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MicroRNA-26b-5p suppresses the proliferation of tongue squamous cell 
carcinoma via targeting proline rich 11 (PRR11)
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ABSTRACT
MicroRNAs (miRNAs) have been proved to be involved in many biological processes during 
tumorigenesis and progression, including cell proliferation and cell cycle progression. However, 
the potential role of miR-26b-5p in tongue squamous cell carcinoma (TSCC) remains unclear. In 
the present study, we demonstrated that miR-26b-5p was decreased in TSCC tissues in both 
TCGA-TSCC subset and eight paired samples from TSCC patients, while Proline Rich 11 (PRR11) 
was obviously increased. Transfection of miR-26b-5p mimics inhibited CALL7 cell proliferation by 
arresting the cells at the S/G2 transition. Meanwhile, miR-26b-5p inhibitor had the opposite 
biological functions. The results of luciferase activity and RNA-pulldown assays indicated that 
miR-26b-5p directly targeted the PRR11 3� -untranslated region in CAL27 cells. Furthermore, the 
effects of miR-26b-5p on cell cycle regulation were reversed after treatment with siRNA against 
PRR11. In summary, our findings indicate that miR-26b-5p induce cell cycle arrest in TSCC by 
targeting PRR11. Hence, targeting miR-26b-5p could be a promising therapeutic strategy for the 
treatment of TSCC.
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Introduction

Tongue squamous cell carcinoma (TSCC) is the 
most prevalent malignancy of the oral cavity 
worldwide [1–3]. Despite advances in detection 
and treatment, the outcome of patients with 
TSCC remains unsatisfactory in recent years [4]. 
In normal cells, cellular growth and proliferation 
are stringently regulated, while derangements of 
the cell cycle can lead to uncontrolled proliferation 
and provide tumor cells with growth advantages. 
Hence, it is essential to dissect the molecular 
mechanism supporting the growth advantage of 
TSCC cells, which might contribute to providing 
novel therapeutic targets for TSCC treatment.

Accumulating evidence supports the involve-
ment of microRNAs (miRNAs) in the regulation 
of cell proliferation, apoptosis, invasion, migration 
and other phenotypes by binding to the 3�- 
untranslated region (UTR) of its target genes. 
Previous studies have demonstrated that miR- 

26b-5p plays important roles in the development 
and progression of various cancers, including lung 
cancer, liver cancer and myeloma [5–7]. For 
instance, miR-26b-5p inhibites cell proliferation 
and induces apoptosis in multiple myeloma cells 
by targeting JAG1, and maintains the stemness of 
hepatocellular carcinoma cells by inhibiting 
HSC71/HSPA8. miR-26b-5p inhibition promoted 
the growth of Burkitt lymphoma cells by repres-
sing the KPNA2 expression [8]. Additionally, miR- 
26b-5p upregulation restricted the malignant fea-
tures of human apillary thyroid cancer by degrad-
ing beta-catenin [9]. To data, The involvement of 
miR-26b-5p in TSCC remain unclear.

Recent high-throughput studies have facilitated 
an integrative understanding of the molecular 
mechanisms underlying carcinogenesis, metastasis, 
and chemoresistance in cancer research [10–13]. 
Using bioinformatics tools, we were able to under-
stand miRNA functions by identifying miRNA 
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targets. Proline-rich 11 (PRR11) protein, which 
has been implicated in the regulation of cell cycle 
progression [14], was predicted as a candidate tar-
get of miR-26b-5p in the current study. Several 
studies have indicated that PRR11 is overexpressed 
in various cancers, including lung, ovarian, eso-
phageal and pancreatic cancers [15–18]. However, 
the potential roles of PRR11 in TSCC remain 
unclear.

In the present study, miR-26b-5p was found to 
be downregulated in TSCC, and contributed to the 
inhibition of cell proliferation. Together with the 
prediction of the miR-26b-5p binding site within 
the PRR11 3�-UTR, we hypothesized that miR- 
26b-5p could suppress TSCC cell proliferation via 
targeting PRR11. Our results shed new light on the 
mechanism that provides TSCC cells with growth 
advantages.

Materials and methods

Tissues and cell line

Eight pairs of frozen samples were collected from 
TSCC patients, and informed consent was 
obtained from the Hunan Cancer Hospital. All 
experiments were approved by the ethics commit-
tee of the Hunan Cancer Hospital (KYJJ-2020- 
222), Changsha, China. The TSCC cell line 
CAL27 was purchased from Shanghai Genechem 
Co., Ltd, and routinely cultured in DMEM with 
10% FBS (Gibco, Gaithersburg, MD).

