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Abstract: Central carbon metabolism comprises the metabolic pathways in the cell that process
nutrients into energy, building blocks and byproducts. To unravel the regulation of this network
upon glucose perturbation, several metabolic models have been developed for the microorganism
Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered
multiple research questions, but no commonly applicable model has been presented. This review
systematically evaluates the literature to describe the current advances, limitations, and opportunities.
Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some
uncertainties regarding model topology and parameter values still limit the application to specific
cases. Progressive improvements in experimental measurement technologies as well as advances in
computational tools create new opportunities to further extend the model scale. Notably, models
need to be made more complex to consider the multiple layers of glycolytic regulation and external
physiological variables regulating the bioprocess, opening new possibilities for extrapolation and
validation. Finally, the onset of new data representative of individual cells will cause these models to
evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity
of the population, opening new and unseen possibilities for industrial fermentation improvement.

Keywords: yeast; central metabolism; stress response; metabolic regulation; kinetic model; in vivo
kinetics; parameter estimation; complexity; uncertainty; population heterogeneity

1. Introduction

Saccharomyces cerevisiae is a model organism in eukaryote cell research and the workhorse
for the biotechnology industry [1]. In nature and the industrial setup, environmental
perturbations act as stressing factors which challenge regulation of metabolic flux and can
also lead to reduced performance in industrial applications [2]. For instance, perturbations
in nutrient concentration often led to undesired outcomes such as lower process yields [3,4].
These perturbations alter intracellular fluxes in central carbon metabolism (CCM), the core
pathways in the cell that process substrate into energy and building blocks [5], and to the
products of biotechnology. To understand the functioning and dynamic response of CCM
to glucose perturbations, multiple kinetic metabolic models have been developed.

Kinetic metabolic models are mathematical representations of a biological system that
consider kinetic expressions such as rate constants. They describe the network structure,
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kinetic rate expressions and contain values for the parameters in these expressions [6].
Thus, these descriptions are well-suited to model time-dependent dynamics. A detailed
explanation of the main components in a kinetic metabolic model can be seen in Box 1.
Despite the progress attained with them, a consensus version with a full coverage of CCM
has not yet been achieved.

This is explained by the fact that different works have approached this question with
different data and tools. As a result, current models have a high degree of uncertainty,
which represents an issue for the research community that strives to manage models and
data following the FAIR principles [7–9]. Hence, a way to approach this problem is by
reviewing the developed models in a systematic fashion, i.e., recall all the data and kinetic
models that have studied it so far and to analyze their most relevant recent developments.
Systematic reviews are well established in fields such as medicine, where they are aimed at
critically and objectively synthesizing all available evidence regarding a specific topic, often
accompanied by a meta-analysis leading to a consistent conclusion to a debated research
question [10–12]. Therefore, in this work we aim to systematically survey the literature to
determine which have been the advances, and which are the limitations, and opportunities
in kinetic modeling of S. cerevisiae central carbon metabolism.

Box 1. Kinetic metabolic models.

Kinetic metabolic models are used to represent changing concentrations and reaction
rates over time. For instance, this is useful to predict process yields or if a flux or intracellular
concentration might reach dangerous levels. These models are described by a set of nonlinear
ordinary differential equations (ODE), which assume ideally mixed compartments and neglect
stochastic effects. The general form of these models is described by the following deterministic
state space model (see [6,13,14] for more information):

dx
dt

= f (x(t, θ), u(t), θ) (1)

x(0) = x(θ), ∆t[t0, t f ] (2)

where x represents a different state vector for every ODE, which usually consists of a metabolite
concentration. f is a vector function where the change in state quantity is calculated at a given
time point, using reaction rates which in turn depend on the states, the parameter vector θ and
the system inputs u. The modeler must provide a simulation timespan ∆t, initial states x(0),
parameters θ and input u. The reactions composing these metabolic models are mostly catalyzed
by enzymes. Therefore, intracellular reaction rates are often represented by Michaelis–Menten or
Hill kinetics, and mass action when kinetic information is missing [15]. The parameter vector θ
determining these reaction rates is composed by the following types of kinetic constants:

• Reaction rate constant, Vmax: is determined by the catalytic constant and enzyme concen-
tration (Vmax = kcat · [E]). Thus, it varies as the cell changes its enzyme concentration in
different environments.

• Catalytic constant, kcat: indicative of how fast the reaction can go. Values in yeast models
have been found as high as 5 · 102 s−1 [16].

• Michaelis constant, km: indicative of the affinity of an enzyme for a metabolite. Values in
yeast models are found in the range 10−3–101 mM [16,17].

• Equilibrium constants, keq: Values are found in the range 10−5–103 [17].
• Hill exponents, nH : specific of reactions with hill kinetics.
• Additionally, enzymes can contain allosteric activation or inhibition

Models focusing on yeast glycolysis tend to contain around 25 species and 100 parame-
ters [16–18], but the representations which have included other pathways in CCM [19,20] have
increased as much as 42 states and 164 parameters.

2. The Literature Collected Point at an Increasing Complexity in Both Data and Models

A pool of relevant literature articles could be obtained after the literature screening
process described in Section 11. From the initial pool of 3080 articles, 2737 (close to 90%
of them) could be discarded due to not meeting all the inclusion criteria or meeting any
of the exclusion criteria (see Figure 1). A co-occurrence map of the most used words in
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the article titles showed that besides the topics specified in the search query, others that
attracted attention in this field were pinpointed. These include topics such as glucose
metabolism, parameter estimation, model optimization, inference, and integration. Then, a
co-occurrence map of the authors highlighted authors with long experience in S. cerevisiae
and/or development of kinetic models for systems biology.

Included articles (343)

Excluded articles (2737)

hatzimanikatis
hohmann

liu

klipp
nielsen

banga

simeonidis

smallbone
kell

mendes
liebermeister

snoep
teusink

bruggeman
westerhoff

bakker

van eunen

bouwman

heijnen

van gulik

central carbon metabolism

saccharomyces cerevisiae

mechanism

systems biology

regulation

glycolysis

effect

kinetic model

yeast glycolysis

gap

biochemical interaciton network

parameter estimation

metabolic pathway

optimization

tool

metabolic network

inference

yeast

metabolism

transcriptional regulatory net

model

analysis

integration

glucose

application

metabolic engineering

co-ocurring authors

co-ocurring words

Figure 1. The literature collection presents the scientific landscape: (center) Articles examined in
the reviewing process and fraction selected for this study. (top, bottom) Visualization of most co-
occurring words and authors, respectively. in the titles of the selected articles. Obtained in VOSviewer.
For the word map: counting method = binary, minimal occurrences = 5, terms selected = 100%. For
the author map: counting method = full. The remaining setup was the default.

