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microRNAs (miRs) are a class of 21–24 nucleotide long non-coding RNAs responsible

for regulating the expression of associated genes mainly by cleavage or translational

inhibition of the target transcripts. With this characteristic of silencing, miRs act as an

important component in regulation of plant responses in various stress conditions. In

recent years, with drastic change in environmental and soil conditions different type of

stresses have emerged as a major challenge for plants growth and productivity. The

identification and profiling of miRs has itself been a challenge for research workers

given their small size and large number of many probable sequences in the genome.

Application of computational approaches has expedited the process of identification

of miRs and their expression profiling in different conditions. The development of

High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the

global profiles of the miRs for understanding their mode of action in plants. Introduction

of various bioinformatics databases and tools have revolutionized the study of miRs

and other small RNAs. This review focuses the role of bioinformatics approaches in the

identification and study of the regulatory roles of plant miRs in the adaptive response to

stresses.

Keywords: microRNA, abiotic stress, high-throughput sequencing, microarray, bioinformatic approached,

degradome, NGS

ABIOTIC STRESSES AND THEIR IMPACT ON YIELD

Plants are exposed to a wide array of environmental fluctuations that lead to various physiological
and metabolic changes, which in turn adversely affect the growth and productivity. Abiotic stresses
are the principal cause of decrement in crop production globally and are responsible for lowering
the average yield of major crops by more than 50% (Mahajan and Tuteja, 2005; Rodríguez et al.,
2005). TheWorld Meteorological Organization has reported that the years from 2001 to 2010 were
considered to be the warmest period after 1850 (Oosterhuis, 2013). The climate change models
have predicted that in coming time the occurrence and severity of such stresses will increase,
leading to a decrease in agricultural production by about 70% (Cramer et al., 2011; Hasanuzzaman
et al., 2013c; Ghosh and Xu, 2014).

The different abiotic stress conditions may be segregated into 35 different types that can be
sorted as 11 groups, viz. cold, heat, drought, flooding, radiations (UV and light), wind, salinity,
heavy metal toxicity, nutrient deprivation in soil, and oxidative stress (Mahajan and Tuteja,
2005). These stresses act by affecting plant growth at the molecular, biological, and physiological
levels (Figure 1). The most studied abiotic stress conditions are cold, high temperature, salt,
and drought stress. Plants cannot escape from these stresses because of their sessile nature
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FIGURE 1 | Various abiotic stresses and their physiological effects on plants.

but, they have developed sophisticated systems to cope up with
them (Nakashima et al., 2009; Pfalz et al., 2012; Upadhyaya
and Panda, 2013). The response to abiotic stresses is usually
multigenic and involves altering the expression of nucleic acids,
proteins and other macromolecules (Figure 1). Several excellent
reviews are available that discuss the impact of these stresses on
plants in details (Cramer et al., 2011; Shanker andVenkateswarlu,
2011; Duque et al., 2013; Hasanuzzaman et al., 2013a; Rejeb et al.,
2014; Petrov et al., 2015; Sodha and Karan, 2015).

Primarily fluctuations in available water, temperature and
soil salt content are recognized as the basic environmental
stress factors. The scarcity of water because of less rainfall,
paucity of soil water and excessive evaporation, is probably the
most common factor, limiting the crop’s growth (de Oliveira
et al., 2013). Water deficit negatively affects plant growth and
development by modulating nutrient uptake, photosynthesis,
hormonal levels, water potential etc. This often results in tissue
dehydration leading to senescence (Kaiser, 1987; Aroca et al.,
2001, 2012; Kacperska, 2004; Wahid and Close, 2007). Under
lowwater conditions plants activate their protectivemachinery to
enhance water uptake and reduce water loss. However, deficiency
of sufficient water supply or drought limits the root hydraulic
conductivity (Nobel and Cui, 1992; North and Nobel, 1997;
Aroca et al., 2012) thereby affecting water uptake and resulting
in physiological drought condition for the plant (Bréda et al.,
1995; Duursma et al., 2008; Aroca et al., 2012). Similarly, when

the water level goes above the optimal levels it results in flooding
which causes hypoxic conditions, stimulate the reactive oxygen
species (ROS) and induces ethylene production that restricts
aerobic respiration (Bailey-Serres and Voesenek, 2008; Perata
et al., 2011).

Fluctuations in atmospheric temperature due to climate
change are also exerting an adverse affect at physical and
cellular levels. High temperatures change the cellular state, lipid
composition, membrane fluidity, and organelle properties. They
induce oxidative stress and reduce the water content of the
soil, causing physiological drought in plants (Wahid and Close,
2007; Giri, 2011; Hasanuzzaman et al., 2013b; Goswami et al.,
2014). They also affect flowering by decreasing the number of
flowers, reducing pollen viability and flower fertility (Matsui
et al., 2000; Prasad et al., 2000, 2006; Suzuki et al., 2001) and
cause embryo damage during the early stages of seed germination
(Grass, 1994; Hasanuzzaman et al., 2013b). Low temperatures
also confer osmotic and oxidative stress on plants (Chinnusamy
et al., 2007; Aroca et al., 2012). They reduce metabolic rate,
increase rigidification of the cellular membrane, cause flower
abortion, fertilization breakdown and negatively impact seed
filling (Thakur et al., 2010; Zinn et al., 2010; Hedhly, 2011).

The temperature increases along with poor irrigation practices
increase soil salinity. This has emerged as an important stress
which inhibits plant’s growth at every stage by inducing osmotic
stress and ion toxicity (Diédhiou and Golldack, 2006; Joseph
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and Mohanan, 2013; Roychoudhury and Chakraborty, 2013).
Salinity majorly affects roots by decreasing water use efficiency
and ion exclusion, which adversely affects the root elongation,
spike development and plant height (Choi et al., 2003; Alam et al.,
2004; Diédhiou and Golldack, 2006; Mahmood et al., 2009; Aroca
et al., 2012; Hakim, 2013; Pierik and Testerink, 2014).

The various environmental stresses result in osmotic
and oxidative stresses, which inhibit metabolic reactions
(Chinnusamy et al., 2007). Oxidative damage is one of the main
reasons for loss of productivity and is triggered by increase in
reactive oxygen species (ROS) that includes superoxide radicals
(2O−), hydroxyl radicals (OH), and hydrogen peroxide (H2O2)
(Mittler, 2002; Apel and Hirt, 2004; Bartels and Sunkar, 2005;
Foyer and Noctor, 2005; Addo-Quaye et al., 2009). The ROS
are responsible for nucleic acid damage, protein oxidation, and
lipid peroxidation (Foyer et al., 1994). Plants have developed
intrinsic mechanisms to avoid the oxidative stresses that includes
recruitment of enzymatic scavengers, like superoxide dismutase
(SOD), ascorbate peroxidase, glutathione peroxidase, glutathione
S-transferase, catalase, and non-enzymatic low molecular mass
molecules, such as ascorbate, tocopherol, carotenoids, and
glutathione (Mittler, 2002; Mittler et al., 2004).

