.
To further exclude the possibility of bacterial contamination, we
streaked the R10-341 strain onto LB plate and selected different
single colonies. Similar results were obtained for all these single
colonies (data not shown), which suggested that the appearance
of colistin resistant colonies for K. pneumoniae R10-341 strain
was due to a colistin heteroresistance (CHR).

TABLE 1 | MIC values of different antibiotics to K. pneumoniae R10-341.

Antibiotic name Antibiotic class MIC (µg/ml) Resistance gene Gene location

Ampicillin Beta lactams >256 blaSHV-11 blaKPC-2 blaCTX-M-27 Chromosome pR10-341_2

Kanamycin Aminoglycoside 128 – –

Streptomycin Aminoglycoside 256 aadA pR10-341_2

Gentamicin Aminoglycoside >128 – –

Rifampin Rifamycin >256 arr-2 pR10-341_2

Chloramphenicol Chloramphenicol 128 cat3 Chromosome

Ciprofloxacin Quinolones >256 qnrB pR10-341_2

Trimethoprim Sulfonamides >256 dfrA12 pR10-341_2

Tetracycline Tetracyclines 16 – –

Erythromycin Macrolides >256 – –
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TABLE 2 | Genes related to colistin resistance in K. pneumoniae R10-341.

Resistance mechanism Gene Gene functions Detection results

Lipid A assembly PEtN mcr-1 Phosphatidylethanolamine-lipid A transferase No product

mcr-2 No product

mcr-3 No product

mcr-4 No product

mcr-5 No product

mcr-6 No product

mcr-7 No product

mcr-8 No product

L-Ara4N and PEtN synthesis and modified LPS pathway mgrB PhoPQ negative-regulate protein WT*

phoPQ TCS (Two-Component System) WT*

pmrAB TCS WT*

crrAB TCS WT*

*WT indicates gene had the 100% DNA sequence identity in coding region and a ∼150 bp promoter region as these in the reference strain K. pneumoniae HS11286.

Insertion of an IS4 Family Transposon
Element Into mgrB Gene Generated
Colistin-Resistant Colonies
To further characterize the K. pneumoniae R10-341 strain, we
tested the growth of this strain on LB plates containing 100
µg/mL colistin. Consistent with MIC testing, some colonies
(∼10−6) grew on the plate containing colistin, but no colonies
were obtained from E. coli K-12 nor from another clinical isolate
named K. pneumoniae 7097 on the colistin-containing plate
(Figure 2A). To test the mechanism of this colistin resistance,
we selected two colonies of the K. pneumoniae R10-341 strain
from LB plate without colistin and then streaked onto LB
plates containing 100 µg/mL colistin. Again, some colonies from
both strains can grow on LB plates containing colistin. We
then isolated four colonies from each of these two colistin-
containing plates and sequenced the phoPQ, pmrAB, and mgrB
genes (Figure 2B). Surprisingly, the amplified mgrB fragments
from colistin-resistant colonies were all ∼1.4 kb longer than that
from parental colistin-sensitive strains (Figures 2B,C).

Next, we sequenced this ∼1.4 kb inserted fragment. Sequence
alignment in the NCBI database showed this fragment encodes an
IS4 family transposase. Further analysis of this ∼1.4 kb inserted
fragment in ISfinder suggested that this insertion sequence could
be named as ISKpn72 and classified into the IS10 group in the IS4
family, as its sequence is >95% identical to IS10R (Figure 2D). In
accordance with this analysis, we identified 22 bp inverted repeats
(IR) at both the left and right ends of this insertion fragment and
9 bp direct repeats (DR) around the insertion site (Figure 2C).

K. pneumoniae R10-341 Carries the
ISKpn72 Element Both in the
Chromosome and Plasmid DNA
The R10-341 strain can become colistin-resistant by inserting
the ISKpn72 element into the mgrB gene, but we do not know
the source of the ISKpn72 element. We therefore sequenced
the genome of the original colistin-sensitive K. pneumoniae
R10-341 strain. We obtained a 5.3 Mb chromosome DNA and
two plasmid sequences (named pR10-341_1 and pR10-341_2,

respectively), which are 5.3Mb, 10.06 kb, and 236.3 kb with G+C
contents of 57.46, 55.07, and 52.72%, respectively. According
to the PlasmidFinder database, pR10-341_1 and pR10-341_2
harbored ColRNAI and IncR replicon sequence, respectively.
Several antibiotic resistance genes were identified both on the
chromosome and plasmids, which were in consistent with our
drug resistance tests (Table 1). Genome sequencing analysis
confirmed that colistin-resistance related genes, including mgrB,
phoPQ, and pmrAB, were all the same as the K. pneumoniae
reference strain HS11286 (Genome accession: NC_016845),
which further supports our hypothesis that the colistin-sensitive
strain acquired resistance in the presence of colistin.

