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Abstract: Huntington’s disease (HD) is a neurodegenerative inherited genetic disorder, which leads
to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss
of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no
treatment for HD. Mesenchymal stem cells (MSCs) provide a substantial therapeutic opportunity for
the HD treatment. Herein, we investigated the therapeutic potential of human immature dental pulp
stem cells (hIDPSC), a special type of MSC originated from the neural crest, for HD treatment. Two
different doses of hIDPSC were intravenously administrated in a subacute 3-nitropropionic acid (3NP)-
induced rat model. We demonstrated hIDPSC homing in the striatum, cortex and subventricular
zone using specific markers for human cells. Thirty days after hIDPSC administration, the cells found
in the brain are still express hallmarks of undifferentiated MSC. Immunohistochemistry quantities
analysis revealed a significant increase in the number of BDNF, DARPP32 and D2R positive stained
cells in the striatum and cortex in the groups that received hIDPSC. The differences were more
expressive in animals that received only one administration of hIDPSC. Altogether, these data suggest
that the intravenous administration of hIDPSCs can restore the BDNF, DARPP32 and D2R expression,
promoting neuroprotection and neurogenesis.

Keywords: huntington disease (HD); brain-derived neurotrophic factor (BDNF); human immature
dental pulp stem cells (hIDPSC); 3-nitropropionic acid (3-NP); neurotrophic influences

1. Introduction

Huntington’s disease (HD, OMIM 143100) is a progressive, fatal, highly penetrant auto-
somal dominant neurodegenerative genetic disorder that leads to motor, neuropsychiatric,
and cognitive dysfunction [1]. HD is caused by the expansion of a cytosine–adenine–
guanine trinucleotide (CAG) repeat located in the first exon of the IT15 gene (locus 4p16.3),
which encodes the huntingtin protein (Htt) [2]. Generally, unaffected individuals have less
than 35 CAG repeats, while affected individuals carry more than 36 CAG repeats [1].

The Htt protein is crucial for developing and maintaining central nervous system
homeostasis [1]. This Htt is enriched at synaptic terminals, and controls the axonal transport
and vesicle trafficking [1]. This is because the Htt interacts with over 200 different proteins,
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many of them involved in microtubule-mediated axon trafficking, such as Huntington-
associated protein 1 (HAP1), kinesin, dynactin subunit p150, and dynein [1]. However, the
expansion of the CAG tract, verified in the mutated huntingtin protein (mHtt), reduces the
protein solubility, resulting in intracellular aggregates (inclusions) of mHtt in both neurons
and glial cells [1]. These mHtt aggregates promote: (i) mitochondrial dysfunctions, which
increase (ii) the reactive oxygen species (ROS) generations. Oxidative stress promoted by
mHtt causes (iii) microglial activation, which leads to (iv) neuroinflammation [1]. The
mHtt also interacts with HAP1 and dynactin, (v) reducing the transport of the brain-
derived neurotrophic factor (BDNF) protein crucial for the survival of striatal neurons [1,3].
Combined, these actions lead a progressive cell death (neurodegeneration) of GABAergic
medium spiny neurons (MSP)—the cell that corresponds to 95% of striatal neurons [1].
Typically, the onset age for HD is between 25 and 45 years [4–10].

Although there is no available treatment able to stop, postpone, or reverse the progres-
sion of HD [8,11], studies have demonstrated that an increase in brain-derived neurotrophic
factor (BDNF) levels is associated with neuroprotection and amelioration of neurological
signs in the transgenic mice model for HD [12,13]. However, the BDNF is not transported
through the blood–brain barrier (BBB) [14]. For this reason, the therapeutic use of BDNF is
clinically limited by complex procedures that involve intraventricular administration or the
use of nanocarriers. In this sense, the advanced therapy with mesenchymal stromal cells
(MSCs) expressing BDNF emerges as a useful therapeutic approach for the HD treatment.
This is because the MSCs can cross the BBB and engraft within the brain [15,16]. Confirming
the therapeutic potential of MSCs, Pollock et al. [17] demonstrated that bone marrow MSC
genetically modified to overexpress BDNF (MSC/BDNF) induced a significant increase in
neurogenesis-like activity and increased life expectancy in R6/2 mice (transgenic mouse
model for HD). In addition, MSCs secrete a plethora of biomolecules that can act in several
steps of HD pathophysiology, reducing neuroinflammation, programmed cell death, cell
toxicity, and improving neurons interconnections, as revisited by us [1,18,19].

In this sense, we developed a novel and disruptive technology to isolate human dental
pulp stem cells (hIDPSCs) from deciduous teeth [18,19]. For sharing a transcriptomic
signature with neural crest cells, the hIDPSCs naturally express and secrete high levels of
BDNF and nestin (neuronal markers), as previously reported by us [18–20]. These data
make the hIDPSCs a potential candidate for the HD treatment.