BASICS OF MICRORNA

The discovery of regulatory small RNAs (sRNAs) that block
specific messenger RNAs (mRNAs) at the post-transcriptional
levels (PTGS or post-transcriptional gene silencing) by cleavage
or translational repression (Sunkar et al., 2006; Shi et al., 2012)
or interfere with transcription (TGS or transcriptional gene
silencing) by directing DNA methylation of genes (Wu and
Zhang, 2010) have unlocked a new avenue in gene expression
regulation. The sRNAs constitute a large family represented by
many species of RNAmolecules distinguished from each other by
their size, biogenesis, mode of action, regulatory role etc. (Axtell
and Bowman, 2008; Sanan-Mishra et al., 2009; Lima et al., 2011;
Meng et al., 2011a; Zheng et al., 2012).

The microRNA (miR) represents a major sub-family of
endogenously transcribed sequences, ranging in length from 21
to 24 nt (Carrington and Ambros, 2003; Eldem et al., 2013).
They have been established as a major regulatory class that
inhibits gene expression in a sequence-dependent manner. The
lin-4 and let-7 regulatory RNAs are accepted as the naissance
member of the miR family (Lee et al., 1993; Reinhart et al., 2002),
which is conserved across animal and plant species. Though
there is no conservation between the animal and plant sequences,
but high conservation is observed among plant miRs (Reinhart
et al., 2002). An exception is provided by Ath-miR854 and
Ath-miR855, which regulate levels of transcript encoding the
oligouridylate binding protein 1b (UBP1b) (Arteaga-Vázquez
et al., 2006). The target transcript of miR854 performs similar
functions in plants as well as in animals (Arteaga-Vázquez et al.,
2006).

MicroRNA Biogenesis
Each miR arises in the nucleus from an independent
transcription unit, comprising of its own promoter, transcribing

region and terminator, by utilizing the basic machinery for
DNA-dependent RNA polymerase II mediated transcription
(Kurihara and Watanabe, 2004; Lee et al., 2004; Xie et al., 2005a;
Kim et al., 2011). Plant miR genes are present throughout the
genome, although majority of the loci in plants are generally
found in genomic (intergenic) regions that are not protein coding
(Jones-Rhoades et al., 2006; Wahid et al., 2010). Comparatively
lesser number of plant miRs are present in the introns (Lagos-
Quintana et al., 2001; Lau et al., 2001; Chen, 2008; Nozawa
et al., 2010; Wahid et al., 2010) and are rarely found in the
exons (Olena and Patton, 2010; Li et al., 2011). Two miRs,
miR436, and miR444, were mapped to the exonic regions of the
protein-coding genes J023035E19 (AK120922) and J033125N22
(AK103332), respectively (Sunkar et al., 2005). It is hypothesized
that the miRs control the host gene expression via a negative
feedback loop mechanism that affects alternative splicing
and cytoplasmic movement of transcripts (Slezak-Prochazka
et al., 2013). Recently, CDC5 was identified as a MYB-related
DNA binding protein that positively regulates miR production
(Zhang et al., 2013a) by binding to their promoters and through
interaction with the RNase III enzyme DCL1 (Dicer-Like 1).
The large pri-miRs (primary transcripts) contain a 5′-cap and
3′-polyA tail and are stabilized in the nucleus by DDL (Dawdle)
which is a RNA binding protein (Yu et al., 2008).

The pri-miRs are further processed into hairpin loop
structured pre-miRs (precursor miRs) in the D bodies
(Dicing bodies) or SmD3-bodies (small nuclear RNA binding
protein D3 bodies) (Kurihara et al., 2006; Fang and Spector,
2007; Fujioka et al., 2007) by a protein complex containing the
DCL1 (Schauer et al., 2002) and the CBC (Cap-Binding protein
Complex) (Kim et al., 2008). The accuracy of DCL1mediated pri-
miR processing is promoted by both HYL1 (Hyponastic Leaves
1), and the C2H2-zinc finger protein, SE (Serrate) (Kurihara et al.,
2006; Dong et al., 2008; Manavella et al., 2012a). This activity
is also aided by DRB (Double strand RNA-Binding) protein
(Han et al., 2004; Kurihara et al., 2006; Vazquez, 2006). Recently
the G-patch domain protein TGH (Tough) was identified as
another active player which is responsible for enhancing the
DCL1 activity (Ren et al., 2012). It has been shown that HYL1
binds double stranded (ds) region on the pri-miR (Hiraguri
et al., 2005; Rasia et al., 2010; Yang et al., 2010), TGH binds
the single-stranded (ss) RNA region (Ren et al., 2012) and SE
possibly binds at ssRNA/dsRNA junctions (Machida et al., 2011).
It was also observed that HYL1 is a phospho-protein that directly
interacts with CPL1 (C-terminal domain Phosphatase-Like 1)
protein, to maintain its hypo-phosphorylated state (Manavella
et al., 2012a). Thus, CPL1 also plays a critical role in accurate
miR processing though it is not directly required for DCL1
activity (Manavella et al., 2012a). It was observed that CPL1
directly interacts with SE and a mutation in SE can affect
phosphorylation status of HYL1 by preventing recruitment of
CPL1 (Manavella et al., 2012a). Thus, the proposed model for
the pri-miR processing indicates association of multiple RNA
binding proteins with definite regions to maintain the structural
determinants for recruiting and directing DCL1 activity. The
DCL1, HYL1, SE, and TGH seem to interact directly (Kurihara
et al., 2006; Lobbes et al., 2006; Yang et al., 2006; Qin et al., 2010;
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Machida et al., 2011; Ren et al., 2012) and are colocalized in the D
bodies as shown by bimolecular fluorescence complementation.
However, it has not been demonstrated whether they represent
a stable plant microprocessor complex (Fang and Spector, 2007;
Fujioka et al., 2007; Song et al., 2007; Manavella et al., 2012b; Ren
et al., 2012).

The hairpin looped pre-miRs thus formed are further
processed by DCL1 to produce miR/miR∗ duplex (Xie et al.,
2005b; Sanan-Mishra et al., 2009; Naqvi et al., 2012). Recently
a proline-rich protein, SIC (Sickle), was identified to co-localize
with HYL1 foci (Zhan et al., 2012) and it was found to play
an important role in the accumulation of mature miR duplex
(Zhan et al., 2012). The strands of the duplex are protected from
uridylation and degradation by the activity of a methyltransferase
protein known as HEN1 (Hua Enhancer 1) which covalently
attaches a methyl residue at the 3′ ribose of last nucleotide from
each strand (Li et al., 2005a; Yu et al., 2005). The miR duplexes
are transported to the cytoplasm by HST (Hasty), the ortholog
of Exportin-5 (Park et al., 2005), where the miR strand guides
the AGO1 (Argonaute 1) containing RNA-induced silencing
complex (RISC) complex to the target transcript (Baumberger
and Baulcombe, 2005; Qi et al., 2005).

microRNA Function
Plant miRs generally control the expression of their targets
transcripts by cleavage and translational repression (Chen, 2009).
Brodersen et al. concluded that central matches in miR:target-
mRNA duplex tend to cleave target mRNA, regardless of a
few mismatches in other regions, while central mismatches
in miR:target mRNA duplex lead to translational repression
(Brodersen et al., 2008). It was hypothesized that the rapid
fine-tuning of the target transcripts by translation repression
is required for the reversible modulation of the negative
regulators of stress responses whereas the on-off switching
of target gene expression by cleavage was important in
regulating developmental processes, which require permanent
determination of cell fates (Baumberger and Baulcombe,
2005).