In searching for the ISKpn72 element sequence in the whole
genome we obtained, we found 12 copies of this ISKpn72
element on the chromosome, and 1 copy on the plasmid
pR10-341_2. Similar to that observed in the colistin-resistant
R10-341 strain, all copies of the ISKpn72 element contain
a pair of 22 bp-length imperfect terminal inverted repeats
(IR) (Figure 3A). Surrounding the 12 copies of the ISKpn72
element located on the chromosome are 9-bp direct repeated
(DR) sequences. In contrast, the plasmid encoding the ISKpn72
element only contains IR sequences but not the 9 bp-DR
sequences (Figure 3A). Therefore, we assumed that the copy
without DR on pR10-341_2 might be the root of all the ISKpn72
copies on the chromosome. These analyses suggested that the
ISKpn72 element had already been inserted into the chromosome
in the parental colistin-sensitive strain.

Both the DR-Containing and DR-Missing
ISKpn72 Elements Can Be Inserted Into
the mgrB Gene
Whether these existing ISKpn72 elements could be inserted into
the mgrB gene to cause colistin-resistance is the next question.
We transformed plasmids cloned with either the ISKpn72
element from pR10-341_2 or an ISKpn72 element from the
K. pneumoniae R10-341 chromosome (named as ISpla and ISchr,
respectively) into the colistin-sensitive strain K. pneumoniae
7097 (Figure 3B). In contrast to the parental K. pneumoniae
7097 strain, the transformation of the plasmid containing either
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FIGURE 2 | Insertion of an ISKpn72 transposon element into the mgrB gene in colistin-resistant strain. (A) Colonies of E. coli K-12, K. pneumoniae 7097 and
K. pneumoniae R10-341 streaked on LB plates containing 100 µg/mL colistin. Each plate was streaked with 100 µL of logarithmic phase bacteria. As a control, 100
µL of 105 diluted bacteria was also spread onto LB plates without colistin. (B) Confirmation of acquisition of colistin resistance for the K. pneumoniae R10-341
strain. Two separated colistin-sensitive colonies were spread onto two LB plates containing 100 µg/mL colistin. Fragment insertions of the mgrB gene in four
colonies from each plate were tested by PCR. (C) Insertion of the ISKpn72 element into the mgrB gene in K. pneumoniae R10-341 colistin-resistant colonies.
(D) Phylogenetic tree of the IS elements based on amino acid sequences of transposases.

ISpla or ISchr into this colistin-sensitive strain resulted in the
growth of some colistin-resistant colonies. Colony forming units
(CFU) on LB agar containing 100 µg/mL colistin revealed
that the plasmid-derived ISKpn72 was more efficient than the
chromosome-derived one in inserting into the mgrB gene to
acquire colistin-resistance (Figure 3C). These data suggest that
both ISpla and ISchr can be inserted into mgrB gene to acquire
the colistin-resistance phenotype and ISpla without DRs had a
higher efficiency.

The Resistance-Acquiring Mechanism
May Be Potently Disseminated Among
Bacteria
The next question is whether the ISKpn72 element on the
pR10-341_2 plasmid could be horizontally transferred to acquire
the colistin-resistant phenotype. Sequence alignment of the
pR10-341_2 plasmid from the NCBI database showed high
similarity to the conjugative multidrug resistant plasmid pR46-
270 in a K. pneumoniae R46 isolate (GenBank: CP035776.1).
Accordingly, a conjugative system consisting of tra, trb, and finO
genes were encoded by the plasmid (Figure 4A). To confirm
the transferability of the pR10-341_2, we used K. pneumoniae
R10-341 as the donor and a tetracycline-resistant E. coli K12-
TcR strain as the recipient to verify plasmid conjugation
(Figure 4B). As expected, the E. coli K12-TcR strain containing
the pR10-341_2 plasmid was successfully obtained (Figure 4C),

suggesting the pR10-341_2 plasmid was transferable. Together,
these results demonstrated that the K. pneumoniae R10-
341 was able to disseminate the ability to switch from
colistin-sensitive to resistant phenotype by transferring an IS
containing plasmid.

DISCUSSION

Colistin-resistant bacteria are becoming an increasing threat
to healthcare especially in hospitals (Antoniadou et al.,
2007; Bogdanovich et al., 2011; Zhong et al., 2018; Nang
et al., 2019). Previous studies have focused on mechanisms
of drug-resistance and how to detect these resistant strains
(Olaitan et al., 2014; Poirel et al., 2017). In this study, we
identified a colistin-sensitive K. pneumoniae R10-341 strain
with high frequency (∼10−6) of colistin heteroresistance. The
K. pneumoniae R10-341 strain was classified as ST11, which
is the most widely prevalent CRKP genotype in China and
contains the blaKPC-2 gene, which encodes the KPC family
carbapenem-hydrolyzing class A beta-lactamase (Qi et al.,
2011; Liu et al., 2018). We showed that this K. pneumoniae
R10-341 strain could transit from a colistin-sensitive to a
resistant phenotype by the insertion of an ISKpn72 element
into the mgrB gene. Importantly, we characterized this ISKpn72
element in a mobile plasmid, which showed high similarity
to the conjugative plasmid pR46-270 (Wu et al., 2019).
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FIGURE 3 | Different types of ISs have different insertion efficiencies. (A) Schematic diagram of ISKpn72 elements located on chromosome and P2 plasmid. IR
sequences are shown in blue and the DR sequences are indicated in orange. (B) Schematic diagram for cloning two forms of the ISKpn72 element into
colistin-sensitive K. pneumoniae 7097 strain. (C) Acquired colistin-resistance for K. pneumoniae 7097 strain transformed with different ISKpn72 elements. Overnight
grown bacteria were spread onto plates containing 100 µg/mL colistin, and bacterial colony forming unit (CFU) numbers were calculated. Representative data from
two-independent experiments with four technique replicates are shown.

