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Plasmalogens are a special class of polar glycerolipids containing a vinyl-ether bond
and an ester bond at sn-1 and sn-2 positions of the glycerol backbone, respectively.
In animals, impaired biosynthesis and regulation of plasmalogens may lead to certain
neurological and metabolic diseases. Plasmalogens deficiency was proposed to
be strongly associated with neurodegenerative and metabolic diseases, such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD), and appropriate supplement of
plasmalogens could help to prevent and possibly provide therapy of these diseases.
Plasmalogens evolved first in anaerobic bacteria with an anaerobic biosynthetic
pathway. Later, an oxygen-dependent biosynthesis of plasmalogens appeared in animal
cells. This review summarizes and updates current knowledge of anaerobic and aerobic
pathways of plasmalogens biosynthesis, including the enzymes involved, steps and
aspects of the regulation of these processes. Strategies for increasing the expression
of plasmalogen synthetic genes using synthetic biology techniques under specific
conditions are discussed. Deep understanding of plasmalogens biosynthesis will provide
the bases for the use of plasmalogens and their precursors as potential therapeutic
regimens for age-related degenerative and metabolic diseases.

Keywords: plasmalogens, biosynthesis, anaerobic, oxygen-dependent, aging disease

INTRODUCTION

Plasmalogens (1-O-alk-1′-enyl 2-acyl glycerol phospholipids and glycolipids), also called plasmenyl
phospholipid and plasmenyl glycolipids, are a special group of polar lipids, accounting for
approximately 18–20 mol% of the total phospholipids in cell membranes of almost all mammalian.
They are the constituents of biomembranes, which has a diversity of functions such as cell
homeostasis, signaling and neural transmission (Ferlay et al., 2015; Dean and Lodhi, 2018).
Plasmalogen contains a vinyl ether (-O-CH = CH-)-linked chain at sn-1 position and an
ester chain at sn-2 position of glycerol backbone (Snyder, 1999; Braverman and Moser,
2012), respectively (Figure 1). Plasmalogens in animal tissues usually have a polyunsaturated
acyl chain at the sn-2 position. Most of the polyunsaturated fatty acids (PUFAs) at sn-2 of
plasmalogens are docosahexaenoic acid (DHA; C22:6 n-3) or arachidonic acid (AA; C20:4 n-6)
in animals (Nagan and Zoeller, 2001). The representative plasmalogens in mammalian tissues are
plasmalogen phosphatidylethanolamine (PlsEtn) and phosphatidylcholine plasmalogen (PlsCho)
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(Heymans et al., 1983), and a small portion is present as
plasmenylserine (PlsSer) and phosphatidic acid plasmalogen
(Deeley et al., 2009; Ivanova et al., 2010; Nagy et al., 2012).
PlsEtns constitute up to 50% of ethanolamine containing
glycerophospholipids in the brain (Maeba et al., 2018).

Plasmalogens evolved first in anaerobic bacteria, but they
are absent in facultative and aerobic bacteria except for
Myxobacteria, which were recently found to use an oxygen-
dependent synthetic pathway (Lorenzen et al., 2014; Gallego-
García et al., 2019). Plasmalogens are not found in fungi or
plants (Goldfine, 2010). It has been proposed that plasmalogen
biosynthesis requiring molecular oxygen appeared later in
animal cells as respiration evolved, indicating the emergence,
disappearance and recurrence of plasmalogens during evolution.
This disrupted evolution of plasmalogen may be due to the
sensitivity of plasmalogens to reactive oxygen species (ROS)
after the concentration of oxygen increased in the early
earth’s history, which will cause rapid degradation at the
vinyl ether bond. However, the ability of higher organisms
to use plasmalogen in an advantageous manner with special
features of plasmalogens as found in animals, including
antioxidant capacity, intracellular signaling and preservation
of transmembrane ion gradients, may account for their
reappearance (Goldfine, 2010; Lorenzen et al., 2014).