Herein, we investigated the therapeutic potential of hIDPSC for HD treatment. For
this, two different cell doses, 1 × 106 (low dose) and 1 × 107 (high dose), of hIDPSCs were
administrated though an intravenous route in Wistar rats subjected to acute treatment with
3-nitropropionic acid (3-NP)—an animal model for HD. The cells were administrated as a
single dose or three consecutive doses with one-month intervals. Our results confirmed that
the 3-NP-induced striatal lesions were a useful model for HD, as previously demonstrated
in the literature [21,22]. We also demonstrated the hIDPSCs engrafted within the cortex
and striatum of 3-NP rats, providing evidence that these cells are able to cross the BBB. In
addition, we observed an increase of BDNF levels in both the cortex and striatum of 3-NP
rats treated with hIDPSCs. This result indicates that the hIDPSCs can restore the BDNF
expression, conferring neuroprotection. Supporting this evidence, we observed a reduced
number of necrotic into the striatum of 3-NP rats treated with hIDPSCs. Quantitative
immunohistochemical analyses also demonstrated an increase in MSN markers DARPP32
and D2R in both the cortex and striatum of 3-NP rats. These data reinforce that the hIDPSCs
have a neuroprotective effect and suggest that these have a neurogenic potential. However,
further investigations are needed to confirm this neurogenic effect. Altogether, our data
provide evidence that the hIDPSCs are a promising advance therapeutic product for the
HD treatment.
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2. Materials and Methods
2.1. Ethical Aspects

All procedures employed in this study were approved by the Nuclear and Energy
Research Institute (IPEN—Instituto de Pesquisas Energetics e Nucleares) of the University
of São Paulo (USP), São Paulo, Brazil (process number 140/14). Protocols concerning exper-
imental animals’ maintenance, care and handling are by all current Brazilian legislation
and internationally recognized norms and protocols. All staff working with experimental
animals was fully accredited as staff researchers/technicians and were adequately trained
in the use of animals for experimental scientific purposes by current Brazilian regulations.

2.2. Cell Culture

The hIDPSCs used in this study were isolated from the dental pulp of deciduous teeth
of a 6-year-old individual (male), using a novel and disruptive technology developed by
Kerkis et al. [18] and protected by the US patent number US20160184366A1. The hIDPSCs
were cultivated until the fifth passage in basal medium (Dulbecco’s modified Eagle’s
medium (DMEM)/Ham’s F12, supplemented with 15% fetal bovine serum, 100 U/mL
penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine and 2 nM nonessential amino
acids, all from Gibco, Carlsbad, CA, USA) [23]. The MSC phenotype of these cells was
confirmed using the criteria defined by the International Society for Cellular Therapy
(ISCT) [24,25]. The hIDPSCs employed in this study are CD105-, CD73- and CD90-positive,
and CD45-, CD34-, CD11b- and HLA-DR-negative, as previously described by Kerkis
et al. [18]. These cells also express high levels of BDNF, as previously demonstrated [26].
The hIDPSCs employed in this study were produced by the Brazilian facility Cellavita
Pesquisas Científicas Ltda. (Valinhos-SP, Brazil) according to the good manufacturing
practices (GMP) required by the Brazilian Health Regulatory Agency (ANVISA, RDC
508/21) for advanced therapy products [23]. These cells comprise the active component of
the NestaCell®product [23].

2.3. Cell Characterization

To further characterize the hIDPSCs, there was performed the immunodetection of hu-
man nestin through indirect immunofluorescence and BDNF through immunocytochemistry.

Indirect immunofluorescence: A total of 1× 103 cells were seeded onto 1-well chamber
slides (NuncTM Lab-TekTM II Chamber SlideTM System, Thermo Fisher Scientific, Carlsbad,
USA, reference code 154453). Cells were fixed in 4% paraformaldehyde (in PBS), perme-
abilized in 0.1% Triton X-100 in PBS (Sigma-Aldrich, St. Louis, CA, USA), and incubated
with 5% bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, CA, USA) for 30 min.
Next, the hIDPSCs were incubated overnight at 4 ◦C with the primary monoclonal an-
tibodies anti-human nestin (Santa Cruz Biotechnology, Santa Cruz, CA, USA, reference
sc-23927) at a final dilution of 1:100 in PBS. Next, the cells were washed three times with
PBS for 5 min, then they were incubated for 1 h at room temperature with FITC-conjugated
goat anti-mouse at a final dilution of 1:500 in PBS. Slides were mounted using the Vec-
tashield mounting medium with 4′,6-diamidino-2-phenylindole (DAPI, Vector Laboratories,
Burlingame, CA, USA). The material was analyzed using the Carl Zeiss Axioplan Laser
Scanning Microscope (LSM 410, Zeiss, Jena, Germany) or Nikon Eclipse E1000 (Nikon,
Natori, Kanagawa, Japan). Digital images were acquired with a CCD camera (Applied
Imaging model ER 339) and the documentation system used was Cytovision v. 2.8 (Applied
Imaging Corp.—Santa Clara, CA, USA).