Furthermore, the published models and datasets give an overview of how the field
has recently developed (Figure 2). A first generation of models from 1997 to 2003 modeled
different pathways contained in CCM but always in isolation [19,21–24] except for [19] which
linked glycolysis and Tricarboxylic acid (TCA) cycle. These works made use of relatively
small datasets developed for a single glucose perturbation (GP) experiment [21,25,26], and
parameters were only measured experimentally in in vitro conditions [22].
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lation dynamics in industrial fermenters

(Rizzi, et. al. 1997): dynamic glucose 

perturbation can be studied with kinetic 

models
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Need of branch reactions.

(van Eunen, et. al. 2012): in vivo-like pa-

rameters and allosteric regulation are 
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quantification on glycolytic enzymes ki-

netic constants
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and reproduce glucose perturbations 
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(A)

(B) Limitations and 
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milestone 
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Figure 2. (A) A changing field presented by its literature: Above the timeline, from the literature
pool of articles obtained in the systematic reviewing process, works which published new data sets
are shown. These are displayed in black when the data consisted of intracellular metabolomics or
fluxomics and in blue if it consisted of parameter values quantification. Below the timeline, newly
developed metabolic models of pathways in central carbon metabolism are displayed. (B) (left)
Contribution of the main models in the field, and (right) Limitations and opportunities for research.
The simplified representation of CCM displayed in the middle is colored according to the how
extensive is the coverage from the models in the left side. A complete trehalose cycle representation
coupled to glycolysis (grey) does not exist yet.

From 2004 to 2014 the number of intracellular metabolites measured increased to
almost a full glycolytic coverage [27–30], different intensity GP experiments were devel-
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oped [18,31] and quantification of parameters was performed in in vivo conditions [16,32].
This allowed for the creation of a new generation and more predictive models which
also linked glycolysis to trehalose cycle regulation [16–18], or the TCA cycle or pentose
phosphate pathway (PPP) [20,33].

Finally, new experimental data have been generated since then. Although they re-
main unused for modeling development purposes, these data consist of metabolic con-
centrations but also biochemical flux measurements data (often regarded as metabolomics
and fluxomics, respectively) at different growth rates (labeled here as steady states, or
SS) [34,35], and repetitive cycles with moderate changes in substrate availability (also
known as feast–famine (FF) experimental setup) [36,37]. Detailed overviews of the models
developed, experimental metabolomic/fluxomic data sets and parameter quantification
assays can be seen in Tables 1–3, respectively, and are discussed in the coming sections.

3. Glycolytic Response to Glucose Perturbations in Yeast Fermentations

Saccharomyces cerevisiae is one of the most used microorganisms in biotechnology.
S. cerevisiae is a prominent cell factory involved in food, beverages, and biofuels indus-
tries [38,39]. On top of its favorable physiology and robustness, genetic engineering has
allowed to introduce new pathways and improve existing ones, generating new strains
that have widened its range of applications [1,40]. Nonetheless, scaling up to commercial
production is a challenging stage in which developed strains may emerge as inefficient [41].
Long circulation times and nonideal mixing result in substrate gradients in the industrial
fermenter, affecting most cell factories, including S. cerevisiae [3,4,42,43]. The yeast cell sees
these gradients as stressing factors to which it continuously adapts, often deteriorating
process yields and giving relevance to the development of stress tolerant strains [2].

Extracellular substrate gradients alter intracellular fluxes in CCM. Carbon flux shifts
between the different pathways composing CCM during these temporal transitions [5].
This can become a challenge for the cell, which struggles to keep the different pathways
composing CCM balanced [44], as was shown in [18] for a yeast strain with a defective
trehalose cycle, where sudden exposure to a high glucose concentration resulted in growth
arrest. Glycolysis is found at the core of this network. This pathway digests intracellular
glucose into pyruvate and produces energy in the form of ATP and glycolytic intermediates
that support anabolic reactions [45].

How glycolysis contributes to the metabolic processes inside the cell depends on
multiple factors. The presence or absence of oxygen determines if pyruvate is used for res-
piration or fermentation [46,47]. Still, this conspicuously simple explanation is challenged
at high-substrate concentrations, where the maximum respiratory capacity is reached and
fermentation takes place even if oxygen is present [48,49], in what is known as ‘overflow
metabolism’ or Crabtree effect [50]. In addition, the substrate that is used as carbon source
(such as glucose or fructose) and the ability of a strain to metabolize it also affects gly-
colytic kinetics and process yields [51–57]. Furthermore, the cellular state determines how
glycolytic intermediates are used as biomass precursors [45,58]. For instance, at changing
growth rates, different usage of these precursors can be observed [34,59]. Finally, availabil-
ity of cofactors cannot always be taken for granted. A higher substrate uptake rate might be
an evolutionary advantage, but it results in a demand for NADH recycling that respiration
cannot achieve and thus fermentation becomes active [60,61].

The response of glycolysis to dynamic glucose perturbations is controlled by dif-
ferent regulatory layers. The first mechanism is the storage of glycogen and trehalose
when glucose uptake exceeds the glycolytic processing capacity [62]. On top of this,
allosteric and post-translation regulation take place [63]. Hexokinase (HXK) is alloster-
ically inhibited by trehalose-6-phosphate (T6P), pyruvate kinase (PYK) is activated by
fructose-1,6-bis-phosphate (FBP) and multiple metabolites act on phosphofructokinase
(PFK) [27,64,65]. Simultaneously, the cAMP-protein kinase A (PKA) pathway is activated
upon glucose perturbation and starts a regulation cascade in CCM [66] and possible targets
for Post-Translational Modifications (PTMs) have been found in multiple enzymes along the
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CCM [67]. Finally, to adapt to different growth conditions, yeast cells use different enzyme
isoforms. For instance, hexokinases and glucokinases are balanced to adapt to different
glucose concentrations [68] and the regulation of intracellular pH is compartment-specific,
carried out by different ATPases [69].

4. The Development of Metabolic Models Has Resulted in Understanding of Key
Glycolytic Properties

Many breakthroughs in metabolic modeling used genome scale models. Nonetheless,
stoichiometry alone does not define function and the response to glucose perturbations is
a dynamic process where stoichiometry cannot explain mechanisms that act at different
time scales or the appearance of bistability, among others [6,70]. As a result, kinetic models
enable a deeper understanding of glycolytic properties. Due to the abundant data available
for S. cerevisiae fermentations, models of the glycolytic networks have reached a high level
of maturity for this organism.

