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1  |  INTRODUC TION

The late Paleozoic (359.3–251.9 million years ago (mya) (Aretz 
et al., 2020; Henderson, Dunne, & Fasey, 2022)) represents an im-
portant interval for understanding the evolution and diversification 
of actinopterygians, the ray-finned fishes. During this time, ray-
finned fishes first evolved a series of innovations that have arisen 

many times since, including body elongation (Lund & Poplin, 2002), 
body deepening (Gill,  1925; Sallan & Coates,  2013), and vari-
ous changes to feeding ranging from adaptations for durophagy 
(Friedman et al.,  2018) to changes in jaw articulation (Argyriou 
et al., 2022). Despite the important morphological innovations tak-
ing place in the Carboniferous–Permian interval, few ray-finned 
fishes of this age have been studied in detail (Argyriou et al., 2022; 
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Abstract
Though Paleozoic ray-finned fishes are considered to be morphologically conserva-
tive, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside 
the jaw) in the Permian actinopterygian †Brazilichthys macrognathus, whereby the 
teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand 
how fishes have accommodated lower jaw fangs through geologic time, we synthesize 
the multitude of ways living and extinct osteichthyans have housed large mandibular 
dentition. While the precise structure of fang accommodation seen in †Brazilichthys 
has not been reported in any other osteichthyans, alternate strategies of upper jaw 
fenestration to fit mandibular fangs are present in some extant ray-finned fishes—the 
needlejaws Acestrorhynchus and the gars of the genus Lepisosteus. Notably, out of 
our survey, only the two aforementioned neopterygians bear upper jaw fenestration 
for the accommodation of mandibular fangs. We implicate the kinetic jaws of neop-
terygians in this trend, whereby large mandibular fangs are more easily fit between 
the multitude of upper jaw and palatal bones. The restricted space available in early 
osteichthyan jaws may have led to a proliferation of novel ways to accommodate large 
dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphol-
ogy, in light of these results and other recent reevaluations of jaw structure in early 
fossil ray-fins.
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Figueroa et al., 2019), suggesting that many additional functional in-
novations remain unrecognized.

Classic studies established basic aspects of the jaw-closing 
mechanism of early ray-finned fishes (Lauder,  1982; Schaeffer & 
Rosen,  1961), and the relationship between the palate, suspenso-
rium, and neurocranium is well understood for a handful of artic-
ulated and three-dimensionally preserved specimens (Argyriou 
et al.,  2018; Figueroa et al.,  2019; Friedman et al.,  2018; Giles 
et al.,  2015). However, little is known regarding jaw closing in 
Paleozoic ray-finned fishes that bear greatly enlarged, fang-like den-
tition on the upper and lower jaws.

With some notable exceptions, Paleozoic ray-finned fishes gen-
erally exhibit conservative body shapes (Friedman,  2015; Sallan & 
Coates, 2013). Similar structural homogeneity is generally assumed 
for the jaws and palate, with most taxa interpreted as bearing some 
variety of pointed teeth on both the upper and lower jaws, and 
finer denticulation on the palate and inner surface of the mandi-
ble. Nevertheless, several Paleozoic ray-finned fishes show mor-
phology related to a highly predatory habitus, such as large conical 
teeth on upper or lower jaws, conical dentition present in multiple 
rows on labial and lingual sides of the jaws, a modified symphyseal 
series of teeth, and curvature of the lower jaw toward the symphy-
sis (Choo,  2009; Dunkle & Schaeffer,  1973; Figueroa et al.,  2021; 
Štamberg, 1991, 2006, 2018). Of these, the most common adaptation 
is the presence of large fangs (Choo, 2009; Dunkle & Schaeffer, 1973; 
Figueroa et al., 2019, 2021; Štamberg, 2006), with fangs here being 
defined as large canine-like teeth (Olson,  2017). However, little is 
known regarding the interactions between the mandibular fangs and 
the palate in most of these taxa. Taxa with these attributes appear 
to be dispersed through the stem of the ray-finned fish tree rather 
than united as a monophyletic lineage of large-fanged fossil taxa 
(Argyriou et al., 2022; Figueroa et al., 2019; Giles et al., 2017; Stack & 
Gottfried, 2021). Few of these fishes are sufficiently well preserved 
to determine how jaw closing accommodated enlarged dentition.