Immunocytochemistry: A total of 1 × 103 cells was seeded onto 1-well chamber
slides (NuncTM Lab-TekTM II Chamber SlideTM System, Thermo Fisher Scientific, Carlsbad,
CA, USA, reference code 154453). Cells were fixed in 4% paraformaldehyde (in PBS),
permeabilized in 0.1% Triton X-100 in PBS (Sigma-Aldrich, St. Louis, CA, USA), and
incubated with 5% bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, CA, USA) for
30 min. Next, the hIDPSCs were incubated overnight at 4 ◦C with the primary monoclonal
antibodies anti-human BDNF (Abcan, Cambridge, UK, reference code ab108319) at a final
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dilution of 1:100 in PBS. Next, the cells were washed three times with PBS for 5 min and
then they were incubated for 2 h at room temperature with goat anti-rabbit IgG-HRP (Santa
Cruz, reference code sc-2004) at a dilution of 1:500 in PBS. After the incubation, the cells
were washed three times with PBS for 5 min, then incubated for one minute with 3,3′-
diaminobenzidine (DAB, Dako, Hamburg, Germany). The cells were washed three times
with PBS, for 5 min. The slides were mounted using Entellan (Merck, Darmstadt, Germany).
Material was analyzed using the Nikon Eclipse E1000 (Nikon, Natori, Kanagawa, Japan).
Digital images were acquired with a CCD camera (Applied Imaging model ER 339) and
the documentation system used was Cytovision v. 2.8 (Applied Imaging Corp.—Santa
Clara, CA, USA).

2.4. 3-NP Rat Model Obtainig and Experimental Design

For this study, a total of sixty (n = 60) male Wistar rats aged 8 weeks and weighing
350–450 g was used. The animals were obtained from the Central Bioterium of Butantan
Institute, São Paulo-SP, Brazil. The animal room was maintained at a constant temperature
of 23 ± 2 ◦C, 48% humidity and on a 12/12 h light–dark cycle. Food and water were
available ad libitum. The animals were kept in the bioterium of the Genetics Laboratory
(Butantan Institute) for seven days before the experiments. All animal experiments were
performed during the light phase from 9:00 to 16:00 h.

The animal model for HD was obtained using 3-nitropropionic acid (3-NP), a toxin
produced by a number of fungal and plant species, which acts as an irreversible inhibitor
of mitochondrial succinate dehydrogenase (SDH) [22]. 3-NP has been used to induce
cell death associated with mitochondrial dysfunction and neurodegeneration, mimicking
the characteristics of HD [24,27,28]. 3-NP was purchased from Sigma-Aldrich (St. Louis,
MO, USA) and dissolved in saline, and the pH was adjusted to 7.4 with NaOH.

The rats were intraperitoneally (IP) treated with a single dose of 20 mg/kg/day of
3-NP for four consecutive days, as previously described by Colle et al. [29]. The animals
were randomized and placed into one of the following eight groups (Table 1): Experimental
groups—G0 (dedicated to cell engraftment analysis) and G1, which received a single dose
of 1 × 106 hIDPSC; G2, which received three doses of 1 × 106 hIDPSC (one per month
along three months), receiving a total of 3 × 106 cells; G3, which received a single dose of
1 × 107 cells; and G4, which received three doses of 1 × 107 hIDPSC (one per month along
three months), receiving a total of 3 × 107 cells; Control groups CG1 and CG2 received a
single (CG1) or three doses of saline (CG2, one per month), since saline is the cell vehicle
of administration. An additional control group (CG3), not treated with 3-NP (wild type),
was included.

Table 1. Experimental design, describing experimental (G0–G4) and control groups (CG1–CG3), the
number of cells administrated and the number of rats used in each assay.

Number of Rats Used in Each Assay
hIDPSC Homing Immunodetection of

Group Dose Total of Cells Vybrant Anti-hNu DARPP32, BDNF and
D2R

G0 Single 1 × 106 3 3 N/A
G1 Single 1 × 106 N/A 3 6
G2 Three 3 × 106 3 3 6
G3 Single 1 × 107 N/A 3 6
G4 Three 3 × 107 N/A 3 6

CG1 N/A N/A N/A N/A 6
CG2 N/A N/A N/A N/A 6
CG3 N/A N/A N/A 3 6

N/A—Not applied.

The first cell/saline administration occurred 24 h after the last (fourth) 3-NP injection, on
the fifth day (D5) through an intravenous route (caudal vein). For this procedure, the animals
were individually transferred to the anesthetic induction chamber (30 cm × 20 cm × 17 cm).
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Anesthesia was induced with 5% isoflurane in oxygen (2.4 L/min) for about two minutes
and maintained with 2% isoflurane in oxygen (2.4 L/min). A first group (G0) was euthana-
tized four days after the administration of 1 × 106 cells in order to verify the capability of
these cells to engraft within the brain, as an initial proof of concept. Following confirmation
of the hIDPSCs’ engraftment within the brain, the animals which received a single dose
of hIDPSC (G1 and G3) or saline (CG3) were euthanatized 30 days after the cell/saline
infusion, on day 35 (D35). The animals that received three doses of hIDPSC (G4) or saline
(CG2) were euthanatized 30 days after the last cell/saline infusion, on day 95 (D95). In order
to verify the hIDPSCs engraftment within the brain, groups G0 and G2 were euthanatized
four hours after the hIDPSC infusion, on day nine (D9). There was an additional group
(G0). The experimental design of this study is shown in Figure 1.
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Figure 1. Schematic representation illustrating the study experimental design. 3-NP—3-
nitropropionic acid, D—Day, IF—immunofluorescence and IHQ—Immunohistochemistry.

2.5. Nissl Staining

3-NP-induced neuronal damages were evaluated by staining with Nissl staining
solution, as previously described by Gao et al. [22]. For this analysis, the paraffin-embedded
rat brain was sliced into 4-µm sections. The tissue was deparaffinized and hydrated, stained
with Nissl staining solution for 10 min at room temperature, then immersed in PBS three
times for 5 min. The slides were mounted with Entellan (Merck, Darmstadt, Germany) and
analyzed by Axio Imager A1 microscopy (Carl Zeiss, Dresden, Germany) at a magnification
of 10× and 20×.