The first kinetic models developed focused on understanding glycolytic oscillations
in nongrowing yeast cells [23,71–78]. Most enzymatic reactions were lumped into a few
(except [23,77]) but they acknowledged the important role of enzyme PFK and showed
sensitivity to different glucose, oxygen, and acetaldehyde concentrations. Later works
focused on understanding control properties and glycolytic response upon a single glucose
perturbation experiment [19,79–82] and thanks to a progressive increase in experimental
data available, more detailed models were developed [16–18,22]. Much of the focus was
on understanding how mutant strains lacking a functional trehalose cycle would undergo
growth arrest upon the glucose perturbation [62,64]. This was found to be due to a
glycolytic imbalance between upper and lower glycolysis and attributed first to an ATP
turbo metabolism [82]. Later, ref. [18] explained the role that the trehalose cycle plays in
the glycolytic response and highlighted how the intracellular concentrations of metabolites
at a given time point modulate the outcome.

In this process, models have become more interconnected with other pathways, al-
lowing for a more complete understanding of the glycolytic response. Ref. [22] introduced
glycolytic byproduct branch reactions that were necessary to reproduce the steady state.
Other works modeled pathways that are directly linked to yeast glycolysis. For instance,
detailed descriptions of the glycerol synthesis, trehalose cycle and PPP were developed
in [21,24,83], respectively. Later, a PPP model was connected to glycolysis in [33], and
another model of glycolysis together with TCA was developed in [20]. These networks
were used to understand the control properties of glycolysis, pointing to glucose transporter
(GLT) and PFK for being the enzymes with the highest controlling coefficients [79,80,84–86]
and to study the effect of genome duplications [87]. For a complete overview of metabolic
models developed to understand dynamic perturbations, see Table 1.

Furthermore, the regulation exerted by cofactors has gradually become more evident,
resulting in a more complex understanding of glycolysis. The depletion of inorganic
phosphate concentration that was shown to be crucial in [18] had been overlooked in
previous works where it was assumed to be constant over time. Simultaneously, the sum of
adenosine nucleotides has been assumed to be a conserved moiety [16] but under some
experimental conditions this is not the case [31,88], which can be relevant considering that
controlling enzyme PFK is allosterically regulated by ATP and AMP.
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Table 1. Properties of S. cerevisiae models developed to understand dynamic glucose perturbation
response: glycolysis (GLYCO), tricarboxylic acid cycle (TCA), pentose phosphate pathway (PPP),
trehalose cycle (TRE). Number of ‘+’ sign according to how advantageous the property is. Cofactor
conservation moieties are sumAXP and sumNADX. N/A when reactions were not modeled, or data
were not shown in article. Refs. [17,20] fitted different parameter sets to multiple data sets. Other
models used a unique parameter set. From the literature pool of articles obtained in the systematic
reviewing process, only the works which include glycolysis are displayed.

Rizzi et al. [19] Teusink et al. [82] Teusink et al. [22] van Eunen et al. [17]

Contribution to
glycolytic

understanding

Dynamic models can
accurately describe
glucose perturbation.

ATP surplus can cause
the observed
overactivation of initial
glycolytic steps in
DTps1 mutant strains.

In vivo behavior cannot
be predicted with in
vitro kinetics.

Implementation of
allosteric regulation
and in vivo measured
parameter values is
necessary to reproduce
GP data.

GLYCO Individual + branch
reactions (++) Lumped reactions (+) Individual + branch

reactions (++)
Individual + branch
reactions (++)

TRE N/A N/A N/A T6P regulation (+)

TCA Individual reactions
(++) N/A N/A N/A

PPP N/A N/A N/A N/A

Cofactors Conservation moiety
(+)

Conservation moiety
(+)

Conservation moiety
(+)

Conservation moiety
(+)

Parameters Computational, in vivo
(++)

Computational, toy
model (+)

Computational, in vivo
(++)

Experimental and
computational, in vivo
(++)

Data Single GP experiment
(++) Single GP, toy data (+) SS data point (+) Single GP experiment

and multiple SS (+++)

Smallbone et al. [16] Van Heerden et al. [18] Messiha et al. [33] Kesten et al. [20]

Contribution to
glycolytic

understanding

Broad quantification of
enzymatic kinetic
constants in in
vivo-like conditions.

Glycolytic dynamics
combined with cell
heterogeneity
determine cell fate.

Feasibility of
constructing larges
network models by
merging smaller
pathway models.

Cooperativity
PYK-PYR and
ADH-PDH bypass play
a major role in the onset
of the Crabtree effect.

GLYCO
Individual + branch
reactions + isozymes
(+++)

Individual + branch
reactions (++)

Individual + branch
reactions (++)

Individual + branch
reactions (++)

TRE N/A T6P regulation (+) N/A N/A

TCA N/A N/A N/A Individual reactions
(++)

PPP N/A N/A Individual reactions
(++) N/A

Cofactors Conservation moiety
(+)

Conservation moiety +
dynamic Pi (++)

Conservation moiety
(+)

Conservation moiety
(+)

Parameters Experimental, in vivo
(++)

Experimental, in vivo
(++)

Experimental, in vivo
(++)

Computational, in vivo
(++)

Data N/A Single GP experiment
(++)

Single GP experiment
(++)

Single GP experiment
(++)
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5. From Glycolysis to Central Carbon Metabolism: Understanding Response to
Glucose Perturbations Is Limited by Model Complexity

Development of kinetic models of metabolism has often been constrained to small
systems. In S. cerevisiae models, each next step forward in the understanding of glycolysis
encountered a new limitation due to the inherent complexity of the pathway.

Models studying glycolytic oscillations or single GP experiments led to an in-depth
analysis of glycolytic dynamics, but to understand central carbon metabolism performance,
more pathways than only glycolysis must be considered. For instance, a significant fraction
of glucose-derived carbon is taken up at different points in glycolysis [34]. To account for
this, a relatively simple option is to implement branches or sink reactions (developed for
Escherichia coli in [59]). This led S. cerevisiae models to reproduce steady state where imbal-
ance had been mistakenly predicted [22]. Still, dynamic regulation of storage metabolism is
more complex than a sink reaction [18,37] and later models gradually added complexity to
the trehalose cycle kinetics to avoid the imbalance from happening upon dynamic pertur-
bation [17,18]. A similar situation could happen for other closely linked pathways such
as the TCA or PPP, which have mostly been lumped into a single reaction, even though a
few exceptions exist [19–21,33]. Simultaneously, other approaches such as linlog kinetics
have aimed at attaining high model complexity but with simplified expressions using less
parameters [89–91].