Extant actinopterygians have evolved a multitude of ways to 
house their lower jaw dentition. The large fangs and wide gape of 
some taxa, such as the deepwater-dwelling stomiids and the tra-
chichthyiform Anoplogaster, have been interpreted as being uti-
lized in prey retention after capture via suction feeding (Germain 
et al., 2019; Greven et al., 2009; Kierdorf et al., 2022). However, in 
the majority of marine and freshwater fishes with large fangs, it is 
more common for jaw closure to be complete and for the purpose of 
prey capture via ram feeding - with mandibular teeth accommodated 
between the bones of the upper jaw and suspensorium.

Here, we describe a novel strategy for interaction between jaw 
fangs, palate, and palatal dentition in the Lower Permian (298.9–
274.4 mya (Henderson et al.,  2020)) †Brazilichthys macrognathus 
(Cox & Hutchinson, 1991), one of the few Paleozoic large-toothed 
actinopterygians known from remains that permit investigation of 
the interaction between upper and lower jaws dentition. We com-
pare the morphology of †Brazilichthys to other bony fishes—both 
fossil and living—in order to better understand the diversity of jaw-
closing strategies in fang-bearing ray-finned fishes.

2  |  MATERIAL S AND METHODS

2.1  |  Institutional codes

Institutional codes follow those of Sabaj (2020). DGM, Coleção de 
Paleontologia do Museu de Ciências da Terra, Serviço Geológico do 
Brasil, Ministério de Minas e Energia, Rio de Janeiro, Brazil; JFBM, 
James Ford Bell Museum of Natural History, University of Minnesota, 
Minneapolis, Minnesota, U.S.A.; ROM, Royal Ontario Museum, 
Toronto, Ontario, Canada; UF, University of Florida, Gainesville, 
Florida, U.S.A.; UMMZ, University of Michigan Museum of Zoology, 
Ann Arbor, Michigan, U.S.A.; UW, University of Washington, Seattle, 
Washington, U.S.A.; YPM, Yale University, Peabody Museum of 
Natural History, New Haven, Connecticut, U.S.A.

2.2  |  Comparative materials

Acestrorhynchidae. Acestrorhynchus falcatus UF:Fish:189596. 
ark:/87602/m4/M159116.

Alepisauridae. Alepisaurus ferox YPM:Ich:025451. ark:/87602/
m4/426485.

Amiidae. Amia calva UMMZ 235291.
Brazilichthyidae. †Brazilichthys macrognathus. DGM 1061-P. 

doi:/10.6084/m9.figshare.7600103.
Channidae. Channa marulius UF:Fish:241571. ark:/87602/m4/

M170165.
Cynodontidae. Hydrolycus armatus ROM:Fishes:88356. 

doi:10.17602/M2/M97833.
Gempylidae. Promethichthys prometheus UF:Fish:231977. 

ark:/87602/m4/M95620.
Lepisosteidae. Lepisosteus oculatus UMMZ 196974.
Muraenesocidae. Muraenesox cinereus UW:UWFC:021142. 

ark:/87602/m4/M114084.
Percidae. Sander vitreus JFBM:Fishes:35995. ark:/87602/m4/

M57862.
Polypteridae. Polypterus senegalus UMMZ 195008.
Sciaenidae. Cynoscion regalis UW:UWFC:004152. ark:/87602/

m4/M117179.
Sphyraenidae. Sphyraena sphyraena UF:Fish:137529. ark:/87602/

m4/M81241.
Trichiuridae. Trichiurus lepturus UW:UWFC:014888. ark:/87602/

m4/M91552.
One adult specimen per species was examined via microcom-

puted tomography (see Section 2.4 below). Standard lengths of dig-
ital specimens are infrequently uploaded along with other metadata 
- as such, these measurements are unknown.