2.6. Vybrant-Labeling

In order to check the graft of the hIDPSCs within the rat brain, the cells were labeled
with the non-toxic dye Vybrant CFDA SE Cell Tracer Kit (Invitrogen, Carlsbad, CA, USA),
according to the manufacturer’s instructions. The hIDPSCs labeled were intravenous
administrated, as described in Table 1. The rat was euthanized and the brain was collected.
The brains were embedded into Tissue-Tek Optimal Cutting Temperature (OCT) compound
(Qiagen, Hilden, Germany) and sectioned (5 µm) using a cryomicrotome (Cryostat CM1100;
Leica, Wetzlar, Germany). Tissue sections were placed on poly-l-lysine-coated slides
(Sigma-Aldrich, St. Louis, CA, USA), which were incubated in cold methanol (Sigma-
Aldrich, St. Louis, CA, USA) for 15 min to decrease tissue autofluorescence. Afterward,
they were washed three times in Tris-buffered saline (TBS, 20 nM Tris and 150 nm NaCl,
pH 7.4) containing 0.05% Tween-20 (Sigma-Aldrich, St. Louis, CA, USA). Finally, slides
were mounted in an antifade solution (Vectashield mounting medium) and analyzed
by fluorescent microscopy (Axio Imager A1; Carl Zeiss, Dresden, Germany) or confocal
microscopy (LSM 510 META; Carl Zeiss). An argon ion laser set at 488 nm for FITC
(Chemicon, Temecula, CA, USA) and at 536 nm for cyanine 3 (Cy3; Chemicon) excitation
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was used. The emitted light was filtered with a 505 nm (FITC) and 617 nm (Cy3) long-pass
filter in a laser-scanning microscope.

2.7. Immunoistochemistry (IHC)

In order to confirm the graft of the hIDPSC in the rat brain, as well as to verify the
therapeutic potential of hIDPSCs, the rat brains were subjected to immunohistochemistry
using the anti-human nucleus antibody (anti-hNu, clone 235-1, Sigma-Aldrich, St. Louis,
USA, reference code MAB1281). For this, the brain samples were sectioned (5 µm), and
the tissue sections were deparaffinized using a routine technique. Then, the slides were
incubated with ammonia hydroxide (Sigma-Aldrich, St. Louis, CA, USA) for 10 min and
washed four times in distilled water for 5 min each. Next, the samples were subjected
to antigen retrieval using a pH 6.0 buffer of sodium citrate (Sigma-Aldrich, St. Louis,
CA, USA), in a water bath set at 95 ◦C for 35 min, followed by 20 min at room temperature.
After this step, the endogenous peroxidase was blocked with hydrogen peroxide (Sigma-
Aldrich, St. Louis, CA, USA) for 15 min. Next, the samples were incubated overnight at
4 ◦C with primary antibodies diluted in 5% BSA. In this analysis was used the monoclonal
anti-human nucleus (hNu) (Millipore Corporation, Billerica, MA, USA, reference code
MAB1281) to confirm the graft of hIDPSCs within the brain at a dilution of 1:20. Then, the
slides were washed three times with PBS for 5 min each and incubated for 1 h at room
temperature with the anti-rabbit IgG secondary antibody at a dilution of 1:500. Afterward,
the slides were washed three times in PBS for 5 min. Finally, diaminobenzidine (DAB;
Dako Cytomation) was applied to produce brown staining. The stained sections were
counterstained with hematoxylin (Sigma-Aldrich, St. Louis, CA, USA) and observed under
a light microscope (Axio Observer; Zeiss, Jena, Germany). This method was also employed
to verify the MSC phenotype after the cell engraftment and evaluate the expression levels of
BDNF, DARPP32 and D2R. For these analyses was used the following primary antibodies:
Anti-human BDNF (ab108319), -DARPP32 (ab40801), and -D2R (ab150532)—all from Abcan
(Cambridge, UK). These antibodies were used at a dilution of 1:200 in PBS with 5% BSA.

2.8. Indirect Immunofluorescence

In order to verify whether hIDPSC differentiated after engraftment, we assessed the
expression of CD73 and CD105 (hallmarkers of MSC) in the brain sections. For this, the
brain samples were sectioned (5 µm), and the tissue sections were deparaffinized using a
routine technique. Then, the samples were subjected to antigen retrieval using a pH 6.0
buffer of sodium citrate (Sigma-Aldrich, St. Louis, CA, USA), in a water bath set at 95 ◦C
for 35 min, followed by 20 min at room temperature. After this step, the samples were
incubated overnight at 4 ◦C with primary antibodies anti-human CD73 (ab133582) and
-CD105 (ab2529), both from Abcan (Cambridge, UK), at a dilution of 1:100 in PBS. After this
incubation, the slides were washed three time in PBS for 5 min, then they were incubated
for 1 h with the FITC-conjugated goat anti-mouse antibody at a final dilution of 1:500 in
PBS. Slides were mounted using the Vectashield mounting medium with 4′,6-diamidino-2-
phenylindole (DAPI, Vector Laboratories, Burlingame, CA, USA). Material was analyzed
using the Carl Zeiss Axioplan Laser Scanning Microscope (LSM 410, Zeiss, Jena, Germany)
or Nikon Eclipse E1000 (Nikon, Natori, Kanagawa, Japan). Digital images were acquired
with a CCD camera (Applied Imaging model ER 339) and the documentation system used
was Cytovision v. 2.8 (Applied Imaging Corp.—Santa Clara, CA, USA).