Furthermore, factors such as growth rate, compartmentation, or transport of metabo-
lites other than glucose, regulate glycolytic response but have barely been considered. First,
the growth rate determines how sink reactions behave [34], but most models focus only
on a unique growth rate of 0.1 h−1. Since the effect of this variable has not been explicitly
considered, models simulating different growth rates had no other alternative than to fit a
different parameter set each time [17]. Second, compartmentation and transport reactions
have barely been considered and, for instance, this is relevant in trehalose regulation since
it is known to accumulate in compartments other than the cytosol [92,93]. Third, transport
of metabolites such as gases oxygen (O2) and carbon dioxide (CO2) could allow models to
explain differences between respiratory and fermentative behavior [27,30,50] but neither
has been implemented.

On top of this, other variables affect individual enzyme kinetics, and have neither been
considered. First, cytosolic pH decays upon extracellular glucose perturbation, affecting
multiple intracellular processes, including enzyme kinetics [69,94]. Second, PTMs are a
fast response mechanism and multiple target sites have been found throughout CCM [95].
Third, different enzyme isoforms are expressed under different growth regimes. Examples
of this are the differential expression of GLK/HXK and Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) genes ([96] and [97], respectively).

Finally, a key challenge is the representation of variables that are not part of the
carbon flux, such as cofactors. Most models have kept them constant or adopted moiety
conservation cycles [98], such as the sum of intracellular adenine nucleotides ([ATP] +
[ADP] + [AMP] = [AXP]) or inorganic phosphate [17]. Nonetheless, under intense glucose
perturbations, both variables behave in a dynamic manner [19,26,31,99] and alter glycolytic
response. An example of this is the ATP paradox, which occurs when ATP and the
sum of adenine nucleotides transiently decay [100]. Understanding cytosolic Pi as a
dynamic variable and implementation of import from the vacuole turned out to be central
in understanding the glycolytic imbalance [18]. Although the availability of Pi was essential
for lower glycolysis progression via GAPDH [18], adenine nucleotides exert allosteric
regulation on the important controlling enzyme PFK [101].

6. New Intracellular Metabolomic and Fluxomic Data Boost Understanding of
Glycolytic Response

Scale-down approaches have been developed to understand long-standing problems
in industrial bioreactors. Although this has granted valuable knowledge, essential in-
tracellular properties such as in vivo fluxes and kinetics have been captured with only
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limited resolution, constraining model development. In fact, this has become one of the
main challenges in the development of high quality predictive kinetic models, since often
multiple variables, such as transcriptomics, metabolomics and fluxomic data, interact to
result in the final response [6].

Early works aimed to understand glycolytic oscillations did so with small datasets,
reducing their range of implementation. On most occasions only extracellular data such as
growth and nutrient exchange rates was available [76] or a few metabolites at most [75],
until in vivo quantification of metabolite concentrations and fluxes became a common
practice, where most cofactors, glycolytic intermediates and rates were simultaneously
observable [22]. Later, a standardized dynamic glucose perturbation experimental setup
with CEN-PK yeast strains was adopted (see Table 2). This consisted of chemostat growth
at dilution rate of 0.1 h−1, followed by an external glucose perturbation, where extracellular
concentration increased to 1 g L−1. These stimulus response experiments were used to
infer more physiological patterns [26] and the use of Nuclear Magnetic Resonance (NMR)
and Mass Spectroscopy (MS) techniques made a wide range of intracellular metabolites
measurable. From only a few glycolytic concentrations, datasets gradually grew to include
most metabolites in glycolysis, the trehalose cycle, the TCA cycle, and the PPP. Adenine
nucleotides and NAD:NADH ratio have also been made a standard and other nucleotides
and amino acids which are affected by carbon uptake dynamics are quantified in the most
recent publications.

Table 2. Glucose perturbation experiments in S. cerevisiae with intracellular metabolome quantifi-
cation: Stirred tank reactors (STR) operated in chemostat. Shake flasks (SF) in batch conformation.
Metabolite pools: glycolysis (GLYCO), tricarboxylic acid cycle (TCA), pentose phosphate pathway
(PPP), trehalose cycle (TRE), nucleotides (NUC), Amino acids (AAs). Even though intracellularly
localized, variables measured were whole cell, and exceptions are pointed. From the literature pool of
articles obtained in the systematic reviewing process, the works displayed measured experimentally
intracellular variables such as metabolite concentrations or fluxes. Literature is ordered by glucose
input regime.

Rizzi et al. [25] Theobald et al. [26] Vaseghi et al. [21] Visser et al. [27]

Glucose input regime
Glucose-limited to
glucose pulse
(0.25 g L−1)

Glucose-limited to
glucose pulse (1 g L−1)

Glucose-limited to
glucose pulse (1 g L−1)

Glucose-limited to
glucose pulse (1 g L−1)

Experimental setup
30 ◦C, pH5, aerobic,
D = 0.1 h−1, STR, direct
sampling

30 ◦C, pH5, aerobic,
D = 0.1 h−1, STR, direct
sampling

30 ◦C, pH5, aerobic,
D = 0.1 h−1, STR, direct
sampling

30 ◦C, pH5, aerobic,
D = 0.05 h−1, STR,
BioScope sampling

Duration 500 s 180 s 180 s 80 s

Strain CBS 7336 (ATCC 32167) CBS 7336 (ATCC 32167) CBS 7336 (ATCC 32167) CEN.PK113-7D

Measurement
technique Enzymatic assay

Enzymatic assay:
metabolites, NAD(H)
HPLC: adenine
nucleotides

Enzymatic assay:
metabolites, NAD(H)

Enzymatic assay: ATP,
NADX and G6P MS:
glycolytic
intermediates

Intracellular variables
measured GLYCO: G6P.

GLYCO: G6P, F6P, FBP,
GAP, 3PG, PEP, PYR.
NUC: NAD(H), AXP
(whole cell and
cytoplasmic). Pi.

GLYCO: G6P, F6P. PPP:
6PG. NUC: NADP(H).

GLYCO: G6P, F6P, G1P,
FBP, 2GP+3PG, PEP,
PYR. NUC: ATP,
NADX.
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Table 2. Cont.

Mashego et al. [102] Kresnowati et al. [29] Wu et al. [28] Walther et al. [31]

Glucose input regime Glucose-limited to
glucose pulse (1 g L−1)

Glucose-limited to
glucose pulse (1 g L−1)

Glucose-limited to
glucose pulse (1 g L−1)

Trehalose-limited to
glucose pulse
(20 g L−1)

Experimental setup
30 ◦C, pH5, aerobic,
D = 0.05 h−1, STR,
BioScope sampling

30 ◦C, pH5, aerobic,
D = 0.05 h−1, STR,
BioScope sampling

30 ◦C, pH5, aerobic,
D = 0.05 h−1, STR,
direct sampling

30 ◦C, pH4.8, aerobic,
SF, direct sampling.