2.3  |  Analyzed specimen

The predatory Permian stem actinopterygian †Brazilichthys macrog-
nathus was originally described based on a single specimen (DGM 
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1061-P) collected in the Pastos Bons locality of the Pedra de Fogo 
Formation (Cox & Hutchinson,  1991; Figueroa et al.,  2019), which 
is considered to be Artinskian-Kungurian (290.1–273.01 mya 
(Henderson et al., 2020)) in age based on palynological and verte-
brate fossil data (Iannuzzi et al., 2018).

2.4  |  Microcomputed tomography (μCT)

μCT data for †Brazilichthys macrognathus was obtained from 
Figueroa et al.  (2019) and processed using the software Mimics v 
19.0 (Materialise, Belgium) to extract upper and lower jaw mod-
els. Comparative extant materials were acquired either from 
MorphoSource (for JFBM, ROM, UF, UW, or YPM specimens; see 
DOI and ARK identifiers for specific files), or via μCT scanning on 
a Nikon XT H 225 ST industrial CT scanner at the University of 
Michigan CT in Earth and Environmental Sciences (CTEES) facility. 
Scanned specimens are deposited in the collection of the University 
of Michigan Museum of Zoology (UMMZ). See Table  S1 for more 
detailed information on comparative material used in this study.

2.5  |  Modeling and visualization

Using Blender 3.2 (blend​er.org), .ply objects of the left jaws of 
†Brazilichthys were rendered using a simple shading and lighting 
scheme. For visualization of the jaw closing mechanism, the lower jaw 
was repositioned in relation to the upper jaw to better reflect the ex-
pected life orientation. Setting a single articulation point on the glenoid 
fossa of the lower jaw permitted simple animation of jaw movement 
(File S1) and observation of the interaction between fangs and palate.

2.6  |  Abbreviation list

ac.v – accessory vomer; ad.f – adductor fossa; ang – angular; cor 
– coronoids; de – dentary; de.fa – dentary fangs; de.la.te – dentary 
labial dentition; gle – glenoid fossa; mx – maxilla; mx.fa – maxillary 
fangs; mx.fa.so – maxillary fang sockets; mx.la.te – maxillary labial 
dentition; part – prearticular; pmx – premaxilla; pq – palatoquad-
rate; pq.s – palatoquadrate suborbital lamina; pq.te – palatoquadrate 
teeth; psp – parasphenoid; te.fe – fenestra for teeth on the palate.

The obelus (†) indicates extinct taxa, following Patterson and 
Rosen (1977).

3  |  RESULTS AND DISCUSSION

3.1  |  Jaw closing in †Brazilichthys macrognathus

Although †Brazilichthys was originally compared to acrolepids and 
birgeriids, due to the large fangs on both upper and lower jaws (Cox 
& Hutchinson, 1991; Romano & Brinkmann, 2009), micro-computed 

tomography (μCT) revealed anatomical structures that contra-
dict these placements. Instead, a formal phylogenetic analysis 
places †Brazilichthys as part of an unresolved group that includes 
most late Paleozoic (Carboniferous and Permian) actinopterygians 
(Figueroa et al., 2019). Like many other Paleozoic ray-finned fishes, 
†Brazilichthys bears multiple rows of teeth on the upper and lower 
jaws, associated with the premaxilla, maxilla, palatoquadrate, den-
tary, and coronoids (Figueroa et al., 2019). Thus, three rows of teeth 
are present on each jaw—two on the labial surface (maxilla and den-
tary), and one mesially (palatoquadrate and coronoids). The teeth 
from both rows (labial and lingual) in the maxilla and dentary are 
conical, but the lingual row is formed by large curved fangs. The 
dentition on the coronoids and palatoquadrate is similar, formed by 
numerous closely-spaced conical teeth forming a continuous row.