2.9. Quantitive Analysis Using Image J Software

Transversal sections of striatum and cerebral cortex from three rats (n = 3) of each
group: G1-G4 and CG1 and CG2 (Table 1) were employed for the quantitative analysis. For
this analysis, six fields of the brain interest areas (striatum and cortex) from each slide were
captured using a binocular Nikon Eclipse light microscope (Nikon, Natori, Japan) at the
bright field. Images were captured at ×20 magnification using color video camera Nikon
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CS-R 1(Nikon, Japan) attached to a computer system. Before capturing the images, the light
settings were standardized for all imaging sessions.

The Image J recent version software was downloaded from WCIF Image J (http://
www.uhnresearch.ca/facilities/wcif/imagej/installing_imagej.htm (accessed on 28 April
2022). The installed Image J software was opened and the saved image was dragged and
inserted in the software. The image was calibrated to the magnification; we clicked on the
Plugins/Spatial calibration/Microscope Scale. The objective of the microscope TL × 20
was chosen. Camera Binning was kept in 1 × 1. Then, we clicked on Global Calibration
and we gave an okay. The image was adjusted by subtracting the background using the
command “Process→ subtract background” from the file menu. The digitalized area was
submitted to the plug-in “color deconvolution” using the built-in vector HDAB, where the
staining of hematoxylin and diaminobenzidine (DAB) was separated into 3 different panels,
with hematoxylin, DAB-only image and background. After closing the hematoxylin and
the background screen, we clicked on the Image/Adjust/Threshold. Threshold 0 refers
to the darker tones of DAB and 255 to the lighter tones. We selected the tonal variation
range threshold for each sample. To quantify the selection, we clicked on Analyze/Analyze
Particles, and the software gave the percentage of the Area fraction based on a variation
range of the threshold chosen by each sample.

2.10. Statistical Analysis

Following confirmation that the data from IHC quantification are normally distributed
(using the Shapiro–Wilks test), the statistical analyses were performed by ANOVA two-
way, followed by the Bonferroni’s post hoc test (both with a significance level of 5%).
Analyses were performed using the GraphPad Prism v. 5.02 software (GraphPad Softwares,
San Diego, CA, USA)

3. Results
3.1. Expression of Nestin and BDNF by hIDPSCs

Firstly, we verified the expression of nestin (a neural crest stem cell marker [30]) and
BDNF in hIDPSCs, since these proteins are closely related to the HD physiopathology [27].
Results confirmed the expression of these markers in hIDPSCs after cryopreservation,
thawing, and before hIDPSC transplantation in the 3-NP rat model (Figure 2).

3.2. 3-NP Promoted Striatal Damages

In order to demonstrate that the intraperitoneal administration of 3-NP caused striatal
damages, the paraffin-embedded brain samples were sectioned, deparaffined, hydrated
and subjected to Nissl staining. Results confirmed the neuronal integrity in the striatum
of rats was not subjected to the acute treatment with 3-NP (CG3—wild-type, Figure 3A),
as expected. However, we verified an expressive neuronal death within the striatum of
3-NP rats (Figure 3B), confirming that the 3-NP caused striatal damages. Similar results
were also verified into the striatum of 3-NP rats treated with saline (CG1 or CG2—placebo,
Figure 3C). By contrast, we observed a reduced number of apoptotic/necrotic neurons
within the striatum of 3-NP rats treated with hIDPSCs (Figure 3D). This result suggests that
the hIDPSCs have a neuroprotective potential.

3.3. hIDPSC Homing in the HD Striatum, Cortex, and Subventricular Zone

We analyzed the capacity of the cells to pass through the blood–brain barrier (BBB)
and to engraft into target brain areas. Confocal microscopy images demonstrate the
presence of hIDPSC stained with Vybrant (green) within the striatum (Figure 4A). The cells
show association with capillary and localization in the parenchyma, acquiring different
morphologies of pericytes-like and neuron-like cells. Interestingly, two pericytes-like cells
were localized close to the capillary (Figure 4A). We also observe the embranchment of
axons in the neuron-like cell (Figure 4A). Note those neuron nuclei are light with the
nucleolus, different from pericytes-like cells nuclei, which are strongly stained.

http://www.uhnresearch.ca/facilities/wcif/imagej/installing_imagej.htm
http://www.uhnresearch.ca/facilities/wcif/imagej/installing_imagej.htm
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Figure 2. Expression of Nestin (A) and BDNF (B) in hIDPSC (A). Images show the immunodetection
of: (A) nestin (by indirect immunofluorescence) in two magnifications (20× a1 and 40× a2), as well
as its respective negative control, showing the absence of unspecific labeling of secondary antibody
(40×, a3); and (B) BDNF (by immunocytochemistry), in two magnifications (20× b1 and 40× b2),
as well as its respective negative control, showing the absence of unspecific labeling of a secondary
antibody (40×, b3). Scale bars: 25 µm. Cells in fifth passage.
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Figure 3. Nissl staining showing: (A) Neuronal integrity within the striatum of rats not treated
with 3-NP (wild-type), Necrotic neurons within the striatum of rats treated with 3-NP (B) and saline
(placebo). (C). Reduced number of necrotic neurons within the striatum of 3-NP rats treated with
hIDPSCs. (D). Imagens captures using objectives of 20× (A–C) and 10×. (D). Scale bar of 50 µm
(A–C) and 100 µm. (D). Images observed in rats euthanized at day 95 (D95).