Duration 180 s 180 s 300 s 30 min

Strain CEN.PK113-7D CEN.PK113-7D CEN.PK113-7D BY4741

Measurement
technique MS Enzymatic analysis:

NAD(H) MS MS MS

Intracellular variables
measured

GLYCO: G6P, F6P, FBP,
2/3PG, PEP, PYR. TCA:
ISOCIT, FUM, MAL,
AKG, SUC. PPP: 6PG.
TRE: G1P, T6P, TRE.
NUC: AXP,
NADH:NAD ratio.

GLYCO: G6P, F6P,
F1,6P2, F2,6P2, 2/3PG,
PEP. TCA: ISOCIT,
AKG, SUC, FUM, MAL.
PPP: 6PG. TRE: G1P,
T6P. NUC: AXP,
NADH:NAD ratio.

GLYCO: G6P, F6P,
F1,6P2, F2,6P2, 2/3PG,
PEP. TCA: ISOCIT,
AKG, SUC, FUM, MAL.
PPP: 6PG. TRE: G1P,
T6P. NUC: AXP,
NADH:NAD ratio.
AAs.

GLYCO: G6P, F6P, FBP,
G3P, 2/3PG, PEP. TCA:
AKG, MAL. PPP: 6PG,
R5P, R1P. TRE: T6P,
G1P. NUC: ATP, ADP,
AMP, IMP, INO, HYP,
GTP, GDP, GMP.

Van Heerden et al. [18] Suarez-Mendez et al.
[36,37] Canelas et al. [34] Kumar et al. [35]

Glucose input regime
Glucose-limited to
glucose pulse
(20 g L−1)

Glucose-limited to
feast–famine cycles
(0.08 g L−1 max.)

Glucose-limited.
Dilution rates from
0.025 to 0.375 h−1

Glucose-limited.
Dilution rates from
0.050 to 0.342 h−1

Experimental setup
30 ◦C, pH5, aerobic,
D = 0.1 h−1, STR,
BioScope sampling

30 ◦C, pH5, aerobic,
D = 0.1 h−1, STR, direct
sampling

30 ◦C, pH5, aerobic,
STR, direct sampling

30 ◦C, pH5, aerobic,
STR, direct sampling

Duration 340 s 400 s N/A (ss) N/A (ss)

Strain CEN.PK113-7D CEN.PK113-7D CEN.PK113-7D,mtlD1 CEN.PK113-7D

Measurement
technique

MS Reaction rates
calculated by piecewise
affine approximation
(13C data)

MS Reaction rates
calculated by piecewise
affine approximation
(13C data)

MS Reaction rates
calculated with a
stoichiometric model

MS

Intracellular variables
measured

GLYCO: G6P, F6P, FBP.
TRE: G1P, UDPG, T6P,
TRE. PPP: 6PG. NUC:
AXP, cAMP, UXP, GXP.
Fluxes within
glycolysis and
trehalose cycle.

GLYCO: G6P, F6P, FBP,
G3P, GLYC, DHAP,
GAP, 2PG, 3PG, PEP,
PYR. TCA: CIT, FUM,
ISOCIT, MAL, AKG,
SUC. PPP: 6PG, E4P,
R5P, RBUP5, S7P, X5P.
TRE: G1P, UDPG, T6P,
TRE. NUC: AXP.
Fluxes within
glycolysis and
trehalose cycle.

GLYCO: G6P, F6P, FBP,
F26BP, G3P, DHAP,
GAP, 2PG, 3PG, PEP,
PYR. TCA: CIT, FUM,
ISOCIT, MAL, OAA,
SUC. PPP: 6PG, E4P,
R5P, RBUP5, S7P, X5P.
TRE: G1P, T6P, TRE.
NUC: AXP, UXP, cAMP,
NAD:NADH ratio.
AAs. Fluxes within
glycolysis.

GLYCO: G6P, F6P, FBP,
G3P, DHAP, 2/3PG,
PEP, PYR. TCA: CIT,
FUM, OAA, ISOCIT,
MAL, AKG, SUC. PPP:
6PG, R5P, RBUP5, S7P.
TRE: G1P, UDPG.
NUC: AXP, GXP, IXP,
TXP, UXP, dAXP, dGXP,
dUXP. AAs.

Nevertheless, several issues limit quantification of intracellular variables. First, ac-
curate quantification becomes challenging due to the need for quenching [103], intra-
cellular/extracellular separation [104] or rapid sampling [102,105] which is especially
relevant when variables have low concentrations and high turnover rates such as the ratio
NAD:NADH [106]. Second, some variables are not always measured, hindering compari-
son between experiments. One example is the feat of nucleotides when the ATP paradox
takes place. Although in [31] it was observed that the missing metabolites were being stored
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in the inosine salvage pathway, their measurement is still not a standard practice. Third,
the lack of tools to measure compartment-specific concentrations limits our understanding
of the interplay between cytosol, mitochondria, and vacuole. This is a relevant matter since
the thermodynamic environment encountered in a specific compartment can alter reaction
kinetics, to what cofactors can be notably sensitive [107].

Conversely, recent years have witnessed key technological advances that extend and
improve our ability to quantitatively monitor relevant variables. The use of internal 13C stan-
dards enabled more accurate quantification of intracellular metabolite concentration [108].
13C substrate tracing enabled the determination of steady-state fluxes [109] and it has been
extended to monitor glucose perturbation [18] and several steady states at different growth
rates [35]. Simultaneously, a new experimental approach has been developed: dynamic
feast–famine cycles [92]. These repetitive cycles resemble more closely the environment that
yeast cells experience in the industrial fermenter and extensive datasets are now available,
even though not yet used for the purpose of model development [36,37]. Furthermore,
proteome quantification can help understand how fermentative and respiratory capacities
evolve with growth rate [60,110]. At changing growth rates, the relative protein expression
is different for each glycolytic enzyme and this dependency can be used to constraint
the models by adjusting kinetic constants accordingly. This type of approach can be ex-
tended to also quantify PTMs which modulate enzyme activity of central metabolism [95].
Finally, some tools have started to shed light on developments which take place inside
compartments. Promising technologies such as equilibrium-based reactions, FRET sen-
sors [107,111–113], microfluidics and other single-cell technologies could potentially be
used to measure variables inside the mitochondrion, for instance.