Lipid metabolism abnormalities are related to the occurrence
of many human diseases (Fhaner et al., 2012). Plasmalogens are
highly expressed in the nervous system and play an important
role in many cellular functions of neurons (Maeba et al.,
2018). Defects in plasmalogen synthesis are associated with
neurodegenerative and metabolic diseases, such as Zellweger
syndrome, Alzheimer’s disease (AD), and Parkinson’s disease
(PD) (Yamashita et al., 2017; Dean and Lodhi, 2018). Among
them, AD is an age-related progressive neurodegenerative
disease and the cause of common dementia symptoms. The
number of AD patients might reach more than 74 million
worldwide by 2030, while the pathogeny of AD remains
unclear (World Alzheimer Report, 2015). Plasmalogens were
considered to be one of the oxidation targets of AD (Wood
et al., 2010). The level of plasmalogens in blood and
cerebrospinal fluid of AD patients is decreased (Goodenowe
et al., 2007), and serum PlsEtn was suggested to be one
of the cognitive decline markers (Maeba et al., 2018). In
recent years, increasing studies demonstrated that supplemental
of plasmalogens can be used to treat the symptoms of
AD patients. Patients with mild AD showed a significant
decrease in plasma PlsEtn in the placebo group than in the
treatment group with oral administration of plasmalogens,
and plasmalogens may improve cognitive functions of mild
AD (Fujino et al., 2017). Moreover, serum plasmalogen levels
have been used to diagnose and successfully stratify AD
patients (Wood et al., 2015). These illustrate the importance of
comprehensive understanding of the functions and biosynthesis
of plasmalogens, which might be developed as a potential
medicine for AD.

This review summarized the enzymes (genes) and
steps involved in the aerobic and anaerobic pathways of
plasmalogens biosynthesis. The significance of recently

found important genes and strategies for increasing the
production and application potential of plasmalogens in
medicine are discussed.

PLASMALOGENS BIOSYNTHESIS IN
ANAEROBIC BACTERIA

The biosynthesis of plasmalogens differs in synthetic enzymes
(genes) and substrates between anaerobic microorganisms and
animals. In anaerobic bacteria, glycerol 3-phosphate has been
confirmed as the precursor for plasmalogen synthesis (Hill and
Lands, 1970; Prins and Van Golde, 1976), while dihydroxyacetone
phosphate (DHAP) is the precursor of plasmalogens in
animals. The enzymes related to phospholipid and plasmalogens
synthesis identified in anaerobic bacteria up to date are listed
in Table 1.

By measuring the kinetics of incorporation of 32Pi and
14C into the diacylphosphatides and plasmalogens using
radioautography, the reaction steps of anaerobic pathway
were investigated. In Clostridium beijerinckii ATCC 6015,
rapid incorporation of 32Pi into diacylphosphatidylethanolamine
(diacyl-PtdEtn) and diacyl N-monomethyl PtdEtn, and a delayed
incorporation into their corresponding plasmalogens, indicating
that diacylphosphatide could be substrates for the corresponding
plasmalogens (Baumann et al., 1965). A subsequent 14C-labeled
acetate incorporation study also demonstrated a consistent
precursor-product relationship between the chains attached
to the phosphatidyl and alkyl-1-alkenyl ethers (Hagen and
Goldfine, 1967). Moreover, labeling of the plasmalogen forms
of phosphatidylglycerol (PtdGro) and cardiolipin is also delayed
relative to the labeling of all acyl forms inC. beijerinckii (Koga and
Goldfine, 1984). When hydroxylamine was added to the medium
to block the decarboxylation of phosphatidylserine (PtdSer),
there was initially 95% diacyl form and a 5% plasmalogen form
of PtdSer; PtdSer was rapidly decarboxylated to form PtdEtn
followed by the PlsEtn after the removal of hydroxylamine
(Goldfine, 2017).

A pathway of plasmalogen synthesis in anaerobic bacteria
was proposed as shown in Figure 2 (Raetz and Dowhan,
1990; Dowhan, 1997; Zhang and Rock, 2008; Goldfine, 2010,
2017). First, fatty acyl-carrier protein (ACP) and glycerol 3-
phosphate serve as precursors of phosphate acid (PA) under
the catalysis of PlsX and PlsY. PA with cytidine triphosphate
(CTP) is converted to cytidine diphosphate diacylglycerol (CDP-
DAG) using CDP-diacylglycerol synthase (CdsA). Next, two
additional transformations are required to produce PtdEtn or
PtdGro. For PtdEtn synthesis, CDP-DAG can be converted to
phosphatidylserine (PtdSer) using PtdSer synthase (PssA), and
then PtdSer is converted to PtdEtn by PtdSer decarboxylase
(Psd). For the branch of PtdGro synthesis, CDP-DAG is
converted to phosphatidylglycerol 3-phosphate (PGP) by PGP
synthase (PgsA) and then the 3-phosphate can be removed
by a PGP phosphatase (PgpA or PgpB) to generate PtdGro
(Dowhan, 1997). Finally, PtdEtn and PtdGro will be transformed
into PlsEtn and PlsGro, respectively, under the catalysis
of unknown enzymes. Although plasmalogens have been
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FIGURE 1 | Structures of diacyl glycerophospholipid and plasmenyl glycerophospholipids (plasmalogens). X denotes the polar head group, such as ethanolamine or
choline. R1 and R2 denote the hydrocarbon chains at the sn-1 and the sn-2 positions, respectively.