Using the anti-human nuclear antigen, we confirm that the cells homed on the stria-
tum (Figure 4B(b1–b3)), in the subventricular zone (SVZ) (Figure 4B(b4)) and the cortex
(Figure 4C(c1–c3)). We also observed a hIDPSC graft in the striatal capillaries and striatal
parenchyma (Figure 4B(b2)). No staining was observed in the secondary antibody control
(Figure 4C(c4)), confirming the specificity of the anti-human nucleus primary antibody.

Additionally, we verified whether hIDPSC differentiated after homing. Thirty days
after hIDPSC administration, the cells, which present fibroblast-like morphology, were
positive for anti-CD105 (Figure 4D(d1,d2)) and anti-CD73 (Figure 4E(e1,e2)) antibodies
suggesting that some human cells were still undifferentiated at that time.
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Figure 4. Engraftment of hIDPSCs four days after IV administration in the striatum, cortex and
subventricular zone (SVZ). (A) Images show hIDPSC (within striatum) stained with Vybrant (green
arrows) and nuclei stained with propidium iodide (red arrows). Analysis performed at day 9 (D9).
(B,C) Immunohistochemistry demonstrates positive immunostaining for the anti-hNu antibody (black
arrows) observed within the striatum (b1–b3), SVZ (blue arrows) (b4) and cortex (c1–c3). B2 and B4
show cells immunolabeled with the anti-hNu antibody in the striatal perivascular area and subven-
tricular zone, respectively. Negative control shows the absence of unspecific labeling of secondary
antibody control for anti-human nuclei (c4). Analysis performed at day 9 (D9). Immunofluorescence
assay (in confocal microscopy) showing the expression of CD73 (D) and CD105 in the rat brain (E).
Yellow arrows demonstrate cells expressing CD73-positive (d1) and CD105-positive (e1) and, white
arrows, cells C73 (d2) and CD105 in smallest magnification (e2). These cells exhibits an usual MSC
phenotype (N). Analysis performed at day 35 (D35). Total magnification: 5× (a1–a4,b1,b4,c1,e1),
10× (c4,d2), 20× (c2) and 40× (b2,b3,c3,d1,e2). Scale bars: 5 µm (a1–a4,b2,b4,c2–c4,d1,d2,e1,e2),
10 µm (b3).

3.4. Qualitative Immunohistochemical Staining Assessment for BDNF, DARPP32 and D2R

In order to evaluate whether the hIDPSCs could increase the expression levels of
BDNF, firstly, we analyzed the expression of this neurotrophin in three different brain
areas (cortex, striatum and caudate nucleus) of rats treated and not treated with 3-NP. This
analysis was performed 30 days after the cell infusion (D35). Results showed a strong
BDNF expression in the striatum of untreated animals (CG3—Control, Figure 5A), while 3-
NP-treated and 3-NP + placebo groups almost lost BDNF expression (Figure 5B,D). In turn,
3-NP + hIDPSC animals’ striatum cells were positively stained for BDNF (Figure 5C), similar
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to that observed in control animals (Figure 5A), which were neither treated with 3-NP nor
received the hIDPSC IV infusion. BDNF expression pattern in the cortex (Figure 5E–H)
was similar to that in the striatum (Figure 5A–D): control and 3-NP + hIDPSC groups were
strongly positive for BDNF (Figures 5E and 3G). By contrast, 3-NP and 3-NP + placebo
groups were negative for this marker (Figure 5F,H). In the caudate nucleus, in the normal
animal’s group, BDNF immunostaining was strong (Figure 5I), while in the 3-NP + hIDPSC
group it was less intensive (Figure 5K). Both 3-NP-treated and 3-NP + placebo groups
revealed weak immunolabeling (Figure 5J,L).
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Figure 5. Expression of anti-BDNF antibody (black arrows) in the striatum (A–D), cortex (E–H) and
caudate nucleus (I–L) in control (A,E,I); 3-NP (B,F,J), 3-NP + hIDPSC (C,G,K) and 3-NP + placebo
animals (D,H,L), respectively. Insets in (A–C,F,G) show negative control (secondary antibody). Black
arrows indicate BDNF expressing cells. Sections are contra-stained with HE. Scale bars: 50 µm
(A,B,E,F,I–L) and 100 µm (C,D,G,H). Analysis performed 30 days after (D35) the treatment). Asterisk
indicates the enlarged areas. The asterisks indicate the areas that were analyzed in magnification.