7. Parameter Uncertainty: From In Vitro, to In Vivo, to Computational Estimation

Uncertainty is a recurring obstacle in the development of kinetic metabolic mod-
els [114]. It can be categorized in two types: epistemic, when it can be reduced by gathering
more data or refining the model, or aleatoric, when the uncertainty is an inherent feature
of the system [115], such as the case of stochasticity associated with biochemical systems
containing low concentrations of many species [116]. Although the network stoichiometry
of CCM is well known and its allosteric or post-translational regulation can be experimen-
tally measured, parameters are hard to quantify. Therefore, parametric uncertainty is a
major challenge when dealing with large-scale kinetic networks [117]. For S. cerevisiae
CCM models, parametric uncertainty was initially aleatoric, as in vivo values were not
quantifiable, but the recent decades have seen important progress in this area.

In S. cerevisiae models, parameter values have been often quantified in vitro and in
conditions that maximize the activity of each individual enzyme but do not resemble the
cellular environment [32]. When embedding these parameters in a model, simulations
often led to unrealistic behaviors [22]. Furthermore, only a subset of parameters can
be directly measured [15]. Consequently, a great effort was directed to developing a
standardized assay media that resembles the yeast cytosol and many glycolytic parameters
have been redetermined in these in vivo-like conditions [32] and implemented in kinetic
models [16,17]. An overview of publications where kinetic parameters were estimated can
be seen in Table 3.
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Table 3. Overview of studies that quantify central metabolism kinetic constants in S. cerevisiae: Only
works that aimed to study glycolysis as a system are shown. Prior works that studied glycolytic
oscillations or individual enzymes are not displayed. Experimental data that did or did not resemble
the yeast cell cytosol are referred to as in vivo or in vitro, respectively. Pathways parameterized are
glycolysis (GLYCO), tricarboxylic acid cycle (TCA), pentose phosphate pathway (PPP), trehalose
cycle (TRE). From the literature pool of articles obtained in the systematic reviewing process, the
works displayed estimated parameter values. Publications [16,22] appear in two columns because
they simultaneously used two different parameter estimation methods to quantify the same and
different kinetic constants type, respectively. Literature is ordered by parameter estimation method.

Teusink et al. [22] Messiha et al. [33] van Eunen et al. [32] Smallbone et al. [16]

Parameter estimation Experimental, in vitro Experimental, in vitro Experimental, in vivo Experimental, in vivo

Type of constant Vmax Km, Kcat Vmax Km, Kcat

Pathway GLYCO PPP GLYCO GLYCO

Experimental condition Enzymatic assay.
Enzyme-specific

Enzymatic assay.
Enzyme-specific

Enzymatic assay.
Cytosol-like

Enzymatic assay.
Cytosol-like

Rizzi et al. [19] Vaseghi et al. [21] Teusink et al. [22] van Eunen et al. [17]

Parameter estimation Computational, in vivo Computational, in vivo Computational, in vivo Computational, in vivo

Type of constant Vmax Vmax Vmax Vmax, Km

Pathway GLYCO, TCA PPP GLYCO GLYCO (GAPDH)

Experimental condition GP (1 g L−1) GP (1 g L−1) SS (0.1 h−1) GP (1 g L−1)

Chen et al. [118] Smallbone et al. [16] Kesten et al. [20]

Parameter estimation Computational, in vivo Computational, in vivo Computational, in vivo

Type of constant Vmax Vmax Vmax, Km

Pathway GLYCO TRE GLYCO, PPP, TCA

Experimental condition SS (0.1 h−1) SS (0.1 h−1) Either SS (0.1 h−1) or
GP (1 g L−1)

Despite this improvement, the accuracy of the parameter values was rarely estimated
and enzymes were studied in isolation, rather than from a systems perspective. A com-
mon practice to deal with this problem is to re-estimate a subset of the parameters from
a complete glycolysis model to fit in vivo data, namely metabolomics, frequently in a
Maximum Likelihood Estimation (MLE) problem [17,19,20,23,77,79,86]. Still, only a few
works quantified the differences between in vitro and in vivo parameters [22,119].

Nonetheless, there are opportunities to reduce parametric uncertainty in the near
future. Kinetic constants quantified in cytosol-like conditions have only been used in a
few works [16,17]. In addition, a considerable part of the data generated in recent years
has not yet been used for validation, nor quantification of kinetic constants. In the last
decade, extensive metabolomics and fluxomics datasets have been generated [18,34,36] and
proteomics data are growingly available [60,120,121]. These data can now be used to extend
our knowledge in central metabolism modeling, for instance by re-fitting parameter values
or validating model simulations, even though it is rarely available in public repositories.

Moreover, computational quantification of kinetic constants allows the performance
of a feasibility check by comparing experimental and estimated parameters [6,122], even
though the scale of the network can become a burden since the estimation problem can
be underdetermined. To deal with this issue, the so-called divide-and-conquer approach
could be beneficial since it exploits a decomposition of the global estimation problem into
independent subproblems, which are easier to deal with as the problem scale and variables
involved are less [122,123]. If the subproblems are still ill-conditioned, regularization can be
implemented to supplement the MLE problem with additional biological information [13].
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A commonly used approach with dynamic models is L1 or Tikhonov regularization, which
adds a penalty on parameters that deviate from a specific value, favoring the estimates
that resemble experimental measurements [124–127]. Furthermore, to deal with big scale
kinetics models, multiple toolboxes have been developed that assist in the development
and analysis of this large-scale models [128–131], and benchmarking studies have evaluated
their performance in different setups [14,132], which will help the modeler select the tool
that is best suited for a particular problem.

8. Model Validation and Inclusion of Physiological Variables Regulating Glycolysis
Are Needed for the Development of Predictive Models

To establish the credibility of a computational model, a pipeline of verification, val-
idation, and uncertainty quantification (VVUQ) is followed [133]. Guidelines are also
available to make research findable and reproducible [134,135]. Model verification mostly
concerns with proper modeling and technical practices while validation is performed by
means of reproducing physiological properties and new experimental data and robustness
studies [6,136,137].

A common validation practice in S. cerevisiae models has been to construct models
with parameter values measured in experimental assays and then simulate metabolomics
in vivo data. If predictions did not match, either a subset of parameters was re-estimated,
or this was used to generate new hypotheses or as an indication of uncertain areas in the
model that needed improvement [17,19,20,22,79,81]. Proper model physiology has been
often evaluated by simulating gene duplication or mutant strains [18,82,87] or studying its
metabolic control properties [79,80,85,86].