With the jaw closed, the dentition of the upper jaw overlies the 
lateral surface of the dentary, while the dentition of the lower jaw 
lies mesial to the external surface of the maxilla (Figure 1). Anterior 
to the maxilla, the premaxilla bears a single row of three small conical 
teeth. Since the dentition of the lower jaw also includes large fangs, 
closure of the jaw is only possible due to the presence of fenestrae 
for the insertion of the lower jaw fangs into the mesial surface of 
the maxilla, lingual to the maxillary dentition and labial to the den-
tition of the palatoquadrate (Figure 1b,c). The most anterior portion 
of the maxilla lacks fenestration, as the mandibular fangs nearer to 
the symphysis are smaller than those more proximal. The way these 
fenestrae develop is not clear from the CT-data alone, but their posi-
tioning suggests they are formed by U-shaped serial fenestration of 
the maxilla in contact with the lateral margin of the palate. The pres-
ence of these fenestrae permits the complete closure of the jaws 
so that the dentition of the coronoids and the palatoquadrate can 
contact each other when the jaws are completely closed. We discard 
the hypothesis that these fenestrae could be associated with the re-
placement of maxillary fangs, as the fenestrae are not aligned with 
the maxillary teeth, which are positioned labially to the fenestrae. 
Additionally, in between the upper jaw fangs, there are depressions 
that correspond to sockets for fang replacement (Figures 1c and 2). 
Similar sockets are present in other Paleozoic taxa, including several 
sarcopterygians (Downs & Daeschler, 2020) and fang-bearing acti-
nopterygians (Dunkle & Schaeffer,  1973; Štamberg,  1991). Similar 
sockets for tooth replacement are present in extant actinoptery-
gians such as the dentary and maxilla of the bichir Polypterus senega-
lus (Clemen et al., 1998; Wacker et al., 2001) and the lateral dentition 
of the cutlassfish Trichiurus lepturus (Bemis et al., 2019).

The fenestrae of the maxilla are filled with fangs from the lower 
jaw in an alternate manner, meaning that one fenestra is filled with 
a fang while the subsequent one remains empty. These empty 
fenestrae seem to align with empty tooth sockets on the dentary 
(Figure  2). Some of these tooth sockets bear fangs in the early 
stages of development (Figure S1). Thus, it is likely that the fangs 
of †Brazilichthys were replaced in an alternate pattern. However, on 
the right jaws of †Brazilichthys, the tooth sockets that are empty in 
the left jaw are filled with fangs. These fangs are poorly attached to 
the dentary bone and only partially pierce the fenestration of the 

http://blender.org
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maxilla (Figures 1 and 2). This indicates that tooth replacement in 
†Brazilichthys was done in an alternate manner on each dentary and 
that this process would occur separately on each jaw, meaning that 
replacement is bilaterally asymmetrical.

Similar alternate pattern of tooth replacement is known in ex-
tant actinopterygians. Many predatory actinopterygians show 
replacement of teeth by filling empty sockets between the older 
teeth set (Bemis et al., 2005, 2019). However, information on tooth 

development and replacement is lacking for most teleosts (Bemis 
et al., 2005, 2019; Kolmann et al., 2019; Morgan & King, 1983; Stuart 
et al., 2021). In terms of asymmetrical replacement of teeth of the 
lower jaw, extant examples include macropredatory characiforms, 
such as serrasalmids (Kolmann et al., 2019; Stuart et al., 2021). The 
presence of both alternate and asymmetrical tooth replacement in 
†Brazilichthys further corroborate the macropredatory habitus of 
this species.