In plants, miRs regulate various biological processes such
as, growth and development, pattern formation, organ polarity,
signal transduction, and hormone homeostasis etc. (Palatnik
et al., 2003; Dugas and Bartel, 2004; Jones-Rhoades et al., 2006;
Mallory and Vaucheret, 2006; Mishra and Mukherjee, 2007;
Cai et al., 2009; Voinnet, 2009; Sanan-Mishra et al., 2013). In
past few years the role of miRs in response to diseases and
environmental stresses has been highlighted (Fujii et al., 2005;
Sunkar et al., 2007; Zhou et al., 2010; Lima et al., 2011; Meng
et al., 2011a; Zheng et al., 2012; Mittal et al., 2013; Sharma et al.,
2015). These are supported by reports on mutants of the miR
biogenesis or pathways exhibiting defective phenotypes (Laufs
et al., 2004; Zhong and Ye, 2004; Millar and Gubler, 2005; Ori
et al., 2007; Chen et al., 2010; Rubio-Somoza and Weigel, 2011).
The stress regulated miRs may be engaged in many biological
pathways that re-program intricate procedures of physiology
and metabolism (Khraiwesh et al., 2012) as suggested by their
differential expression patterns in tissues in presence or absence
of stress (Covarrubias and Reyes, 2010).

IDENTIFICATION OF
STRESS-ASSOCIATED microRNAs

The identification of plant miR families began in the year 2000,
with direct cloning and sequencing (Llave et al., 2002; Park
et al., 2002; Reinhart et al., 2002). However, this was an uphill
task owing to their small size, methylation status and multiple
occurrences in genome. The numbers however increased rapidly
with the advancement in cloning techniques and computational
algorithms. In the past few years high throughput sequencing
and screening protocols has caused an exponential increase
in number of miRs, identified and functionally annotated
from various plant species (Rajagopalan et al., 2006; Fahlgren
et al., 2007; Jagadeeswaran et al., 2010; Rosewick et al., 2013).
This is best exemplified by the establishment of miRBase, a
biological database that acts as an archive of miR sequences
and annotations (Griffiths-Jones, 2004; Griffiths-Jones et al.,
2008; Kozomara and Griffiths-Jones, 2014). The first release of
miRBase in the year 2002 included total 5 miRs from only
1 plant species, Arabidopsis thaliana. This was followed by
the inclusion of Oryza sativa, in miRBase in the year 2003.
Thereafter miRs reported from Medicago truncatula, Glycine
Max, and Populus trichocarpawere included in the year 2005. The
current version (release 21) includes 48,496 mature plant miRs
derived from 6992 hairpin precursors reported in 73 plant species
(Figure 2).

The association of plant miRs with stress was first reported
in 2004 (Sunkar and Zhu, 2004). Now there are a number of
reports supporting the hypothesis for the function for miRs in the
adaptive response to abiotic stress including drought (Liu et al.,
2008b; Zhou et al., 2010), cold (Zhou et al., 2008), salinity (Liu
et al., 2008a; Sunkar et al., 2008) and nutrient deficiency (Fujii
et al., 2005). 1062 miRs have been reported to be differentially
expressed in 35 different abiotic stress types in 41 plant species
(Zhang et al., 2013b). The detailed list of these miRs is available
as Supplementary Table 1. The comparative picture of stress-
induced dis-regulations of Arabidopsis and rice miRs is compiled
as Figure 3.

The survey of literature reveals that three major approaches
have been employed for the identification and expression
profiling of stress induced miRs. The first approach involves
the classical experimental route that included direct cloning,
genetic screening, or expression profiling. The second method
involved computational predictions from genomic or EST
loci and the third one employed a combination of both
as it was based on the prediction of miRs from High
Throughput Sequencing (HTS) data. Each of these was followed
by experimental validations by northern analysis, PCRs or
microarrays.

Experimental Approaches
Direct cloning was the principal and conventional method for
the identification of miRs (Park et al., 2002; Reinhart et al.,
2002). This method was of significant consideration as it was
a sequence-independent approach where a priori knowledge of
miR sequence was not required. Moreover, it provided more
accuracy and efficiency by giving few false positives. Several
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FIGURE 2 | The status of the number of (A) mature miRs and (B) precursor miR sequences in the miRBase registry in five plant species. The plot

contains the number of miRs in Medicago truncatula (red), Oryza sativa (green), Glycine max (yellow), Populus trichocarpa (violet), and Arabidopsis thaliana (blue)

calculated with respect to total number reported miRs. X axis represents number of respective sequences and Y axis denotes the released versions of miRBase.

related studies led to the establishment of different protocols for
sRNA isolation and adaptormediated synthesis of a cDNA library
followed by their amplification and then cloning. The clones were
screened and sequenced to identify the potential miRs (Llave
et al., 2002; Reinhart et al., 2002; Sunkar and Zhu, 2004). Thus, it
was portrayed as a time-consuming, low throughput, laborious,
and expensive approach.

However, the first report indicating the role of miRs in
plant responses to environmental stresses came from the
sequencing and analysis of a library of sRNAs from Arabidopsis
seedlings treated with cold, dehydration, salinity, and the
plant stress hormone abscisic acid (ABA). It was observed
that several miRs were up-regulated or down-regulated by
the abiotic stresses (Sunkar and Zhu, 2004). This strategy

Frontiers in Physiology | www.frontiersin.org 5 October 2015 | Volume 6 | Article 286

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Tripathi et al. Identification of stress regulated miRNAs

FIGURE 3 | Status of abiotic stress regulation for conserved miRs as reported from (A) Arabidopsis and (B) rice. The X axis contains the list of abiotic

stress regulated miRs, and Y axis lists the different abiotic stress studied. ABA, Abscisic Acid; GA, Gibberellic Acid; C, carbon; N, nitrogen; P, Phosphorus; S, Sulfur;

UV-B, Ultra violet; Al, aluminum; Cu, cupper; Fe, Iron. The miRs down-regulated in stress are shown in Blue and miRs up-regulated in stress are shown in Red. The

miRs for which the stress induced status is not available are represented by green.

was used to clone miRs from the mechanical stress-treated
Populus plants (Lu et al., 2005). A majority of these miRs
were predicted to target developmental- and stress/defense-
related genes. In our lab, 39 new miR sequences were
cloned from salt-stressed basmati rice variety. This study also
provided evidence for a converging functional role of miRs in
managing both abiotic and biotic stresses (Sanan-Mishra et al.,
2009).

The importance of miRs in abiotic stress responses was also
implicated by the fact that several mutants such as hyl1, hen1,
and dcl1 which are defective in miR metabolism, exhibited
hypersensitivity to ABA, salt, and osmotic stresses (Lu and
Fedoroff, 2000). Nonetheless, the direct evidence was provided by
studies monitoring the down-regulation of miR398 expression in
response to oxidative stresses, in Arabidopsis. It was later shown
that miR398 targeted two Cu/Zn superoxide dismutase (CSD)
transcripts, cytosolic CSD1, and chloroplastic CSD2, so stress
induced reduction of miR398 was expected to improve plant
tolerance. This theory was proved subsequently by analysis of
transgenic lines under oxidative stress conditions (Sunkar et al.,
2006).