Nevertheless, the experimental data used to validate models has been restricted
to a single experimental setup: A glucose perturbation from 0.01 to 1 g L−1 of glucose
concentration in a steady-state culture at dilution rate of 0.1 h−1 (Table 1). Despite this, it
has been achieved for other pathways external to CCM where different nutrient pulses
could be reproduced with the same model [119,123] and the above-mentioned feast–famine
experiments and steady states at different dilution rates could provide new insights if
modeled. Still, to achieve this, current models need to be expanded to represent necessary
physiological variables.

For instance, to simulate steady states at different dilution rates [34], the effect of
growth rate must be considered. Current models simulate nongrowing yeast cells, but
in the industrial setup this is more often the exception than the rule. When growth rate
changes, so do the amounts of glycolytic intermediates that are taken for biomass synthesis,
the use of cofactors, and the predominance of respiration or fermentation, what could
explain the condition-specific parameters in [17]. To account for this, one option is to
implement a sink reaction term in the mass balance of each glycolytic intermediate that is
taken up for biomass synthesis, as has been implemented in E. coli models [59]. Moreover,
changing growth rates also meant that the sum of adenosine nucleotides was not kept
constant [34], a phenomenon that can become impactful for glycolytic kinetics. Even
though this could be partially explained by growth associated maintenance and non-growth
associated maintenance, these physiological variables have not been considered yet.

Furthermore, implementing transport rates for substrates other than glucose and
(by)products would not only validate the model, but would also allow the use of new data
and simulate conditions that are important in the bioreactor production setup [6]. Process
yield is altered depending on the carbohydrate substrate (fructose, galactose, maltose or
sucrose, among others) [51–54,56]. Even though its implementation should not present a
computational burden since only transport or isomerization reactions must be added in the
model, only sugar uptake kinetics were implemented in black-box models [51–53,55–57]
(but see exception for galactose in [54]). Moreover, byproduct exchange of gases, routinely
measured [27,34,36], could also be accounted for as in [119]. For instance, exchange rates
qO2, qCO2 and RQ ratio could help explain how availability of oxygen limits respiratory
flux in both industrial [43] and lab-scale yeast fermentations [47]. To account for CO2, its
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production by pyruvate decarboxylase and the TCA cycle has been implemented but the
only model constraint has been glucose concentration [18–20,22]. Another relevant example
are fermentation (by)products such as ethanol. Even though it is known to be inhibitory
above a concentration threshold [27,138], it has rarely been considered.

Finally, the yeast cell experiences gradients of pH and temperature in the industrial
bioreactor that can have a severe impact on the fermentation. Since the effect of these
environmental variables in the cytosol can be widespread to virtually all enzymes, modeling
has been less detailed and has used cellular black-box models [139–141] rather than specific
enzymatic kinetics. Nonetheless, for other organisms the effect of pH in glycolytic enzymes
has been implemented [142,143] and this could also become the case for yeast models
considering the increase in experimental data [144,145].

9. The Onset of In Silico Studies of Cell Population Dynamics in Industrial Fermenters

The ideal mixing assumption rarely holds in large-scale bioreactors, resulting in
substrate gradients and lower process yield [3,4,42]. Therefore, understanding the interplay
between the yeast cell and its surrounding environment becomes paramount to optimize
the bioprocess performance. Obtaining experimental data and process optimization at the
industrial fermentation scale is challenging and costs can become prohibitive. As a result,
downscaling experiments have been developed to aid in strain selection [26,36]. In this
process, the conditions in the industrial fermenter must be properly understood to develop
appropriate downscaling setups.

One approach has been to study the heterogeneity within cell subpopulations. Single-
cell analysis devices have been developed and the changes in glucose concentration have
been shown to be comparable to the perturbations experienced by the cell in the industrial
fermenter [146]. Furthermore, these studies have shown how cell-to-cell heterogeneity
can be prevalent for many physiological variables such as growth rate, morphology, gene
expression and cell viability, even if the extracellular environment is the same [147–150].
This is even more relevant considering that research in [18] showed how intracellular
metabolic concentration heterogeneity could result in growth cell arrest for some cells in
a population.

Despite the valuable insights that these downscaling experiments have provided, they
are limited to study only one experimental design at a time, while in the industrial bioreactor
multiple metabolic regimes are present and simultaneously contribute to the process yield.
To understand the full picture, in silico modeling studies are essential. For instance,
computational fluid dynamics (CFD) simulations have been developed to simulate the
different gradients that each cell in the population experiences. Each of these simulations is
referred to as a lifeline [4] and has been implemented to study oxygen and glucose gradients
in S. cerevisiae fermentations [43,151]. From the different lifelines, substrate feeding regimes
can be identified which correspond to different subpopulations [4].

A promising approach is to combine these CFD lifelines with intracellular mechanistic
models, considering both the bioreactor and cell factory as the modeled system [152].
Such multiscale modeling can bring online bioprocess monitoring to the next level to, for
instance, suggest how oxygen and biomass concentration influence ethanol synthesis in
different fermenter locations [153–155]. Nonetheless, the current implementations consist
of highly simplified, phenomenological Penicillium chrysogenum and yeast models [156,157].
A way to improve the quality of the simulations is to use state of the art kinetic CCM
models [16–18,20], provided that they include variables that link cell physiology to the
bioreactor environment. Finally, combining these CFD and mechanistic models with
intracellular cell-to-cell heterogeneity and the growing importance of industrially relevant
digital bioprocess twins [158,159] could enrich the predictability of these multiscale models
to an unprecedented level.
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10. Conclusions

Multiple models have been developed to understand how Saccharomyces cerevisiae
navigates through glucose perturbations. Despite this, our understanding of the interplay
between these dynamic environmental conditions and central carbon metabolism is still
limited. This review aims at determining which have been the advances, limitations, and
opportunities in S. cerevisiae CCM kinetic modeling. Our kinetic models have improved.
Notably, it was first understood that glycolysis regulated the process largely in isolation,
but more regulation layers have been considered to be new data made them observable.

Future research should focus on areas which current models lack but where under-
standing can be improved. For instance, models need to become more complex to consider
pathways in the CCM, cofactor kinetics, PTMs and compartmentation. Furthermore, new
datasets recently generated can be used in model development and validation. To further
validate models, information on physiological, process variables and different experimental
setups can be considered. In addition, coupling in vivo parameter quantification with
advances in experimental measurements will result in highly predictive models. Finally,
single-cell measurement technologies will extend our models from representing an average
cell to the population heterogeneity, considerably improving our capacity for predictive
modeling of industrial bioprocesses.