F I G U R E  1  Left jaws of †Brazilichthys macrognathus (DGM 1061-P). (a) Upper and lower jaws in left lateral view; (b) upper jaw in dorsal 
view; (c) upper jaw in ventral view; (d) distal end of the upper jaw in ventral view; (e) left lower jaw in dorsolateral view. Scale bar = 10 mm.
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The morphology of the adductor mandibulae muscle in Paleozoic 
ray-finned fishes is still poorly understood. In Paleozoic ray-finned 
fishes, this muscle bundle appears to have been constrained within 
the maxillary-palatoquadrate chamber of the lower jaw, attaching to 
the palatoquadrate and the hyomandibula, as in living non-teleost ray-
finned fishes(Datovo & Rizzato, 2018; Lauder, 1980). Lauder (1980) 
proposes that the anterior adductor mandibulae muscle would attach 
to the anterior portion of the palatoquadrate, following the subor-
bital blade of the upper jaw. If this is true, then the presence of lower 
jaw fangs inserting into the maxilla-palatoquadrate chamber would at 
least partially constrain the placement and size of the anterior adduc-
tor mandibulae muscle. Further, a cartilaginous or membranous tissue 
layer would be needed to protect musculature from being punctured 
by the lower jaw fangs. Thus, there are two potential muscle mor-
phologies to cope with the presence of the fangs accommodation: 
(1) the anterior adductor mandibulae muscle being shortened and 
terminating more proximal to the adductor fossa, leaving the sub-
orbital blade of the upper jaw free for fang accommodation; (2) the 
anterior adductor mandibulae muscle would remain fixed to the an-
teriormost portion of the palatoquadrate, but strongly dorsoventrally 
constrained and protected from the fangs by a cartilaginous or mem-
branous tissue. Unfortunately, due to the lack of more specimens of 
†Brazilichthys and the absence of soft-tissue preservation in the holo-
type it is not possible to favor either of these hypotheses.

3.2  |  Other Paleozoic osteichthyans

The mode of fang accommodation presented above is unique among 
Paleozoic actinopterygians. Other predatory taxa with similar 
dentition—such as †Tegeolepis, †Progyrolepis, and †Nematoptychius—do 
not show evidence of fenestration on the palate for fang insertion 
(Dunkle & Schaeffer, 1973; Poplin, 1999, fig. 2; Štamberg, 2018, figs.7, 
9, 11b). In these, taxa there seems to be only partial closure of the jaws, 
limited by the size of the dentary fangs, while fangs from the maxilla 

lay labially, along the outer surface of the lower jaw. In some Devonian 
sarcopterygians—such as †Eusthenopteron (Figure 3b), †Heddleichthys, 
†Tristichopterus, †Megalichthys (Downs & Daeschler, 2020; Jarvik, 1980; 
Parfitt et al., 2014; Snitting, 2009)—there is evidence of fossae on the 
lower jaw to fit the large palatal fangs, while the dentary dentition 
lays more dorsal over an elevated lateral jaw margin. This is evident 
in rhipidistians, which bear intercoronoid and precoronoid fossae on 
the lower jaw (Ahlberg & Clack, 1998). The most similar morphology 
to that of †Brazilichthys (Figure 3c) is found in †Onychodus (Figure 3a), 
where there is a large groove between the maxillary and palatal  
detention that fits the extent of the dentary fangs. However, there  
is no fenestration within this palatal groove for individual fangs 
(Andrews et al., 2005; Schaeffer & Rosen, 1961).

3.3  |  Extant actinopterygians

The following descriptions focus on fangs and how they are accom-
modated within the closed jaws of the taxa mentioned. For brief de-
scriptions of how the other teeth of the low jaw are accommodated 
within the mouth, refer to Table S1.

3.3.1  |  Tooth arrangements at the anterior 
margin of the jaws

Along the anterior margin of the gape, several extant actinop-
terygians house their mandibular teeth posteromesial to the pre-
maxillary bone or alongside the premaxillary teeth, including the 
lancetfish Alepisaurus ferox, the bowfin Amia calva, the snakehead 
Channa marulius, the bichir Polypterus senegalus, the snake mackerel 
Promethichthys prometheus, the walleye Sander vitreus, and the cut-
lassfish Trichiurus lepturus.

S. vitreus bears elongate anterior mandibular fangs that insert 
into a soft tissue cavity between the premaxilla and vomerine head. 

F I G U R E  2  Left jaws of †Brazilichthys macrognathus (DGM 1061-P) in mesial view. Palatoquadrate sectioned to expose the fenestration of 
the maxilla and the fangs of the lower jaw (in red). Scale bar = 10 mm.
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Other fishes, such as C. marulius, bear anterior lower jaw dentition 
that interdigitate with the dentition of the upper jaw.