Bioinformatics and statistical analysis

The gene expression data (FPKM) of TSCC 
patients were downloaded and filtered from The 
Cancer Genome Atlas (TCGA; cancergenome.nih. 
gov), and the candidate gene data were subse-
quently extracted to form a new matrix. 
Differences in gene expression between groups 
were assessed using the Student’s t-test. Using 
ENCORI [19], candidate miRNA-target pairs 
were selected, and the Pearson correlation coeffi-
cient (PCC) values between the expressions of two 
genes in each pair were subsequently calculated. 
The pairs with PCC< −0.2 and corrected p-value < 
0.05 were considered statistically significantly cor-
related, and the correlation between candidate 

genes in different datasets was visualized as scatter 
diagrams. Because TSCC is always considered as 
a subset of head and neck squamous cell carci-
noma, overall survival (OS) analysis of candidate 
genes was performed using the web tool OncoLnc 
(http://www.oncolnc.org) in the TCGA-HNSC 
dataset [20]. The Kaplan–Meier method was used 
to estimate OS.

Quantitative real-time PCR

Each siRNA, miRNA mimic or inhibitor 
(GenePharm, Shanghai, China) was transfected 
into CAL27 cells for 48 h using Lipofectamine 
2000 (Invitrogen, Carlsbad, CA). Total RNA was 
extracted using the Trizol reagent (Invitrogen, 
Carlsbad, CA), and then reverse transcribed to 
cDNA using PrimeScriptTM RT-PCR Kit 
(Takara, Dalian, China) according to the manufac-
turer’s instructions. For miRNA quantitation, 
reverse transcription was performed using the 
PrimeScript RT Reagent Kit (Takara, Dalian, 
China) with specific stem-loop primers. 
Quantitative Real-Time PCR (qRT-PCR) was per-
formed using SYBR® Premix DimerEraser™ 
(Takara, Dalian, China) in a Roche LightCycler 
480 II Real-Time PCR system (Roche, Basel, 
Switzerland). The threshold cycle value (Ct) of 
each product was determined and normalized 
against that of the internal control GAPDH or 
U6 (for miRNA), and the differences were com-
pared by t-test using SPSS version 23.0, the statis-
tical significance set at P < 0.05.

Cell counting kit-8 assay

After treatment, the cells were seeded into 96-well 
plates at 2 × 103 cells/well. The Cell counting kit-8 
(CCK-8, Beyotime, China, C0041) reagent was 
injected into the wells after 0-, 12-, 24-, 48- and 
72 h of culturing. Finally, the optical density at 
450 nm was recorded using a microplate reader 
after a 2 h incubation.

Cell cycle analysis

Cell cycle analysis was performed by using propi-
dium iodide staining and flow cytometry. After 
washing once with cold PBS, cell pellets 
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(approximately 1.0 × 106 cells) were resuspended in 
200 μL of cold PBS, and fixed in 4 mL of 70% ethanol 
overnight at −20 °C. Samples were subsequently col-
lected by centrifugation and resuspended in 500 μL 
of buffer containing 40 μg/ml propidium iodide 
(Beyotime, China, C1052) and 100 μg/mL RNase 
A (Beyotime, China, C1052). All samples were incu-
bated for 30 min at 37 °C before analysis on 
a CytoFLEX flow cytometer (Beckman Coulter). 
Data were analyzed using the CytExpert (Beckman 
Coulter, Version 2.0) software.

EdU staining

EdU (5-ethynyl-2�-deoxyuridine) staining was 
carried out using Cell-Light EdU Apoll®567 In 
Vitro Kit (RiboBio, Guangzhou, China, C10310). 
The CAL27 cells were seeded and transfected with 
these molecules. Then, 48 h after transfection, the 
cells were washed and incubated with 10 μM EdU 
for 30 min. Fixation and penetration of cells were 
performed, followed by DAPI (Thermo, USA, 
62,248) staining. After washing with PBS, the 
plates were observed and photographed under 
a microscope (Olympus, Tokyo, Japan, CX41- 
72C02) at 200× magnification.

Dual-luciferase reporter gene assay

Vectors, pmirGLO-PRR11 3�-UTR-wt (wild-type) 
and pmirGLO-PRR11 3�-UTR-mut (miR-26b-5p 
binding site mutated), for the luciferase reporter 
assay were generated based on the pmirGLO Dual- 
Luciferase miRNA Target Expression Vector 
(Promega, Madison, WI). The plasmids were 
then co-transfected with miR-26b-5p or negative 
control (NC) mimics into CAL27 cells using 
Lipofectamine 2000 according to the manufac-
turer’s guidelines, respectively. Relative luciferase 
activity was measured using the Dual-Luciferase 
Reporter Assay System (Promega, Madison, WI).