The resulting CCM models will be of great use to both academia and industry once
they consider the cellular context this pathway interacts with. For instance, process vari-
ables with fundamental physiological information such as biomass growth rate, oxygen
uptake limitation, or process yields will prove crucial in this mission. Finally, a complete
representation of internal CCM dynamics will be accomplished once the different pathways
composing it and cofactor dynamics are simultaneously represented, and not restricted to
glycolysis alone.

11. Methods

The collection of literature and consequent screening of relevant works in this study
took place in a systematic fashion. The guidelines set out in the Cochrane Handbook for
Systematic Review and Meta-Analyses [160] were adapted to our research focus, similar to
their implementation in other disciplines [10–12]. The selected literature was then surveyed
to create an inventory of experimental data from glucose perturbation experiments and S.
cerevisiae CCM kinetic models. Simultaneously, this helped to identify the relevant trends
in the field that are studied in this paper.

The steps to collect the bibliography used in this work are described in Table 4. A clear
objective and search query were described early on. Searching for this query generated
an extensive literature collection from which appropriate papers were screened for using
inclusion and exclusion criteria. The resulting literature pool was read and ranked for
relevance according to another set of criteria. From the most relevant works, a snowball
and citation search were used to double check that no relevant works were missed.

In this process, appropriate tools for each step were used. The initial search query
was implemented in the Scopus abstract and citation database. This initial bibliography
was loaded into the Rayyan webapp [161] to efficiently screen for inclusion and exclusion
criteria based on abstract reading in a systematic way. The selected literature collection
was from there on analyzed in depth using Mendeley. Finally, the resulting bibliometric
network was visualized with the VOSviewer software [162].

From the resulting selected articles, an inventory of existing experimental data and
kinetic models was made. Experimental data sets of interest concerned experiments where
external perturbations in nutrient concentrations caused intracellular metabolomic or
fluxomic changes in CCM. The models of interest for this work were mechanistic models
with time-dependent description of intracellular concentrations of CCM. For the purpose
of this research, not all data and models were downloaded, but when needed, data were
acquired through the supplementary materials or by direct contact with the corresponding
author. Models were downloaded from the BioModels [9] or JWS online databases [163]
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(exceptions of works prior to 2000). Recent experimental data could be downloaded
online, to obtain datasets prior to 2010, it was often the case that the authors had to be
personally contacted.

Table 4. Steps followed to collect the literature used in this review.

Step Description

1. Development of a search
query

A search query was designed and implemented in the Scopus database document search. The time
range selected was 2000–2020 to obtain a workable library size and relevant to the publication time.
This query aimed to find all papers relevant to kinetic metabolic models of S. cerevisiae. Areas of
uncertainty in models was an area of focus as well.
The search query is: (TITLE-ABS-KEY (kinet* OR dynam* OR biochem*) AND TITLE-ABS-KEY
(metabol*) AND TITLE-ABS-KEY (model* OR network*) AND TITLE-ABS-KEY (yeast OR “baker’s
yeast” OR cerevisiae) AND TITLE-ABS-KEY ((paramet* OR structur* OR topolog* OR “in vivo” OR
“in vitro”) AND (uncertain* OR sensitiv* OR crosstalk OR burden OR likelih* OR control OR energ*
OR ptm OR transcription* OR translation* OR regulat* OR interact* OR multilevel)) OR
TITLE-ABS-KEY ((paramet* OR structur* OR topolog* OR “in vivo” OR “in vitro” OR regulat* OR
interact* OR multilevel) AND (uncertain* OR sensitiv* OR crosstalk OR burden OR likelih* OR
control OR energ* OR ptm OR transcription* OR translation*))) AND DOCTYPE (ar OR re) AND
PUBYEAR > 1999.

2a. Literature screening
strategy: title and abstracts

The first screening round was performed using the RAYYAN webapp. Inclusion and exclusion
criteria were used to determine if an article would be considered or not for our research. Since the
library at this point was extensive (>3000 papers) and many articles had little relationship with our
field, this step was performed only based on reading abstracts. Inclusion, exclusion, and undecided
criteria were the following:
Inclusion criteria: (1) Geographic location: no limitation, (2) Language: English, (3) Experimental
scale: no limitation, (4) Publication type: article or reviews, (5) Organism: Saccharomyces cerevisiae, aka
yeast, (6) Kinetic modeling, (7) Theoretical or experimental modeling, (8) Organelles: cytosol and
mitochondria, (9) Yeast dynamic models external, but tightly related, to CCM and (10) State of the art
yeast GSM of CCM.
Exclusion criteria: (1) Non-peer review articles, (2) No patents, (3) Before 2000, (4) Mixed culture,
(5) Not submerged growth, (6) Metabolic routes outside CCM, (7) Unconfined environment, (8) No
modeling work and (9) Article duplicates.

2b. Literature screening
strategy: content

The second round of screening took place in the Mendeley environment. The manuscripts that
priorly fitted in the ‘inclusion’ group were read (in this case, not constrained to abstract only) to find
if their main work focus was a dynamic metabolic model of CCM. From these collection, unique
models were identified.

3. Extraction of relevant
information

The following relevant information was extracted from each model:
(1) Motivation/Research question, (2) Outcome of the research, (3) Future research proposed, (4) Type
of dynamic modeling used, (5) Coverage of the model, (6) Presence of reaction that connect CCM to
the remained of the metabolic network, (7) Modeling of dynamic and/or steady-state conditions,
(8) Parameter values origin and (9) Presence or not of experimental data.

4. Quality assessment

To rank the relevance of the found models to our research, the following quality aspects were
evaluated:
(1) New knowledge to the understanding of S. cerevisiae glycolysis provided, (2) Extensive coverage
of glycolysis and other pathways in CCM, (3) Inclusion of relevant variables external to CCM
stoichiometry and kinetics (i.e., cofactor kinetics, sink reactions or post-translational regulation), (4)
Detail in kinetic descriptions: from simple mass actions to more complex Michaelis–Menten kinetics
with allosteric regulation, (5) Source of parameters in the model: experimental parameter
measurements determined in conditions that do not resemble the cytosol (in vitro-like) are the least
relevant. When conditions resemble the cytosol (in vivo-like) or parameters were estimated to fit the
experimental metabolomics data, these are deemed as more relevant, (6) Validation with
experimental data: the more variables and experimental setups used for validation, the better, and (7)
Since models often build on top of each other, these often results in the most relevant models being
the most complete.

5. Extra literature search
To check that no relevant literature was missed, S. cerevisiae CCM kinetic models were also searched
for in the BioModels and the JWS databases. Furthermore, citation and snowball literature search
were applied on the publications which contained the relevant and unique models.
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