FIGURE 4 | Transconjugation of the pR10-341_2 plasmid from K. pneumoniae R10-341. (A) Genes involved in mobility of the pR10-341_2 plasmid. (B) Strategy
used in conjugation transfer analysis. (C) PCR confirmation of transconjugant. Data of amplified products for Ec-F, Kpn-F, and P2-F are shown.

These analyses suggest that the ability of transiting from
colistin-sensitive to resistant may be disseminated through
plasmid transfer.

Heteroresistance has been reported to lead to failures in
antibiotic treatment (Band et al., 2016; Band et al., 2019). In
CRKP, colistin heteroresistance could be achieved by inserted
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inactivation and deletion or point mutations in mgrB, phoP,
phoQ, lpxM, and yciM genes (Jayol et al., 2015; Halaby et al.,
2016). Similar as previous studies, we found that the colistin
heteroresistance in K. pneumoniae R10-341 was also caused
by inactivation of chromosomal encoded mgrB gene, but we
characterized that this inactivation was mediated by a mobile
plasmid derived IS element. Therefore, our result is the first to
report that the colistin heteroresistance is able to be transferred
or spread via plasmid mobilization.

Colistin-resistance in K. pneumoniae can be achieved by
chromosome- or plasmid-encoded genes (Ah et al., 2014; Olaitan
et al., 2014; Rebelo et al., 2018). Chromosome-encoded mutations
are considered to be stable (Gunn et al., 1998), while plasmid
encoded mcr genes can be potentially transferred across bacterial
species to cause direct colistin-resistance (Liu et al., 2016;
Zhong et al., 2018). Being different from spreading of drug-
resistance genes, we characterized the spread of the ability to
become colistin-resistance via mobile plasmid. The ISKpn72-
containing mobile plasmid enables the strain to transit from
colistin-sensitive to resistant phenotype by inactivating the mgrB
gene, which may also explain the widespread of mgrB gene
inactivation in clinical samples (Cannatelli et al., 2014; Gaibani
et al., 2014). Interestingly, all copies of the ISKpn72 element
contain a pair of 22 bp-length imperfect terminal inverted repeats
(IR), which is a characteristic feature of the IS element in
bacteria (Rezsöhazy et al., 1993; Mahillon and Chandler, 1998);
but only the 12 copies of the ISKpn72 element located on
the chromosome contain 9-bp direct repeated (DR) sequences,
which are considered as a marker of IS insertion (Mahillon and
Chandler, 1998). These observations indicate that the copies of
ISKpn72 on the chromosome are probably inserted from the
DR-missing ISKpn72 element on the pR10-341_2 plasmid. In
addition, we observed a colistin-resistance acquirement of ISchr
transformers (Figure 3C), which indicated that the bacteria also
can store the ability to become colistin-resistance by inserting
IS in chromosome. The ability to transit to colistin-resistant
can be both stored at chromosome and disseminated through
mobile plasmids.

The mechanism of a mobile plasmid-mediated transfer of the
ability to transit from a colistin-sensitive to resistant phenotype
brings not only challenges to colistin-resistance detection, but
also raises concerns to the use of colistin in clinical treatment.
Firstly, this type of colistin-resistant phenotype was generated
by the insertion of an ISKpn72 element into the mgrB gene,
which means the parental strain may be mis-classified as colistin-
sensitive in drug-resistant genotyping or phenotyping assays.
Secondly, the ISKpn72 and other IS elements widely exist
in prokaryotes (Mahillon and Chandler, 1998; Frost et al.,
2005), suggesting transition to colistin-resistance may be widely

occurred (Cannatelli et al., 2013, 2014). Different methods have
been deployed for antibiotic resistance analysis and prediction,
including traditional antimicrobial susceptibility testing (AST)
(Jorgensen and Ferraro, 1998) and bioinformatics tools (Zankari
et al., 2012; Boolchandani et al., 2019). It is still a challenge
to identify whether a strain is able to acquiring inheritable or
transmissible antibiotic-resistance, or under specific conditions
due to the wide existence of IS elements. Additionally, the
frequency of the ISKpn72 insertion into the mgrB gene
characterized in our study can reach∼10−6, indicating that the IS
insertion, especially the IS4 family, should receive more attention
in the clinical use of colistin.
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