The vampire fish Hydrolycus armatus (Figure 3h) employs an al-
ternative strategy, housing its massive anterior mandibular dentition 
within a void between the ethmoid, ectopterygoid, and maxilla pos-
teromesially, and the premaxilla at the anterolateral margins.

The pike conger Muraenesox cinereus (Figure 3f), have large man-
dibular teeth anteriorly that are accommodated by a cavity along the 
posterior margin of the vomerine head.

3.3.2  |  Tooth arrangements along the lateral gape

Most frequently, the mandibular teeth contributing to the lat-
eral gape are accommodated between the premaxilla and the 
often tooth-bearing ectopterygoid, as in the sampled taxa A. ferox 
(Figure  3i), A. calva, the weakfish Cynoscion regalis, P. prometheus 
(Figure 3j), S. vitreus, and the barracuda Sphyraena sphyraena. Along 
the most posterior margin of the lateral gape, the mandibular denti-
tion of these fishes slots between the maxilla and the ectopterygoid.

F I G U R E  3  Transverse sections through the jaws of selected fanged osteichthyans showing various methods of fang accommodation, 
arranged phylogenetically (Dornburg & Near, 2021). (a) †Onychodus (based on Andrews, 2005); (b) †Eusthenopteron (based on Jarvik, 1980); 
(c) †Brazilichthys (DGM 1061-P); (d) Polypterus (UMMZ 195008); (e) Lepisosteus (UMMZ 196974); (f) Muraenesox (Morphosource 
UW:UWFC:021142); (g) Acestrorhynchus (Morphosource UF:Fish:189596); (h) Hydrolycus (Morphosource ROM:Fishes:88356); (i) Alepisaurus 
(Morphosource YPM:Ich:025451); (j) Promethichthys (Morphosource UF:Fish:231977); (k) Channa (Morphosource UF:Fish:241571). Dark gray 
indicates bone, light gray areas indicate continuity of the bone behind a tooth in a fenestra.
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In P. senegalus (Figure 3d), the large mandibular teeth along the 
lateral gape are accommodated by a fossa on the ventral surface of 
the maxilla, lateral to the ectopterygoid and mesial to the upper jaw 
dentition.

Alternatively, the large teeth along the gape of the dentary of 
C. marulius (Figure 3k) are housed between the premaxilla, max-
illa, and lachrymal on the lateral margin, and the ectopterygoid 
on the mesial margin, while becoming smaller and more conical 
posteriorly.

The more posterior lateral dentition of H. armatus is accommo-
dated by a notch along the mesial margin of the maxilla and another 
notch along the lateral margin of the ectopterygoid.

In M. cinereus, the larger mandibular dentition along the anterior 
margin of the lateral gape is bounded by soft tissue. Along the pos-
terior portion of the gape, the mandibular dentition slots into small 
depressions along the ventral margin of the maxilla, mesial to the 
maxillary tooth row.

None of the aforementioned extant taxa possess a jaw morphol-
ogy or fang accommodation scheme comparable to that found in 
†Brazilichthys.

3.3.3  |  Fangs penetrating bones of the upper 
jaw and palate

Extant actinopterygians possessing fenestrae in the upper jaw for 
the accommodation of dentary dentition are quite rare. Only two 
of the neopterygians sampled possessed a condition comparable in 
function to that found in †Brazilichthys, despite the clade account-
ing for nearly 99.9% of all extant actinopterygian species richness 
(Fricke et al.,  2022) and possessing a wide breadth of phenotypic 
and ecological diversity (Nelson et al., 2016). This is most likely due 
to neopterygians having an upper jaw no longer firmly bound to the 
palate, as is found in other actinopterygians (Friedman, 2015).

The holostean Lepisosteus (Figure 3e) can possess fenestrae in 
the most anterior lacrimomaxillary bones and spaces between a 
lacrimomaxilla and the premaxilla, with variation ranging from com-
plete absence to possessing one or two fenestrae depending on 
species (Grande, 2010). These fenestrae are restricted to the ante-
rior of the snout and, like †Brazilichthys, accommodate teeth of the 
dentary. In L. oculatus, the posteriormost mandibular teeth along the 
lateral gape interdigitate with the teeth of the lacrimomaxillae (see 
Grande (2010) for illustration).