HD pathology is marked by extensive loss of MSN that shows high DARPP32 expres-
sion, a fundamental component of the dopamine-signaling cascade. Therefore, DARPP32
can serve as a marker of neuronal loss. In this sense, we verified the DARPP32 expression
in the striatum and cortex of both 3-NP + placebo (Figure 6A,B) and 3-NP + hIDPSC
(Figure 6B,C,E,G) and CG3 animals (Figure 6D,H) groups, respectively. Strong immuno-
labeling is observed in the striatum of 3-NP + hIDPSC (Figure 6B,C) and CG3 animals
(Figure 6D). In contrast, DARPP32 immunoreactivity in the striatum (Figure 6A) and cortex
(Figure 6B) of the 3-NP + placebo group is weak. Our data suggest possible regeneration
of endogenous MSN demonstrated through the intensive expression of the endogenous
anti-DARPP32 antibody, following hIDPSC transplantation. MSN is also known to express
D2 dopamine receptors (D2R).
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The expression of D2 depends on the intracellular calcium-signaling pathway. The 
last activated through the dopamine D1-D2 receptor heteromer resulting in CaMKIIα ac-
tivation and BDNF production in striatal postnatal neurons, thus leading to enhanced 
dendritic branching. Therefore, we also evaluated D2R expression in the striatum of ex-
perimental animals in 3-NP + placebo (Figure 7A), 3-NP + hIDPSC (Figure 7B,C), and con-
trol animals (Figure 7B) groups. The expression of D2R was not observed in the striatum 
of 3-NP + placebo animals (Figure 7A). In the striatum of the 3-NP + hIDPSC group, a 
small number of endogenous neurons expressing D2R (Figure 7B,C) was already ob-
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very positive signal indicates modest recuperation of D2R expressing MSN in the stria-
tum. Previously, both receptors’ expression was shown in the rat frontal cortex [28]. Thus, 

Figure 6. Expression of the anti-DARPP32 antibody in the striatum (A–D) and cortex (E–H) in 3-NP
+ Placebo (A,E), 3-NP + hIDPSC (B,C,F,G) and in control (D,H) animals, respectively. Black arrows
indicate anti-DARPP32 expressing cells. (C,G) demonstrate high magnification of (B,F). Sections are
contra stained with HE. Scale bars: 50 µm (A,B,E,F), 25 µm (C,G) 10 µm (D,H). Analysis performed
30 days after the treatments (D35). Asterisk indicates the enlarged areas.

The expression of D2 depends on the intracellular calcium-signaling pathway. The last
activated through the dopamine D1-D2 receptor heteromer resulting in CaMKIIα activation
and BDNF production in striatal postnatal neurons, thus leading to enhanced dendritic
branching. Therefore, we also evaluated D2R expression in the striatum of experimental
animals in 3-NP + placebo (Figure 7A), 3-NP + hIDPSC (Figure 7B,C), and control animals
(Figure 7B) groups. The expression of D2R was not observed in the striatum of 3-NP +
placebo animals (Figure 7A). In the striatum of the 3-NP + hIDPSC group, a small number
of endogenous neurons expressing D2R (Figure 7B,C) was already observed. However, it
was lower than in the striatum of control animals (Figure 7B). This very positive signal
indicates modest recuperation of D2R expressing MSN in the striatum. Previously, both
receptors’ expression was shown in the rat frontal cortex [28]. Thus, we also observed the
induction of this expression in the cortex of 3-NP + hIDPSC and normal groups of animals.
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respectively. Results show positive immunostaining for anti-D2R antibody in the cortex (A) and
striatum (E) of wild-type rats, positive control, as well as in the cortex (B) and striatum (F) of 3NPA
+ hIDPSCs. The loss of D2R expression is observed in the cortex (C,D) and striatum (G,H) of rats
treated with 3NPA, as well as in rats 3NPA + Placebo, respectively. Black arrows indicate anti-D2R
expressing cells. Sections are contra stained with HE. Scale bars: (A–D,C,H) = 50 µm; (E,F) and Inset
in (B) = 10. Analysis performed 30 days (D35) after the treatments.
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4. Discussion

Cumulative evidence has demonstrated that BDNF-expressing MSCs can confer neu-
roprotection, promoting functional recovery in rodent models of Huntington’s disease
(HD) [1,3,17,31,32]. The data make these cells a useful candidate for the treatment of HD,
since to date there is no effective therapy able to stop, postpone or reverse the progression
of the disease [8,11].

Based on this, we investigated the capability of BDNF-expressing hIDPSCs to restore
the BDNF, DARPP32 and D2R expression (proteins whose expression levels are reduced
as the neurodegeneration progresses). For this, we subjected Wistar rats to a subacute
treatment with 3-NP (20 mg/Kg/day for four days), a toxin that irreversibly inhibits the
mitochondrial succinate dehydrogenase (SDH), leading to mitochondrial dysfunction and
neurodegeneration of striatal cells, mimicking the characteristics of HD [24,27,28].

Although it is impossible to fully mimic the HD pathology, since no genetically
modified nor chemically induced animal models exhibit the main clinical signal of the
disease, the chorea [1], the 3-NP has been successfully used to promote selective brain
damage that inevitably leads to striatal neurons (MSN) loss [23,33,34]. Furthermore, 3-NP’s
mechanism of action occurs through the functional blockade of complex II of the respiratory
chain, which reduces the mitochondrial membrane potential and calcium homeostasis.
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These events lead to increased oxidative stress and, ultimately, the death of striatal neurons
in a similar way to that seen in HD [31,32,35–37]. For these reasons, the 3-NP has been
extensively employed to mimic the HD neurobiological symptoms [23,33,34].