RNA pulldown

Biotinylated probes complementary to PRR11 
mRNA were synthesized (GenePharm, Shanghai, 
China) using a random probe as the control. The 
M-280 streptavidin magnetic beads (Sigma-Aldrich, 
St. Louis, MO) were coated by incubation with the 

probes. The cell lysates of CAL27 transfected with 
PRR11 overexpression vectors, with wild-type or 
mutated miR-26b-5p binding sites, were prepared 
after 48 h. Lysates were then incubated with the 
probe-coated beads at 4°C overnight, and the mole-
cules interacting with PRR11 mRNA were captured 
after washing. The bound RNAs were subsequently 
purified using TRIzol and the miR-26b-5p abun-
dance was measured by qRT-PCR.

Western blot

The harvested cells were lysed in RIPE buffer at 4°C 
for 30 min and centrifuged at 15,000 × g for 15 min to 
obtain the protein sediment. Equal amounts of total 
proteins were separated by SDS-polyacrylamide gel 
electrophoresis (SDS–PAGE) before transferring to 
PVDF membranes (Millipore, Billerica, MA). 
Subsequently, the membrane was incubated with pri-
mary antibodies against PRR11 (Invitrogen, CA, 
USA, MA5-26,460, 1:2,000 dilution), cyclin D1 
(Bioss, Beijing, China, bs-0623 R, 1:500 dilution), p--
RbSer807 (abcam, CA, UK, ab131264, 1:1,000 dilution) 
and β-actin (ProteinTech, IL, USA, 66,009, 1:2,000 
dilution) overnight at 4°C. After incubation with the 
corresponding secondary antibody (ProteinTech 
Group Inc., Chicago, IL, 1:6,000 dilution) for 1 h at 
room temperature, the signals were measured using 
an enhanced chemiluminescence (ECL) kit (Pierce, 
Rockford, IL).

Results

This study was designed to investigate the role of 
the miR-26b-5p/PRR11 axis in TSCC. We studied 
the expression pattern of miR-26b-5p in TSCC, as 
well as its role in cell proliferation and cell cycle 
progression. Together with the prediction of the 
miR-26b-5p binding site within the PRR11 3�- 
UTR, we hypothesized and verified that miR- 
26b-5p could suppress TSCC cell proliferation by 
targeting PRR11.

miR-26b-5p was downregulated in TSCC tissues

Using the data from the TCGA-TSCC subset, we 
found that miR-26b-5p was significantly downre-
gulated (p = 0.0207) in TSCC tissues as compared 
with the normal tongue tissues (Figure 1(a)). To 
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validate the results of high-throughout sequencing, 
the expression levels of miR-26b-5p were subse-
quently examined in collected tissues by qRT-PCR. 
Compared with the matched para-cancer tissues, 
the expression of miR-26b-5p was lower 
(p = 0.0089) in TSCC tissues (Figure 1(b)). 
Moreover, the Kaplan-Meier survival curve sug-
gests poor OS with lower expression of miR-26b- 
5p than those in the high miR-26b-5p express ion 
group (Figure 1(c)).

miR-26b-5p inhibits cell proliferation of CAL27

Because miR-26b-5p was significantly downregulated 
in TSCC, we evaluated the effect of miR-26b-5p on 
cell proliferation of CAL27 cells. miR-26b-5p expres-
sion in CAL27 cells was regulated by transfection with 
miR-26b-5p mimics and inhibitors (Figure 2(a)). As 
indicated in Figure 2(b)), miR-26b-5p mimics inhib-
ited the growth of CAL27 cells, whereas the inhibitor 
enhanced the growth of CAL27 cells. We further 
examined the effects of miR-26b-5p on cell cycle 
modulation in CAL27 cells. Compared with the con-
trol, miR-26b-5p mimics caused cycle arrest at the 
S-phase, and restrained CAL27 cell transit to the G2/ 
M phase (Figure 2(c)). Further EdU staining indicated 
that miR-26b-5p mimics led to reductions in S phase 
cells, but miR-26b-5p inhibitor significantly increased 
the number of proliferating cells (Figure 2(d)), indi-
cating the suppressive role of miR-26b-5p on cell 