TABLE 1 | Enzymes related to plasmalogens biosynthesis in anaerobic bacteria.

Enzyme name Function descriptions

PlsX/Y Glycerol 3-phosphate acyltransferase

CdsA CDP-diacylglycerol synthase

PgsA Phosphatidylglycerol phosphate synthase

PssA Phosphatidylserine synthase

Psd Phosphatidylserine decarboxylase

PgpA/PgpB PGP phosphatases

CDP, cytidine diphosphate; PGP, phosphatidylglycerol phosphate.

identified in anaerobic bacteria for nearly 50 years (Wegner
and Foster, 1963; Goldfine, 1964), gene(s) and mechanism
corresponding to the formation of the vinyl ether bond of
plasmalogens remain unclear.

THE OXYGEN-DEPENDENT PATHWAY
OF PLASMALOGENS BIOSYNTHESIS

Phosphatidylethanolamine plasmalogen is the basic components
of cell bilayers, accounting for about 20% of human
phospholipids (Farooqui and Horrocks, 2001; Lessig and
Fuchs, 2009; Braverman and Moser, 2012; Dorninger et al.,
2015; Dean and Lodhi, 2018). Particularly, high concentrations
of PlsEtn were found in the brain, retina, and other nervous
tissues, accounting for 60% and 80% of the total ethanolamine
phospholipids in gray and white matter, respectively (Saab et al.,
2014). The plasmalogen-associated genes in animals have been
studied as listed in Table 2. Among them, plasmanyl desaturase
(1′-alkyl desaturase) is a predicted unstable membrane enzyme
that remains to be identified for many years. In a recent report,
the enzyme CarF found in an aerobic bacterium Myxobacteria

FIGURE 2 | Anaerobic pathway for plasmalogen synthesis in bacteria. PA, phosphatidic acid; CDP-DAG, CDP-diacylglycerol; PGP, phosphatidylglycerol
3-phosphate; PtdEtn, phosphatidylethanolamine; PtdSer, phosphatidylserine; PtdGro, phosphatidylglycerol; PlsGro, phosphatidylglycerol plasmalogen; PlsEtn,
phosphatidylethanolamine plasmalogen. The detail of enzyme and mechanism leading from the diacyl phospholipids to plasmalogens is still unknown.
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TABLE 2 | Enzymes related to plasmalogen biosynthesis in animals.

Enzyme name Function descriptions

FAS Fatty acid synthase

ACS Acyl-CoA synthase

FAR-1/2 Fatty acyl-CoA reductase 1 or 2

DHAP-AT DHAP acyltransferase

ADHAP-S Alkyl DHAP synthase

AADHAP-R Alkyl/acyl-DHAP-reductase

AAG3P-AT Alkyl/acyl-glycero-3-phosphate acyltransferase

PH Phosphohydrolase

E-PT Ethanolamine phosphotransferase

TMEM189 homolog plasmanylethanolamine desaturase

DHAP, dihydroxyacetone phosphate.

was confirmed to be the 1′-alkyl desaturase for the last step
of plasmalogen formation (Gallego-García et al., 2019). Its
homolog TMEM189 was successively identified in mice and
human (Gallego-García et al., 2019; Werner et al., 2020). Knock
out of the animal homolog in human cell lines resulted in the
deficiency of plasmalogens, indicating that TMEM189 is needed
to catalyze the final step in plasmalogen synthesis in human cells
(Gallego-García et al., 2019).

Plasmalogen biosynthesis occurs in peroxisomes, an oxidative
organelle found in virtually all eukaryotic cells, and terminates
in the endoplasmic reticulum (ER) (Wallner and Schmitz,

2011). Based on the identified enzymes in previous publications
(Wallner and Schmitz, 2011; Gallego-García et al., 2019; Werner
et al., 2020), an overview of the synthetic pathway is proposed
in Figure 3.