Expression analysis by northern blot analysis revealed that
miR395 and miR399 were involved in sulfate and inorganic
phosphate starvation responses, respectively (Jones-Rhoades and
Bartel, 2004; Fujii et al., 2005). Similarly, RNA gel blot analysis
identified miRs induced by cold, ABA, dehydration, and high
salinity in 2-week-old Arabidopsis seedlings (Sunkar and Zhu,
2004). The results indicated that Ath-miR393 was highly up-
regulated whereas Ath-miR397b and Ath-miR402 were slightly
up-regulated and Ath-miR389a.1 was down-regulated under all
the stress treatments. Similarly low temperature stress condition
induced the expression of Ath-miR319c but no increase in
response to dehydration, NaCl or ABA (Sunkar and Zhu, 2004).
These and related findings not only helped in interpreting the
role of miRs during stress but unraveled the role of specific
members of the miR family. A comprehensive study of Ath-
miR398, revealed that the expression of miR398 precursors (with

identical mature sequences) is increased under high temperature
stress and that heat stress induces expression of Ath-miR398b
to a much higher level than that of the Ath-miR398a,c (Guan
et al., 2013). Similarly in rice, Osa-miR169g, was proven as the
only drought stress induced member among the ABA responsive
miR169 family (Zhao et al., 2007).

The variable expression patterns of the miRs in response
to different stresses were captured by reverse transcription
quantitative PCR (RT-PCR) in several plants including
Arabidopsis (Jung and Kang, 2007; Reyes and Chua, 2007;
Li et al., 2008; Liu et al., 2008a; Jia et al., 2009), rice (Liu
et al., 2009), Phaseolus vulgaris, (Arenas-Huertero et al., 2009),
sugarcane (Thiebaut et al., 2012), and poplar (Rossi et al., 2015).
These methods captured the similarities and differences in
expression profiles of conserved miRs across different plants
(Zhou et al., 2010). This is exemplified by identified molecules
like miR393 that is consistently up-regulated during drought
stress in many plants such as Arabidopsis, Medicago, common
bean, and rice (Sunkar and Zhu, 2004; Zhao et al., 2007; Arenas-
Huertero et al., 2009). Whereas miR169 was found to be induced
by drought and high salinity in rice (Zhao et al., 2009), but
was down-regulated by drought stress treatment in Arabidopsis
(Li et al., 2008). High-throughput expression profiling analysis
through one-tube stem-loop RT-PCR quantified the relative
expression levels of 41 rice miRs under drought, salt, cold, or
ABA treatments (Ding et al., 2011).

The need for genome wide characterization of miR expression
profiles established the microarray analysis as a useful tool
(Garzon et al., 2006; Zhao et al., 2007). The microarray
technology is a hybridization based and a relatively cost-
effective assay that allows analysis of large numbers of molecules
in parallel. The tiling path microarray analysis was used to
identify 14 stress-inducible Arabidopsis miRs after screening
117 miRs under high-salinity, drought, and low-temperature
stress conditions (Liu et al., 2008a; Zhang et al., 2008b). The
results were further validated to provide evidence for cross-talk
among the high-salinity, drought and low temperature stress
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associated signaling pathways (Liu et al., 2008a). Similar studies
were performed to capture the expression patterns of miRs in
response to Ultraviolet-B rays in Arabidopsis (Zhou et al., 2007),
drought stress in rice (Zhao et al., 2007), cold stress in rice (Kang
et al., 2010), cadmium stress in rice (Ding et al., 2011), and ABA
and NaCl in Populus tremula (Jia et al., 2009).

The expression patterns also identified that tissue-specific
regulation of miRs may be important for adaptation to stress.
Under water deficit conditions, miR398a/b and miR408 were
up-regulated in both roots and shoots of Medicago truncatula
plant, but the increase was more pronounced in the shoots than
in the roots. This was accompanied by the down-regulation of
their corresponding targets, COX5b and plantacyanin, thereby
suggesting that these miRs have a crucial role in regulation of
plants responses against water deficiency (Trindade et al., 2010).
In barley, miR166 was up-regulated in leaves, where as it was
shown to be down-regulated in roots; and miR156a, miR171, and
miR408 were induced in leaves, but unaltered in roots (Kantar
et al., 2010).

The miR expression profiles were also used to compare the
genotypic differences between varieties exhibiting contrasting
stress sensitivities. Microarray profiles of salt-resistant and
susceptible Zea mays identified 98 miRs belonging to 27 families
(Ding et al., 2009). Zma-miR168 family members were induced
in the salt-tolerant maize but suppressed in the salt-sensitive line.
Interestingly this salt-responsive behavior of miR168 was found
to be conserved in Maize and Arabidopsis (Liu et al., 2008a).
miR microarray was also used to study drought-tolerant wild
emmer wheat (Triticum dicoccoides) (Kantar et al., 2011), two
cotton cultivars with high tolerance (SN-011) and high sensitivity
(LM-6) to salinity (Yin et al., 2012) and for comparative analysis
between drought-resistant and susceptible soybean (Kulcheski
et al., 2011). A comparison of 12 salt-tolerant and 12 salt-
susceptible genotypes in Oryza sativa, identified 12 polymorphic
miR based simple sequence repeats (Mondal and Ganie, 2014).
Only miR172b-SSR was different between the salinity stress
tolerant and susceptible genotypes. The genotype-dependent
miR profiles suggested that response of miRs to abiotic stresses
varies among closely related genotypes with contrasting stress
sensitivities. The result of this analysis showed that there was
less diversity of miR genes in the tolerant as compared with
susceptible cultivars (Mondal and Ganie, 2014).

Computational Predictions
The detection and validation of miRs by molecular cloning
was supported by systematic approaches using computational
techniques (Bonnet et al., 2004b). These approaches also
complemented the experimental methods by identifying difficult
to clone miR families such as miR395 and miR399 (Jones-
Rhoades and Bartel, 2004; Adai et al., 2005) which were difficult
to detect by experimental approaches due to their low expression
levels. Computational predictions strategies have been quite
useful in miR identification in various plant species such as
Arabidopsis (Wang et al., 2004; Adai et al., 2005; Li et al., 2005b),
rice (Li et al., 2005b; Zhang et al., 2005), maize (Zhang et al.,
2006a, 2009b), tomato (Yin et al., 2008; Zhang et al., 2008b),
foxtail millet (Khan et al., 2014), soybean (Zhang et al., 2008a),

Brassica napus (Xie et al., 2007), apple (Gleave et al., 2008), grape
(Carra et al., 2009), and some other plants (Zhang et al., 2005;
Sunkar and Jagadeeswaran, 2008).

It had been verified that a majority of known miRs are
evolutionarily conserved and are expected to have homologs
or orthologs in other species. So search criteria allowed up-
to three sequence mismatches while looking for conserved
miRs in heterologous species. Using this approach 85 conserved
sequences which were showing perfect match to miRs reported
in miRBase (Release 19) were predicted from Morus notabilis
tissues (Jia et al., 2014).Whereas in another study 35miR families
were identified in heat stressed Brassica napus by allowing two
mismatches with A. thaliana miRs (Yu et al., 2012). Thus,
the conserved sequence of plant miRs and other structural
features were used for developing suitable strategies and rules for
identifying and annotating (Discussed in Section The Influence
of Bioinformatics Approaches on microRNA Nomenclature
and Annotation) new miR genes (Lagos-Quintana et al., 2001;
Reinhart et al., 2002; Floyd and Bowman, 2004; Wang et al.,
2004; Adai et al., 2005; Zhang et al., 2006a; Lukasik et al.,
2013). One of the early comprehensive computational analysis by
Jones-Rhoades and Bartel (2004) systematically identified plant
miRs and their regulatory targets that are conserved between
Arabidopsis and rice. Using MIRcheck algorithm they predicted
that the miRs could target mRNAs like superoxide dismutases
(SOD), laccases, and ATP sulfurylases that are involved in
plant stress responses. Such studies lead to identification of
involvement of Ath-miR398 in the ROS pathway by targeting
sites on Cu/Zn-SOD (Jones-Rhoades and Bartel, 2004; Sunkar
and Zhu, 2004; Lu et al., 2005; Sunkar et al., 2005) A similar
approach was used in miRFinder computational pipeline, to
identify 91 conserved plant miRs in rice and Arabidopsis (Bonnet
et al., 2004a).