proliferation. To decipher the potential mechanism 
of miR-26b-5p in regulating CAL27 cell proliferation, 
we predicted the downstream target of miR-26b-5p 
using the ENCORI database (http://starbase.sysu.edu. 
cn/), and found that there was a binding site for miR- 
26b-5p in the PRR11 mRNA 3�-UTR. Consequently, 
the expression of PRR11 and cell cycle-related pro-
teins, including CDK1 and p-RbSer807, was detected by 
western blotting. Our results showed that miR-26b-5p 
mimic decreased the protein levels of PRR11, 
cyclinD1 and p-RbSer807, which are the indicators of 
enhanced cell cycle progression, while miR-26b-5p 
inhibitor elevated the expression levels of these pro-
teins (Figure 2(e)). Collectively, these findings suggest 
that miR-26b-5p suppresses CAL27 cell proliferation 
by arresting the cells at the S/G2 transition.

PRR11 is a target of miR-26b-5p in CAL27

We found that PRR11 was significantly upregulated 
in TSCC tissues as compared with the normal ton-
gue tissues in the TCGA-TSCC subset (Figure 3(a)) 
and collected paired samples (Figure 3(b)) 
(p = 0.0207 and p = 0.0207). Moreover, the Kaplan- 
Meier survival curve suggests poor OS with high 
expression of PRR11 compared with those in the 
low PRR11 expression population (Figure 3(c)). 
A negative correlation between the expression of 
miR-26b-5p and PRR11 was validated in the 
TCGA-TSCC subset and collected samples 

Figure 1. Expression and prognostic value of miR-26b-5p in TSCC. (a) the level of miR-26b-5p in TSCC tissues in TCGA dataset 
compared with normal tongue tissues. (b) comparison of miR-26b-5p expression in 8 paired samples collected from the TSCC 
patients. (c) kaplan-meier plots for overall survival (OS) in TCGA-HNSC patients, grouped by low and high expression of miR-26b-5p. 
P values were obtained using log-rank test.
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(Figure 4(a-b)). Luciferase reporter assays and RNA 
pull-down assays were also performed to further 
investigate the interaction between these two mole-
cules. Transfection with miR-26b-5p mimics signif-
icantly decreased the luciferase activity of the 
PRR11 3�-UTR wild-type reporter gene, but had 
no effect on that of the PRR11 3�-UTR mutated 

reporter gene (Figure 5(a)). These results suggest 
that miR-26b-5p inhibits PRR11 dependent on 3�- 
UTR binding. Furthermore, mutation of PRR11 3�- 
UTR significantly decreased the abundance of miR- 
26b-5p captured by PRR11 probes (Figure 5(b), 
right panel), further validating the binding interac-
tion between miR-26b-5p and PRR11.

Figure 3. Expression and prognostic value of PRR11 in TSCC. (a) the level of PRR11 in TSCC tissues in TCGA dataset compared with 
normal tongue tissues. (b) comparison of PRR11 expression in 8 paired samples collected from TSCC patients. (c) kaplan-meier plots 
for overall survival (OS) in TCGA-HNSC patients, grouped by low and high expression of PRR11. P values were obtained using log- 
rank test.

Figure 2. Effect of miR-26b-5p on cell cycle progression in CAL27 cells. (a) effects of miR-26b-5p mimics and inhibitor on miR-26b-5p 
expression in CAL27 cells. (b) the viability of each group of cells was detected by CCK-8 assay. (c) for each group, cell cycle 
distribution was detected by flow cytometry analysis. (d) EdU staining (red) was performed to check the proliferating cells. cell 
nucleus were stained with DAPI (blue). (e) levels of PRR11, cyclinD1, and p-RbSer807 were detected by western blotting analysis in 
each group, with β-actin as the reference protein. *, p < 0.05.
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miR-26b-5p inhibited cell cycle progression via 
targeting PRR11 in CAL27

To determine the specific role of the miR-26b-5p/ 
PRR11 axis in TSCC, we co-transfected miR-26b-5p 
inhibitor and si-PRR11 into CAL27 cells. The CCK-8 
assay results indicated that PRR11 knockdown atte-
nuated the effect of miR-26b-5p inhibitor on cell 

proliferation (Figure 6(a)). Moreover, western blot-
ting revealed that transfection of si-PRR11 downre-
gulated the expression of PRR11 in CAL27 cells, and 
weakened the facilitation effect of miR-26b-5p inhi-
bitor on the expression of cell cycle-related genes 
(Figure 6(b)). These results highlight that the miR- 
26b-5p/PRR11 axis is involved in modulating the cell 
cycle progression of CAL27 cells.