Following confirmation that 3-NP caused striatal damages, which were confirmed
by the high number of necrotic neurons verified by the Nissl staining, the animals were
intravenously treated with the hIDPSCs labelled with the Vybrant probe. For days after the
cell infusion, we showed that hIDPSC reached target brain tissues (cortex, striatum and
subventricular zone). These cells were frequently localized tightly with striatal capillaries
and in striatal parenchyma. The presence of the hIDPSCs in these areas was also confirmed
by the immunodetection of human nuclei, using the human anti-nuclei antibody. These
data confirm that the hIDPSCs cross the BBB, as previously reported in studies based on
other MSCs [15,16].

Interestingly, engrafted cells remained expressing hallmarks of undifferentiated MSC
four days after administration. These data indicate that, although the hIDPSCs retain a
remarkable in vitro potential for neuronal differentiation, they do not differentiate in vivo
to neurons.

In addition, immunohistochemical staining for BDNF, DARPP32 and D2R antibodies
demonstrated the elevated expression of these markers in striatum and cortex in experi-
mental groups (G1-G4), when compared with the control (CG1 and CG2).

Although the 3-NP animal model does not express the mHtt that, by interacting with
HAP1 and dynactin, impairs the BDNF transport along the cortico-striatal pathway [1],
we demonstrated a statistically significant reduction in the number of BDNF-, DARPP32-
and D2R-positive cells in both cortex and striatum of 3-NP rats, confirming the brain
damages produced by the toxin. However, we observed that the treatment with a low
(1 × 106 cells) or high dose (1 × 107 cells) of hIDPSCs restored the number of BDNF- and
D2R-positive cells to values statistically similar to those verified in rats non-treated with
3-NP (wild-type). By the contrast, we observed that only the higher dose of hIDPSCs
was able to increase the number of DARPP32-positive cells into the cortex. However, no
statistical difference was observed between the single or three-cell administration. In turns,
the analysis of the striatum showed that only the low cell dose increased the number
of BDNF-, DARPP32- and D2R-positive cells. Confirming the results observed for the
cortex, we did not verify statistical differences between the single or three consecutive
administrations of hIDPSCs. These results are in accordance with the literature, which
has shown that low cell doses lead to a better outcome [33,34,38]. Detailed analysis of
tested markers expression suggests that the dose of 1 × 106 hIDPSCs is enough to confer
neuroprotection though the restoration of BDNF expression. This is because the BDNF
secretion is required for the cortico-striatal neurons’ survival, and for the regular expression
of DARPP32, which is a marker of differentiated striatal MSN and is indispensable for
the dopamine-signaling cascade [39–45]. In this sense, we demonstrated that the hIDPSCs
express neuronal proteins, including nestin and BDNF. Thus, the increased expression of
BDNF verified in G2–G4 groups confirms that cells engrafted within the brain can restore
the BDNF expression, conferring a neuroprotective effect.

In HD pathology, MSN with high expression of DARPP32 is extensively lost [46,47].
Most striatal functions mediated by the MSN, which comprise 95% of the striatum and the
rest, are interneurons. MSN expresses the excitatory D1 receptor (D1R) and the inhibitory
D2 (D2R) dopamine receptor [46]. The enrichment of D2R in the matrix is protective against
dopamine excitotoxicity, providing a neuroprotective effect [48]. Thus, the DARPP32 and
D2R increase verified in G2–G4 groups not only provides evidence of the neuroprotective
effect of hIDPSCs, but also suggests that the cells can induce neurogenesis through a
BDNF-dependent manner. Supporting this hypothesis, studies already demonstrated the
upregulation of BDNF [49,50].

The concept of MSC has changed over the years. It is generally accepted that they
make bioactive, immunomodulatory and trophic (regenerative) therapeutic molecules.
Trophic mechanisms of MSC can reduce chronic inflammation, inhibit apoptosis and
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scar formation, and stimulate mitosis of tissue-intrinsic progenitors, thus remodeling the
damaged tissue [51,52]. BDNF secreting cells are indicative for treating neurodegenerative
diseases, especially for HD [53]. Reduction in BDNF expression jeopardizes the long-
term survival and morphology of striatal medium spiny neurons (MSN), causing striatal
degeneration [29,54,55]. Since neuronal death is a significant cause of HD symptoms, BDNF
is the potential not only to maintain neuronal health (neuroprotection), but also to stimulate
the growth of new neurons (neurogenesis), which has placed BDNF and BDNF-secreting
cells as promising options for HD treatment [12].

Based on these data, we investigated the safety of a low dose of hIDPSCs in patients
with HD (phase I clinical trial—available online: https://clinicaltrials.gov/ct2/show/
NCT02728115I (accessed on 28 April 2022). The results of this clinical trial demonstrated
that the hIDPSCs are well tolerated and improve the HD motor dysfunctions [56], justifying
the Phase II clinical trail (available online: https://clinicaltrials.gov/ct2/show/NCT03252
535 (accessed on 28 April 2022), which is under analysis.

5. Conclusions

Our study shows that intravenous transplantation of BDNF-secreting hIDPSC helps
restore the endogenous BDNF expression and the expression of MSN markers (DARPP32
and D2R) in the striatum and cortex of the HD rat model. Loss of MSN is a principal cause
of death of HD patients. Therefore, hIDPSC intravenous transplantation is a promising tool
for the treatment of HD. However, to confirm this statement, clinical studies are needed.
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