Plasmalogens biosynthesis in peroxisomes of animals starts
with acyl-CoA and DHAP. Under the action of DHAP-
acyltransferase (DHAP-AT), DHAP is converted into 1-O-
acyl DHAP, and then the acyl chain is replaced by a
long-chain fatty alcohol from Acyl-CoA synthesis pathway
(McIntyre et al., 2008) or from foods. DHAP-acyltransferase is
also known as glyceronephosphate O-acyltransferase (GNPAT)
(Nagan and Zoeller, 2001),which initiates the esterification of
DHAP with a long-chain acyl-CoA (Hajra, 1997). Next, alkyl
DHAP synthase (ADHAP-S) catalyzes the replacement of acyl
group of 1-O-acyl DHAP with a long-chain fatty alcohol to
generate 1-O alkyl-DHAP (Hajra, 1995; Hayashi and Sato, 1997;
Cheng and Russell, 2004; Honsho et al., 2010; Wallner and
Schmitz, 2011). The fatty alcohols are synthesized by fatty
acyl-CoA reductases 1 and 2 (Far1/2) (Hajra, 1995, 1997;
Nagan and Zoeller, 2001; Wallner and Schmitz, 2011) or
directly taken up from diet. Notably, the Far1 is regulated
by negative feedback of cellular plasmalogen levels (Honsho
et al., 2010). Therefore, the formation and supply of long-
chain fatty alcohols are considered to be one of the rate-
limiting steps of the plasmalogen biosynthetic pathway (Paul
et al., 2019). The alkyl-DHAP is then transferred from the
peroxisome into the ER.

FIGURE 3 | Oxygen-dependent pathway of plasmalogens biosynthesis in animals. The enzymes involved in the indicated steps: FAS, fatty acid synthase; ACS,
acyl-CoA synthase; FAR1/2, fatty acyl-CoA reductase 1 or 2; DHAP-AT, DHAP acyltransferase; ADHAP-S, alkyl-DHAP synthase; AADHAP-R, NADPH:alkyl-DHAP
oxidoreductase; AAG3P-AT, acyl-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphate acyltransferase; PH, 1-alkyl-2-acyl-sn-glycero-3-phosphate phosphohydrolase; E-PT,
CDP-ethanolamine:1-alkyl-2-acyl-sn-glycerol ethanolamine phosphotransferase; TMEM189 homologs, plasmanylethanolamine desaturases.
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In the ER, acyl/alkyl DHAP reductase (AADHAP-R) catalyzes
the reduction of 1-O-alkyl-DHAP to form 1-O-alkyl-2-hydroxyl-
sn-glycerol-3-phosphate (1-O-alkyl-G3P) (Hajra, 1997). Then,
the acyl/alkyl-G3P-acyltransferase (AAG3P-AT) catalyzes
acylation with an acyl-CoA at the sn-2 position of the 1-O-
alkyl-G3P to form 1-O-alkyl-2-acyl-G3P. The phosphate group
of -O-alkyl-2-acyl-G3P is removed by phosphohydrolase (PH)
to form 1-O-alkyl-2-acylglycerol (Wallner and Schmitz, 2011).
Next, ethanolamine phosphate head group is added to 1-O-
alkyl-2-acylglycerol by the ethanolamine phosphotransferase
(E-PT) to generate plasmanylethanolamine (1-O-alkyl-2-acyl-
GPE) (Brites et al., 2004). Finally, plasmanylethanolamine is
converted into 1-O-alk-1′-enyl 2-acyl phosphatidylethanolamine
(PlsEtn) through the action of 1′-alkyl desaturase (TMEM189
homolog) in the presence of molecular oxygen and NADPH.
Because there is no plasmenylcholine desaturase found in
animals, choline plasmalogens (PlsCho) might be formed only
following the hydrolysis of ethanolamine plasmalogens into
form 1-O -(1Z-alkenyl)-2-acyl-sn-glycerol, which was then
modified by choline phosphotransferase and CDP-choline
(Lee, 1998).