Figure 4. Correlation of miR-26b-5p and PRR11 expression in TSCC. pearson correlation analysis shows a negative correlation 
between miR-26b-5p and PRR11 mRNA level in the (a) TCGA-TSCC subset (n = 110) and (b) 8 paired samples.

Figure 5. miR-26b-5p repressed PRR11 by binding to the 3�-UTR of PRR11. (a) effects of miR-26b-5p on the luciferase activity of the 
reporter gene inserted downstream of the wildtype and mutated PRR11 3�-UTR in CAL27 cells. the sequence of the miR-26b-5p 
binding site in the 3�UTR of PRR11 mRNA and its corresponding mutation were indicated. (b) RNA pulldown assay was performed in 
CAL27 cells transfected with wildtype and mutated PRR11, followed by qRT-PCR to detect the abundance of PRR11 and miR-26b-5p. 
data are presented as the mean ± standard deviation (SD). ns, not significant; *, p < 0.05.
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Discussion

The treatment of TSCC patients remains unsatisfac-
tory in recent years, facilitating research on the 
molecular mechanisms of malignant phenotypes in 
TSCC. Cell cycle control provides cancer cells with 
a growth advantage, and can be investigated as 
a promising therapeutic target for TSCC treatment. 
In the present study, we found that the dysfunction 
of the miR-26b-5p/PRR11 axis were involved in the 
regulation of cell cycle progression. Moreover, the 
expression of the miR-26b-5p/PRR11 axis was sig-
nificantly associated with OS in TSCC patients.

Recently, accumulating evidence has indicated that 
miRNAs are involved in the regulation of cell cycle 
progression in cancer [21,22]. However, few studies 
have focused on the tumorigenesis and progression of 
tongue cancer. In the last decade, several studies have 
identified miR-26b-5p to be crucial in the develop-
ment and progression of cancers. As reported, miR- 
26b-5p is a tumor suppressor and modulator in cell 
cycle regulation that targets different genes, including 
CCND2, PLOD2, JAG1, MAP3K9 and KPN2 [6,8,23– 
25]. Notably, the ceRNA hypothesis sparked another 
miRNA-mediated mechanism, in which miRNA acts 
as the key modulator linking competing endogenous 
RNAs, including long non-coding RNA (lncRNA), 
circular RNA (circRNA), pseudogenes and protein- 
coding genes. For instance, circRNA_000203 exacer 

bates cardiac hypertrophy via the miR-26b-5p/Gata4 
axis [26]. LINC00657 represses miR-26b-5p and 
enhances COMMD8 expression to promote NSCLC 
progression [27]. In addition, lncRNA HCG11 parti-
cipates in the regulation of HUVEC proliferation by 
suppressing miR-26b-5p on QKI-5 expression [28]. 
These results support the idea that miR-26b-5p is 
implicated in the negative regulation of cell growth, 
which is consistent with our findings. In the current 
study, we identified PRR11, a promising oncogene, as 
a novel target of miR-26b-5p in TSCC. The expression 
of PRR11 is closely related to tumorigenesis, progres-
sion and poor prognosis in cancers, including lung, 
gastric, pancreatic, breast, esophageal and ovarian 
cancers [15,29–33]. PRR11 was also demonstrated to 
promote anti-estrogen resistance in breast cancer by 
amplifying the PI3K signaling pathway [34]. 
Additionally, PRR11 activated the Akt/mTOR autop-
hagy signaling pathway to facilitate tumorigenesis in 
non-small cell lung cancer, suggesting that this gene 
may affect cancer cells through different signal trans-
duction pathways. All the aforementioned results sup-
port the results of our study. To further validate the 
roles of the miR-26b-5p/PRR11 axis in TSCC, we 
performed rescue experiments, which indicated that 
miR-26b-5p inhibited cell cycle progression by target-
ing PRR11 in CAL27 cells. Consistent with our results, 
a previous study has indicated that PRR11 promotes 

Figure 6. PRR11 knockdown attenuates the repression effects of miR-26b-5p on CAL27cell proliferation. (a) the viability of each 
group of cells was detected by CCK-8 assay. (b) western blot analysis of the impact of si-PRR11 on PRR11, cCyclinD1 and p-RbSer807 
expression. data are presented as the mean ± SD.
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TSCC cell proliferation by regulating the expression of 
cell cycle-related proteins, and facilitating S/G2 phase 
transition [35].

Conclusions

Altogether, we have uncovered a novel miR-26b- 
5p/PRR11 axis and elaborated its involvement in 
cell cycle regulation in TSCC. Moreover, our study 
provides novel insights into future understanding 
of the molecular mechanisms of cell cycle progres-
sion in TSCC.
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