In the characiform Acestrorhynchus falcatus (Figure 3g), a singular 
mandibular fang at the anterior of the lateral gape is accommodated 
by the foramen for the dentary canine in the premaxilla (see Toledo-
Piza (2007) for illustration). The remainder of the anterior dentition 
of the dentary fits along the posteromesial margin of the premaxilla, 
while the more posterior dentition fits into grooves along the ven-
trolateral margin of the maxilla. The dentition along the most poste-
rior portion of the dentary is small and conical, fitting between the 
ectopterygoid and maxilla.

4  |  CONCLUSIONS

The mode of jaw closing of †Brazilichthys—especially in terms of 
interaction between the lower jaw and palate—is unique among 
osteichthyans when considering osteological features. Several 
Paleozoic sarcopterygians adopt a similar strategy but with fenes-
tration being present in the lower jaw rather than the palate. While a 
fenestrated upper jaw is present in Acestrorhynchus and Lepisosteus, 
it is never as sequential fenestrations of a single ossification, as the 
neopterygian palate is formed by multiple differentiated ossifica-
tions. Other predatory sarcopterygians, such as porolepiforms and 
onychodonts, bear paired internasal cavities on the anterior end of 
the mouth roof that accommodate teeth from the lower jaw tooth-
whorls (Lu et al., 2016; Yu, 1998). Similarly, megalichthyids bear an 
apical fossa on the ethmosphenoid surface of the braincase (Downs 
& Daeschler,  2020) that might be associated with fitting anterior 
fangs of the lower jaw. Thus, the unique mode of jaw closure seen in 
†Brazilichthys further supports previous interpretations of a macro-
predatory habitus for this taxon.

The presence of these maxillary fenestrae to accommodate the 
teeth of the lower jaw in †Brazilichthys adds to the list of characters 
of late Paleozoic actinopterygians. As noted by Figueroa et al. (2019), 
despite the abundance of ecomorphologically similar taxa and many 
families united by the presence of large fangs (e.g., acrolepids, rhab-
dolepids, cosmoptychids, etc.), there is little evidence to support 
these assignments, with most of the characteristics defining these 
groups being of weak systematic value. Further studies on the jaws 
of these predatory Paleozoic actinopterygians might shed light on 
their affinities and help us understand whether macropredatory 
ecomorphologies emerged multiple times along the actinopterygian 
stem.

Non-neopterygian actinopterygians account for only 43 
extant species across 3 families (Polypteridae, Acipenseridae, 
and Polyodontidae) (Fricke et al.,  2022), though their fossil rich-
ness is considerably higher in the Paleozoic (Henderson, Dunne, 
& Giles,  2022). While a more in-depth analysis is needed, the 
bound nature of the upper jaw and palate of non-neopterygians 
may have acted as a ‘spandrel’ of sorts (Gould & Lewontin, 1979), 
forcing novel ways of storing teeth in a physiologically-
constrained space to emerge. Neopterygian fishes have more 
kinetic upper jaws—decoupling their maxilla and preoperculum 
(Friedman,  2015)—thereby allowing for the accommodation of 
mandibular teeth between the numerous bones of the jaw and pal-
ate that has led to a proliferation of novel ways to house dentition 
in the extraordinarily species rich and ecomorphologically diverse 
extant actinopterygian assemblage.

Although superficially similar in terms of skull dermal bone anat-
omy, early ray-finned fishes show considerable variation in body 
shape, fin morphology, and habitat (Friedman, 2015). Thus, we an-
ticipate that strategies for coping with large fangs might be more 
diverse than previously thought, and a greater survey of Paleozoic 
actinopterygian jaws, coupled with anatomical revisions of poorly 
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known taxa, will increase our understanding of the feeding mecha-
nisms employed by early ray-finned fishes.
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