PERSPECTIVES OF PLASMALOGENS
BIOSYNTHESIS USING SYNTHETIC
BIOLOGY METHODS AND APPLICATION
POTENTIALS IN MEDICINE

Traditionally, plasmalogens are obtained using chemical
synthetic method or extraction from animal tissue. However,
the need for large amounts of chemicals as well as generation of
potential hazardous waste during the chemical synthetic process
of plasmalogens limit the applications of the chemical synthetic
method. Although plasmalogens are widely found and can be
prepared from marine animals or bird tissues, the amount of
plasmalogens from these natural materials are very low and only
account for less than 10% of the phospholipids in cell membrane
of the tissues used.

Synthetic biology is a discipline that uses biological functional
elements, devices and systems to carry out targeted genetic design
and transformation of living organisms, to enable cells and
organisms to generate specific biological functions or produce
natural materials and even to synthesize “artificial life.” Using
the synthetic biology techniques, artificial PUFA biosynthetic
gene cluster (BGC) including a polyketide synthase-like PUFA
synthetase from Myxobacteria has been introduced into yeast
Yarrowia lipolytica, and successfully produces the highest level
of DHA (16.8% of total fatty acid) among PUFA-producing
Y. lipolytica (Gemperlein et al., 2019).

With the elucidation of plasmalogen biosynthesis genes
and pathway for aerobic organisms, especially the recent
identification of 1′-alkyl desaturase responsible for the
conversion of plasmanylphospholipid into plasmalogens
(Gallego-García et al., 2019), designing and efficient expression
of plasmalogen biosynthetic modules in engineering host
cells such as yeast cells become possible. The production
and composition of plasmalogens is controlled by synthetic
genes and certain rate-limiting steps in biosynthesis such as

Far1/2 and 1-alkyl-DHAP (Paul et al., 2019). It was found that
supplementation with alkyl glycerol can increase plasmalogen
levels in cultured cells (Marigny et al., 2002), animals (Brites
et al., 2011), and humans (Das et al., 1992). The most commonly
used alkyl glycerols to increase plasmalogen levels in mammalian
research are chimyl (O-16:0), batyl (O-18:0), and selachyl
(O-18:1) alcohols (Brites et al., 2011; Rasmiena et al., 2015; Tham
et al., 2018). Therefore, expression of plasmalogen products
can be regulated under specific conditions through the genetic
circuit designing and integration of gene modules composed of
plasmalogen-related genes and rate-limiting elements. Standard
and modularized biological elements can be used to reconstruct
the metabolic network in host cells to efficiently synthesize or
improve plasmalogen products that meet needs. For anaerobic
biosynthesis of plasmalogen, it is necessary for us to identify
the key gene(s) responsible for the formation of the vinyl ether
bond of plasmalogens in anaerobic bacteria before its synthetic
biological study and application.

It has been known that cultured cells and animal tissues
lacking plasmalogen are more sensitive to oxidative damage
than their wild-type counterparts (Zoeller et al., 1988; Reiss
et al., 1997). This is due to the presence of vinyl ether bonds
making plasmalogens efficient antioxidants (Broniec et al., 2011).
In particular, plasmalogens can protect unsaturated membrane
lipids from oxidation by singlet oxygen and participate in
the removal of various ROS (Maeba et al., 2002; Skaff et al.,
2008). Plasmalogen is susceptible to cleavage by ROS, yielding
products that may act as second messengers (Lorenzen et al.,
2014). More importantly, plasmalogen deficiency correlates with
various human neurological and aging diseases, such as AD and
PD (Nadeau et al., 2019; Paul et al., 2019).