Another strategy was based on the property of miRs to bind
with perfect complementarity to their target transcripts (Laufs
et al., 2004). In plant species where the target sequence was
available the conservedmiRs could be easily predicted by using 20
mer genomic segments with not more than two mismatches as in
silico probes. This target-guided strategy was adopted to identify
16 families of drought stress-associatedmiRs from Physcomitrella
patens (Wan et al., 2011).

The computational predictions also utilized the criteria for
conservation of miR sequence and key secondary structure
features of pre-miRs like their characteristic fold-back structure,
thermodynamic stability etc. to predict new miRs (Berezikov
et al., 2006). Seventy-nine putative miRs were identified in
wheat using traditional computational strategy, out of which 9
were validated by northern blot experiments (Jin et al., 2008).
Subsequently bioinformatics tools like miRAlign were developed
based on the requirement of structural similarity and sequence
conservation between new candidates and experimentally
identified miRs (Wang et al., 2005). Though numerous miR
profiles were generated by the computational algorithms, this
was not found to be appropriate for species with less annotated
genomes (Chen and Xiong, 2012).

The non-availability of complete genome annotation was
overcome by employing the Expressed Sequence Tags (EST)
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database. These represented the true gene expression entities
so they emerged as better indicators of dynamic expressions of
the miR. A detailed study by identified 123 miRs from stress-
induced ESTs of 60 plant species (Zhang et al., 2005). This study
confirmed that irrespective of evolutionary divergence miRs are
highly conserved in plant kingdom and miR genes may exist
as orthologs or homologs in different species within the same
kingdom (Weber, 2005; Zhang et al., 2006b). The EST database
was also used to confirm some novel miRs identified earlier by
computational strategies in citrus (Song et al., 2010) and peach
(Zhang et al., 2012). In a recent study ESTs of abiotic stress treated
libraries of Triticum aestivumwere used to identify novel miRs in
drought, cold, and salt stressed cDNA libraries by searching all
mature sequences deposited in the miRBase (Release 19) (Pandey
et al., 2013).

High Throughput Sequencing
The recent development of HTS approaches has invoked a new
era by allowing the sequencing of millions of sRNA molecules.
The HTS techniques employ sequencing-by-synthesis (SBS)
technology, which enable accessing the full complexity of sRNAs
in plants. In addition, it provides quantitative information of
the expression profiles, since the cloning frequency of each
sRNA generally reflects its relative presence in the sample. The
signature-based expression profiling method such as massively
parallel signature sequencing (MPSS) has identified miRs that
have thus far proven difficult to find by using traditional cloning
or in silico predictions. Sequencing technologies are rapidly
emerging as the favored alternatives to the microarray-based
approaches, since direct measures of gene expression can be
obtained through sequencing of random ESTs, SAGE, andMPSS.
The expression patterns of the identified miR targets can then
be followed in the transcriptome sequencing data to gain novel
insights into plant growth and development and stress responses
(Wang et al., 2010; Li et al., 2013). Though currently an expensive
technique, it is expected that as the technology grows, it will
become more affordable.

Complex computational algorithms are used to rapidly and
rigorously sift through the HTS data for identification of putative
miRs (Figure 5). These datasets have been very successful in
identification of conserved miRs where the sequence is well
maintained across plant species. The targets for these miRs
can also be easily predicted using Parallel Analysis of RNA
End (PARE) sequencing, where miR and its target mRNA have
often nearly perfect complementarily (Rhoades et al., 2002;
Bonnet et al., 2004b; Jones-Rhoades and Bartel, 2004). The
HTS data also provided a useful source to hunt for the non-
conserved or species-specific miRs based on the criteria of miR
annotation (Discussed in Section The Influence of Bioinformatics
Approaches on microRNA Nomenclature and Annotation).

This HTS approach was initially used to visualize the
repertoire of sRNAs in Arabidopsis (Rajagopalan et al., 2006;
Fahlgren et al., 2007), followed by investigation on the rice
miR expression profiles in drought and salt stress responses
(Sunkar et al., 2008). Later, Liu and Zhang identified 67 arsenite-
responsive miRs belonging to 26 miR families from Oryza sativa
(Liu and Zhang, 2012). Solexa sequencing was also used to

identify conserved and novel miRs in Glycine max libraries from
water deficit and rust infections (Kulcheski et al., 2011), cold
responsive miRs in trifoliate orange, Poncirus trifoliate, (Zhang
et al., 2014a), drought and salinity responsive miRs in Gossypium
hirsutum (Xie et al., 2015), heat stress induced miRs in Brassica
napus (Yu et al., 2012), and salt stressedmiRs in Raphanus sativus
(Sun et al., 2015). Regulation of miRs in response to various
abiotic stresses was studied in Arabidopsis, under drought, heat,
salt, and metal ions such as copper (Cu), cadmium (Cd), sulfur
(S) excess or deficiency, using sRNA NGS libraries. The search
for most profound changes in miR expression patterns identified
that miR319a/b, miR319b.2, andmiR400 were responsive tomost
of the stresses under study (Barciszewska-Pacak et al., 2015).

Comparative profiles of miR expression during cold stress
among Arabidopsis, Brachypodium, and Populus trichocarpa
revealed that miR397 and miR169 are up-regulated. This
indicated the presence of conserved cold responsive pathways
in all the species. Whereas the differences in the pathways was
highlighted by miR172 which was up-regulated in Arabidopsis
and Brachypodium but not in poplar (Zhang et al., 2009a).
Opposing patterns of miR regulation in different plant species
during cold stress were observed for miR168 and miR171. The
miRs are up-regulated in poplar (Lu et al., 2008) and Arabidopsis
(Liu et al., 2008a) but down-regulated in rice (Lv et al., 2010).
Likewise the HTS analysis of salt stressed sRNAome identified
211 conserved miRs and 162 novel miRs, belonging to 93 families
between Populus trichocarpa and P. euphratica (Li et al., 2013).
Using the approach of comparative miR profiling followed by
experimental validation, our group identified 59 Osa-miRs that
show tissue-preferential expression patterns and significantly
supplemented 51 potential interactive nodes in these tissues
(Mittal et al., 2013).

HTS technology has also played a crucial role in identification
and characterization of the miR targets with PARE or Degradome
sequencing. This involves sequencing of the entire pool of cleaved
targets followed by mapping of the miR-guided cleavage sites
(Ding et al., 2012). In Populus, 112 transcripts targeted by 51
identified miRs families were validated by using degradome
sequencing (Li et al., 2013). These are several reports which
used HTS of sRNA pools and degradome analysis to identify
targets of stress induced miRs such as, in maize (Liu et al.,
2014), tomato (Cao et al., 2014), Raphanus sativus (Wang et al.,
2014), Populus (Chen et al., 2015), rice (Qin et al., 2015),
Phaseolus vulgaris (Formey, 2015), and barley (Hackenberg et al.,
2015).