Alzheimer’s disease is a complex neurodegenerative disease
characterized by progressive memory loss and progressive loss
of neuronal cells mainly observed in the hippocampus (Fujino
et al., 2017; Jan et al., 2017). Although the gradual accumulation
of β-amyloid fibers (Aβ plaque) and abnormal forms of tau
(tau tangles) inside and outside neurons are considered the
neuropathology of AD, the causes and mechanisms of AD have
not been fully elucidated (Fujino et al., 2017; Jan et al., 2017).
Accumulation of β-amyloid in AD leads to the increase of ROS
levels in cells and reduces the activity of ADHAP-S, which
might result in the decrease of plasmalogens (Grimm et al.,
2011). Plasmalogen levels in human serum decrease with age and
reductions in alkyl PtdCho and alkyl PtdEtn levels have been
observed in patients with hypertension (Graessler et al., 2009).
The content of plasmalogens in the brain of AD patients after
death is very low (Wood et al., 2010; Braverman and Moser,
2012). Among them, the PlsEtn decreased by about 70%(Wood
et al., 2010; Onodera et al., 2015). Hossain et al. (2013, 2016)
found that PlsEtn inhibited the death of hippocampal neurons
by increasing the phosphorylation of Akt and ERK kinases
through activating the neuronal specific orphan G-protein
coupled receptors (GPCRs). In their study, pan GPCR inhibitors
significantly reduce the plasmalogens-induced ERK signaling in
nerve cells, indicating that plasmalogens could activate GPCR-
induced signaling, Plasmalogens-mediated phosphorylation of
ERK was inhibited in five of the GPCRs’ knockdown cells.
Overexpression of these GPCRs enhanced the plasmalogens-
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mediated phosphorylation of ERK and Akt, and the GPCRs-
mediated cellular signaling was reduced significantly when the
endogenous plasmalogens were reduced, suggesting for the
first time a possible mechanism of plasmalogens-induced cell
signaling in the nervous system (Hossain et al., 2016). Direct
consumption of plasmalogen or related phospholipids can be
used to treat dementia. For example, DHA-PC and DHA-PS
can restore the content of DHA-containing PS and PlsEtn in
the brain, and significantly restore the lipid homeostasis of
dementia mice (SAMP8 mice), which have a phenotype that
accelerates aging (Zhao et al., 2020). Oral administration of
PtdEtn rich in plasmalogens (PlsEtn) from viscera of marine
animals ameliorated cognitive impairment and improved the
learning ability in amyloid (Aβ)-infused rats (Yamashita et al.,
2017). In recent human trials, Fujino et al. (2017) reported
that oral supplementing scallop-derived purified plasmalogens
(1 mg/day) for 24 weeks improved memory function of patients
with mild AD. Hossain et al. (2018) reported that oral ingestion
of plasmalogens can attenuate the lipopolysaccharide-induced
memory loss and microglial activation in mice. These findings
suggest the importance of comprehensive understanding of the
functions and biosynthesis of plasmalogens, which might be
developed as a potential medicine for AD. Due to the increasing
need of plasmalogens, it is possible to biosynthesize plasmalogens
on a large scale using synthetic biological strategy.

Parkinson’s disease is a metabolic disorder and
neurodegenerative disease. The pathological feature is the
abnormal aggregation of SNCA/α-synuclein in the brain and
the loss of dopaminergic neurons in the substantia nigra (Ho
et al., 2020). The relationship between PD and plasmalogen
was controversial. Although the initial study found no changes
in the PlsEtn of PD patients compared with the control group
(Ginsberg et al., 1995), recent studies have found that the serum
concentration of PlsEtn in PD patients is reduced and low
levels of plasmalogen have also been detected in frontal lobe
sebaceous rafts of PD patients (Dragonas et al., 2009; Fabelo et al.,
2011). Nadeau et al. (2019) reported the neuroprotective and
immunomodulatory effects of plasmalogen precursors on mice
with PD. They found that the supplement of DHA-containing
PlsEtn precursor PPI-1011 in the intestine of mice treated with 1-
methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) could not
only prevent MPTP-induced decrease in PlsEtn levels but also

reduce macrophage infiltration in the intermuscular plexus of
MPTP-treated mice (Nadeau et al., 2019). These results indicate
the potential application of PlsEtn in the treatment of PD.

CONCLUSION

This review summarizes the current knowledge in the
field of anaerobic and aerobic biosynthetic pathways and
application potential of plasmalogens in medicine. The anaerobic
biosynthesis of plasmalogens differs in synthetic genes and
precursors from that of oxygen-dependent biosynthesis pathway.
Two different biosynthetic pathways demonstrate the significant
functions and evolution of plasmalogens in organisms. The
recent identification of 1′-alkyl desaturase elucidated the aerobic
plasmalogen biosynthesis pathway and opened the door to the
aerobic synthesis of plasmalogens using synthetic biological
strategy. Further investigation on the genes responsible for
the critical step in anaerobic synthesis pathway is required for
the comprehensive understanding of plasmalogens evolution
and functions. Because of the relevance of plasmalogens
to neurological diseases, it is increasingly important to
investigate the production and application of plasmalogens
as potential therapeutic strategies for treating and preventing
neurodegenerative and metabolic diseases.
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