It has been shown that plant miRs also act by inhibiting
mRNA translation (Brodersen et al., 2008; Lanet et al., 2009),
therefore such targets tend to get overlooked during degradome
sequencing. The HTS techniques are also being employed for
sequencing the whole transcriptome pools to identify the miR
targets in Medicago (Cheung et al., 2006), Zea mays (Emrich
et al., 2007), and Arabidopsis (Weber et al., 2007). The combined
strategy of sRNAs and mRNAs (transcriptome) sequencing
enabled the identification of new genes, involved in nitrate
regulation and management of carbon and nitrogen metabolism
in Arabidopsis. This study identified miR5640 and its target,
AtPPC3, leading to the preposition that the NO−

3 responsive
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miR/target might be involved in modulating the carbon flux to
assimilate nitrate into amino acids (Vidal et al., 2013).

THE INFLUENCE OF BIOINFORMATICS
APPROACHES ON microRNA
NOMENCLATURE AND ANNOTATION

The in silico approaches have also played a dominant role in the
identification of plant miRs and their targets. The advancement
inmolecular and computational approaches has not only resulted
in the exponential growth in the discovery and study of sRNA
biology but has also provided a deeper insight into the miR
regulatory circuits. At the same time, they have been instrumental
in defining and redefining the rules for annotating the miRs and
their nomenclature.

A miR registry system was adopted in 2004 to facilitate a
complete and searchable place for the published miRs and to
provide a systematic rule so that the new miRs can be assigned
with a distinctive name prior to publication of their discovery
(Ambros et al., 2003; Griffiths-Jones, 2004). In miRBase the
nomenclature of miRs starts with initial 3 letters signifying the
organism, followed by a number which is simply a sequential
numerical identifier based on sequence similarity, suffixed by
“miR,” trailed by alphabet letters which denotes the family
member (Figure 4). It was later enforced that sequences showing
homology within organisms and mature identical sequences
coming from two or more different organism should be assigned
the same family names (Meyers et al., 2008). Sequences with no
similarity to previously reported sequence were considered novel
and assigned next number in the series (Griffiths-Jones, 2004). It
is observed that in miRBase Medicago truncatula, mtr-miR2592
is the largest miR family with 66 members, while in rice; the
largest family is seen for Osa-miR395 with 25 members. The
occurrence of more than 1mature sequence from same precursor
is designated by an integer followed by a dot at the end (Griffiths-
Jones, 2004; Meyers et al., 2008). With the accumulation of HTS
data and the experimental validation that both miR and miR∗ of

FIGURE 4 | Nomenclature schema of miRs.

same precursor can be functional, it was decided to add a suffix of
3p and 5p at the end of the sequence to represent the presence of
miR on 3′ or 5′ arm of stem loop precursor (Meyers et al., 2008).

The processing of biological information through
bioinformatics tools and computational biology methods
has now become crucial for elucidating complicated biological
problems in genomics, proteomics, as well as in metabolomics.
With the accumulation of huge sRNA sequencing datasets, it is
almost impossible to analyze each and every sequence through
direct experimental approaches. This has necessitated the role of
bioinformatics tools and databases in analyzing and screening
the huge data sets in a short time period, with minimum costs
and without compromising on the specificity of analysis.

The primary criteria for annotation of plant miRs is the
precise excision of a miR/miR∗ duplex from the stem of a single-
stranded, stem-loop precursor. Computational algorithms use
these criteria to predict the RNA secondary structure for the
sequences identified from the genomic DNA, transcript or ESTs.
Subsequently the annotation rules are followed to distinguish
a miR from the sRNA pool. The first set of guidelines for
miR annotation was based on specific expression and biogenesis
criteria (Ambros et al., 2003). The expression criteria included
the identification by cloning and/or detection by hybridization
and phylogenetic conservation of the miR sequence. While
the biogenesis criteria included the presence of a characteristic
hairpin structured precursor transcript, conservation of the
precursor secondary structure and increased accumulation of a
precursor in absence or reduction in Dicer activity (Ambros et al.,
2003).

The advancement in sequencing technologies provided with
highly sensitive techniques for obtaining the complete small
RNA profiles that could distinguish between fragments differing
by a single base. This also provided an excellent medium
to search for known and novel miR family members, their
precursors, and modified versions. The bioinformatics based
analysis of HTS datasets, made it feasible to predict the entire
set of miRs present in a RNA sample. This was also utilized
to retrieve the information on expression profiles, putative
target transcripts, the miR isoforms, and sequence variants of
miRs through differential expression profiling under various
conditions (Moxon et al., 2008; Addo-Quaye et al., 2009; Yang
and Li, 2011b; Neilsen et al., 2012). Dedicated web servers
like isomiRex (Sablok et al., 2013) are available online for
identification of the sequence variants using HTS data.

With the development in computational tools and the
availability of genomic sequences the rules were further refined
to include characteristics that are both necessary and sufficient
for miR annotation. It was proposed that the prediction criteria
should include that the miR and miR∗ are derived from
opposite arm of same precursor such that they form a duplex
with two nucleotide overhang at the 3′ end, base pairing of
miR and miR∗ should have less than four mismatched bases,
the asymmetric bulges are minimum in size and frequency
specifically in miR/miR* duplex. sRNA-producing stem-loops
that violate one of these criteria could still be annotated as
miRs, provided that there is conclusive experimental evidence of
precise miR/miR∗ excision (Meyers et al., 2008). In continuation
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to the guidelines set by Ambros et al. (2003) it was recognized
that conservation of miRs, assessed using either bioinformatics
or direct experimentation, was still a powerful indicator of
their functional relevance though it need not be necessary for
annotation as many plant miRs lack homologs in other species.
It was proposed that identification of a target is not necessary for
miR annotation as targets could not be predicted for many of the
less-conserved miRs or the predicted targets lacked experimental
confirmation.

It is being observed that increased coverage of deep-
sequencing results have resulted in capturing sequences of ever-
lower abundance. This has made the identification of miRs
even more challenging. A number of recent publications have
attempted use additional criteria based on patterns of mapped
reads (Hendrix et al., 2010). The consensus set of guidelines that
have started to emerge lay importance to the presence of multiple
reads with consistent processing of the 5′-end of the mature
sequence preferably from several independent experiments. The
mapped reads should not overlap other annotated transcripts as
they may represent fragments of mRNAs or other known RNA
types.

Various tools were developed based on the annotation
guidelines to analyze the HTS data sets. The major steps
adopted by various available tools for prediction of novel
miRs and their target identification are discussed in Figure 5.
Basically the sequenced reads are selected, based on the average

quality score appended with each base, and subjected to 3′

adapter trimming. This can be achieved by designing specific
scripts (using languages such as PERL) or by using various
available tools such as NGSQC Toolkit (Patel and Jain, 2012),
FASTX-Toolkit (Gordon and Hannon, 2010), CLC Genomics
Workbench (Matvienko)1 etc. Next the reads with length of 18–
24 nucleotides are selected and aligned to the corresponding
genome of the plant species under consideration using tools
such as bowtie, soap, and bwa. The aligned reads are then used
to filter out sequences mapping with other sRNAs such as,
tRNA, rRNA, sRNA, snRNA, snoRNA, and known miRs. The
remaining reads are used to retrieve the potential precursors
from the reference genome and their secondary structure is
predicted. Excellent softwares like Mfold (Zuker, 2003), RNAfold
(Denman, 1993) etc. are freely available and have been useful
in identifying the appropriately folded structures. Then these
candidate precursors are evaluated on the basis of the annotation
criteria (Meyers et al., 2008). The expression profiles of identified
known and novel miRs from sequence pools are achieved
by calculating the number of times a unique read occurred
in the entire sRNA pool and normalized against total reads.
Reads Per Million (RPM) for each sequence occurring in
each sample is most common way to achieve the normalized
expression of each sequence. RPM = (Actual read count/total

1Matvienko, M. CLC Genomics Workbench.

FIGURE 5 | Pipeline showing major steps for miR identification from high-throughput sequencing data.
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number of reads in sample) × 1,000,000) (Motameny et al.,
2010).

MICRORNA REPOSITORIES

The study of miR and their targets by analyzing the sRNA and
transcriptome sequences is greatly facilitated by the availability
of numerous freely accessible tools and databases, which can
be used by experimental researchers without any specialization
in bioinformatics. The various web-based tools and databases
available for the prediction and analysis of plant miRs and
their targets are listed in Tables 1, 2, respectively. Each of
these is based on different algorithms and methodologies and
has their respective strengths and shortcomings. However,
the major limitation in most of these techniques is the
requirement for a known sequence and the search for a
conserved hairpin loop structure (Unver et al., 2009). To
overcome these limitations, Kadri et al. (2009) developed the
Hierarchical Hidden Markov Model (HHMM) that employs
region-based structural information of pre-miRs without relying
on phylogenetic conservation. It obtains the secondary structures
on the basis of minimum free energy and then classifies the
sequence with HHMM (Kadri et al., 2009). Some of the popularly
used tools are discussed below.

miRCheck
This is an algorithm written in the form of a PERL script
for identifying 20 mers having potential to encode plant miRs.
The tool requires input of a putative hairpin sequences and
their secondary structures. The presence of candidate 20 mer
sequences is then searched within the hairpin to predict potential
plantmiR. This algorithmwas first used for identifying conserved
miRs in Arabidopsis and rice (Jones-Rhoades and Bartel, 2004).

UEA sRNA Workbench
It is a comprehensive tool for the complete analysis of sRNA
sequencing data and provides the convenience of using the
facilities provided by different tools in one place. Its Graphical
User Interface (GUI) makes it easy to use for researchers, do not
needs any prior knowledge of computer programming (Moxon
et al., 2008). It can be downloaded and installed locally, and it
also has a web-based facility of doing the same analysis in form of
UEA sRNA toolkit which is freely accessible. Table 3 lists all the
available tools at UEA sRNAWorkbench.

TAPIR
This is an online web server for prediction of targets of plant
miRs. It can characterize miR-targets duplexes with large loops
which are usually not detectible by traditional target prediction
tools. The prediction results are driven by a combination of two
different algorithms. The first one is the fast and canonical FASTA
local alignment program which cannot detect duplexes with large
number of bulges and/or mismatches (Pearson, 2004) and second
one is RNAhybrid (Krüger and Rehmsmeier, 2006) for detection
of miR-mRNA duplexes (Bonnet et al., 2010). Though it is a good
option for miR target prediction but is not preferred as the users
face problem in analyzing large datasets on the online server.

CLC Genomics Workbench
It is a commercial software developed by QIAGEN that offers
Quality Check (QC) and pre-processing of NGS data. Although
it is a good tool for preprocessing of NGS data but it focuses more
on other genomic areas such as de novo assembly and it doesn’t
provides the facility to process the sRNA data for miR and target
identification. In relation to the sRNAs it has beenmajorly used in
initial steps of quality filtering, adapter trimming and calculating
abundances of sRNA libraries. It can also generate genome
alignments by using standalone blast search. The workbench

TABLE 1 | Major Plant databases providing information on the miR and their targets.

Name Description Link References

miRBase Searchable database of published miR sequences and

annotation

http://www.mirbase.org Griffiths-Jones, 2004; Kozomara

and Griffiths-Jones, 2010;

Griffiths-Jones et al., 2008;

Kozomara and Griffiths-Jones,

2014

deepBase Database for annotating and discovering small and long

ncRNAs (miRs, siRNAs, piRNAs) from high-throughput deep

sequencing data.

http://deepbase.sysu.edu.cn/ Yang and Qu, 2012

PMRD Database involving miRs and their target genes, especially

model plants and major crops

http://bioinformatics.cau.edu.cn/PMRD/ Zhang et al., 2010

PNRD It is an updated version of PMRD http://structuralbiology.cau.edu.cn/PNRD/index.php Yi et al., 2015

PMTED Plant miR Expression Database http://pmted.agrinome.org/ Sun et al., 2013

Plant MPSS Measure’s the expression level of most genes (including

sRNA and their targets) under defined conditions and provide

information about potentially novel transcripts. with the help

of public HTS data

http://mpss.udel.edu/ Nakano et al., 2006

miRTarBase The experimentally validated miR-target interactions database http://mirtarbase.mbc.nctu.edu.tw/ Hsu et al., 2010

Rfam A resource for predicted miR targets and expression http://rfam.xfam.org/ Burge et al., 2013

ARMOUR A Rice miRNA: mRNA Interaction Resource http://armour.icgeb.trieste.it/ Unpublished
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TABLE 2 | Major tools for analyzing plant miRs and their targets.

Name Description Link References

PASmiR A literature-curated database for miR molecular regulation in plant

response to abiotic stress

http://pcsb.ahau.edu.cn:8080/

PASmiR/

Zhang et al., 2013b

isomiRex Web portal to identify miRs and their isoforms as well as differential

expression of NGS datasets

http://bioinfo1.uni-plovdiv.bg/

isomiRex/

Sablok et al., 2013

CLC

genomics

Workbench

Analyze, compares and visualizes NGS data http://www.clcbio.com/products/clc-

genomics-workbench/

miRTarBase The experimentally validated miR-target interactions database http://mirtarbase.mbc.nctu.edu.tw/

index.php

Hsu et al., 2010

MIRFINDER Computational pre-miR prediction tool http://www.bioinformatics.org/

mirfinder/

Bonnet et al., 2004b

Targetfinder Predicts small RNA targets in a sequence database using a

plant-based scoring metric

http://carringtonlab.org/resources/

targetfinder

mirCheck A PERL script designed to identify RNA sequences with

secondary structures similar to plant miRs

http://bartellab.wi.mit.edu/software.

html

Jones-Rhoades and Bartel, 2004

findmiRNA Predicts potential miRs within candidate precursor sequences that

have corresponding target sites within transcripts

http://sundarlab.ucdavis.edu/mirna/ Adai et al., 2005

MicroInspector A web tool for detection of miR binding sites in a RNA sequence http://bioinfo.uni-plovdiv.bg/

microinspector/

Rusinov et al., 2005

RNAhybrid Calculates a minimal free energy hybridization of RNA sequence(s)

and miR(s)

http://bibiserv2.cebitec.uni-bielefeld.

de/rnahybrid/

Krüger and Rehmsmeier, 2006

CleaveLand A pipeline for using degradome data to find cleaved small RNA

targets

http://axtell-lab-psu.weebly.com/

cleaveland.html

Addo-Quaye et al., 2009

TAPIR Target prediction for Plant miRs http://bioinformatics.psb.ugent.be/

webtools/tapir/

Bonnet et al., 2010

psRNATarget A plant sRNA target analysis server http://plantgrn.noble.org/

psRNATarget/

Dai and Zhao, 2011

miRanalyzer miR detection and analysis tool for next-generation sequencing

experiments

http://bioinfo5.ugr.es/miRanalyzer/

miRanalyzer.php

Hackenberg et al., 2011

PmiRKB Plant miR knowledge base includes the miRs of two model plants,

Arabidopsis and rice. Four major functional modules, SNPs,

Pri-miRs, MiR-Tar and Self-reg, are provided

http://bis.zju.edu.cn/pmirkb/ Meng et al., 2011b

miRDeep-P A computational tool for analyzing the miR transcriptome in plants http://faculty.virginia.edu/lilab/miRDP/ Yang and Li, 2011b

C-mii A tool for plant miR and target identification http://www.biotec.or.th/isl/c-mii Numnark et al., 2012b

Semirna Searching for plant miRNAs using target sequences http://www.bioinfocabd.upo.es/

semirna/

Muñoz-Mérida et al., 2012

UEA sRNA

Workbench

A suite of tools for analysing and visualizing NGS datasets http://srna-workbench.cmp.uea.ac.

uk/

Stocks et al., 2012

mirTool A comprehensive web server providing detailed annotation

information for known miRs and predicting novel miRs that have

not been characterized before

http://centre.bioinformatics.zj.cn/

mirtools/

Wu et al., 2013

miRPlant An Integrated Tool for Identification of Plant MiR from RNA

Sequencing Data

http://www.australianprostatecentre.

org/research/software/mirplant

An et al., 2014

MTide An integrated tool for the identification of miR-target interaction in

plants

http://bis.zju.edu.cn/MTide/ Zhang et al., 2014b

provides an interactive visualization to the differential expression
and statistical analysis of RNA-Seq and sRNA data.

C-mii
It uses a homology-based approach for plant miR and target
identification. The tool aligns known miRs from different plant
species to the EST sequences of the query plant species using
blast homology search. The aligned sequences are allowed to fold
in to the characteristic hairpin loop structures to identify the
putative miRs. The predicted miR sequences are further used for

identifying perfect or nearly perfect complimentary sites on the
input transcript sequences to identify the putative targets. The
tool has a unique feature of predicting the secondary structures of
the miR-target duplexes. The identified targets can be annotated
further by searching their functions and Gene Ontologies (GO)
(Numnark et al., 2012a). It provides user friendly GUI, and is
easily downloadable hence it can be easily used for analyzing
large datasets. However, the major limitation lies in the search
and availability of homologous sequences, so it cannot be used to
analyze the NGS datasets.
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TABLE 3 | Tools available on UEA sRNA Workbench and their functions in analyzing the sRNA sequencing data.

Tool Function References

Adapter removal Removes the adapter sequence Moxon et al., 2008

Filter It filters already annotated sRNA (rRNA, tRNA. snRNA, snoRNA, miRNA etc) data Moxon et al., 2008

Sequence alignment Allows alignment of short reads to the genome Moxon et al., 2008

CoLIde It defines a locus as a combination of regions sharing same expression profiles, present in close proximity on

genome

Mohorianu et al., 2013

miRCat Predicts miRs from HTS data without requiring the precursor sequence Moxon et al., 2008

miRProf Determines normalized expression levels of sRNAs matching to known miR in miRBase Moxon et al., 2008

PAREsnip Finds target of sRNA using degradome data. Folkes et al., 2012

SiLoCo Compares expression patterns of sRNA loci among different samples Moxon et al., 2008

ta-si Prediction Trans-acting RNA prediction, by identifying 21nt characterstic of ta-siRNA loci by using sRNA dataset and

respective genome

Moxon et al., 2008

RNA/Folding annotation Predicts the secondary structure of RNA sequences and annotates it by highlighting up to 14 comma seperated

short sequences

Moxon et al., 2008

VisSR Used for sequence visualization Moxon et al., 2008

miRdeep-P
It is a collection of PERL scripts that are used for prediction
of novel miRs from deep sequencing data. It was developed
by incorporating the plant-miR specific criteria to miRDeep
(Friedländer et al., 2008). Its pipeline utilizes bowtie for sequence
alignments and RNAfold for secondary structure prediction of
putative precursors. The remaining steps such as extracting
potential precursor sequences and identification of putative
novel miR is regulated by specific scripts (Yang and Li, 2011a).
Although it is a specialized tool for identification of plant
miRs, but does not has a GUI interface. So the user needs to
work through command line for its execution, which warrants
knowledge on PERL scripting.

CleaveLand
It is a general pipeline, available as a combination of PERL scripts,
for detecting miR-cleaved target transcripts from degradome
datasets (Addo-Quaye et al., 2009). It can be executed by a
single command and requires input of degradome sequences,
sRNAs, and an mRNA database to yield an output of cleaved
targets. The pipeline runs in commandmode and requires the co-
installation of several dependencies such as PERL, R, samtools,
bowtie, RNAplex etc.

ARMOUR
The accumulation of sequencing data has generated the need
for a comprehensive and integrated database of miR:mRNA,
expression profile information and target information. Our
group has developedARMOURdatabase (ARicemiRNA:mRNA
Interaction Resource) that consolidates extensive datasets of rice
miRs from various deep sequencing datasets for examining the
expression changes with respect to their targets. Development
of such interactomes for different plant species shall provide
a valuable tool to biologists for selecting miRs for further
functional studies.

PERSPECTIVES

miRs are an extensive class of endogenous, small regulators
of gene expression in the numerous developmental and
signaling pathways. There is ample evidence for the role
of miRs in abiotic stress mediated genomic changes that
result in attenuation of plant growth and development. The
different experimental approaches have identified the intriguing
expression profiles of miRs in distinctive tissues and/or stages
of development. The regulation of miR expression also varies
between the domesticated plant species and their wild relatives.
Sequence-based profiling along with computational analysis has
played a pivotal role in the identification of stress-responsive
miRs, although these results require independent experimental
validations. sRNA blot and RT-PCR analysis have played an
equally important part in systematically confirming the profiling
data. The identification of putative targets for these miRs has
provided robust confirmation of their stress responsiveness.
This has also enabled quantification of their effect on the
genetic networks, such that many of the stress regulated
miRs have emerged as potential candidates for improving
plant performance under stress. However, so many efforts are
still required for in-depth analysis of the miR modulation
of each gene product induced by abiotic stress(es) and its
interacting partners. This requires development of reliable
and rigorous assays for firm characterization of the spatio-
temporal regulation of these miRs under stress conditions.
The potential of computational biology needs to be tapped for
performing an extensive comparison of miR expression profiles
among agriculturally important crops during environmental
stress conditions to tap key target nodes that need to be
modulated for improving crop tolerance to environmental
stress. The development and integration of plant synthetic
biology tools and approaches will add new functionalities
and perspectives in the miR biology to make them relevant
for genetic engineering programs for enhancing abiotic stress
tolerance.
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