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Neuronal signals are usually characterized in terms of their discharge rate, a description
inadequate to account for the complex temporal organization of spike trains. Complex
temporal properties, which are characteristic of neuronal systems, can only be
described with the appropriate, complex mathematical tools. Here, I apply high order
structure functions to the analysis of neuronal signals recorded from parkinsonian
patients during functional neurosurgery, recovering multifractal properties. To achieve
an accurate model of such multifractality is critical for understanding the basal ganglia,
since other non-linear properties, such as entropy, depend on the fractal properties of
complex systems. I propose a new approach to the study of neuronal signals: to study
spiking activity in terms of the velocity of spikes, defining it as the inverse function of
the instantaneous frequency. I introduce a neural field model that includes a non-linear
gradient field, representing neuronal excitability, and a diffusive term to consider the
physical properties of the electric field. Multifractality is present in the model for a range
of diffusion coefficients, and multifractal temporal properties are mirrored into space. The
model reproduces the behavior of human basal ganglia neurons and shows that it is like
that of turbulent fluids. The results obtained from the model predict that passive electric
properties of neuronal activity, including ephaptic coupling, are far more relevant to the
human brain than what is usually considered: passive electric properties determine the
temporal and spatial organization of neuronal activity in the neural tissue.

Keywords: structure function, Parkinson’s disease, neuronal activity, turbulence modeling, neuronal modeling,
basal ganglia, complexity, non-linear dynamics

INTRODUCTION

The basal ganglia are a circuit of densely interconnected subcortical nuclei, whose disease is related
to human movement disorders (Obeso et al., 2008). Current models of the basal ganglia are partly
successful in the prediction of neurophysiologic alterations occurring in movement disorders,
including Parkinson’s disease. However, no current model allows to predict and control deep brain
stimulation (DBS), one of the major therapeutic approaches to Parkinson’s disease (Montgomery,
2016). The lack of a description of the complex properties of basal ganglia neuronal activity might
be one cause of this failure. The fundament of the classic model of pathophysiology of Parkinson’s
disease lies on an excessive discharge rate of the output nuclei of the basal ganglia: the globus
pallidus interna (GPi), and substantia nigra reticulata (SNr) (Albin et al., 1989; DeLong, 1990).
In primates, GPi and SNr neurons fire in a tonic manner, keeping the motor thalamus inhibited,
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and momentary reductions of their discharge rate facilitate
movement. In humans, movement onset and velocity are
positively correlated to the rate of discharge of the motor
thalamus, and negatively to the rate of discharge of the GPi
and SNr (Utter and Basso, 2008). Although these observations
seem to confirm the classic model, evidence obtained during
functional neurosurgery in patients with Parkinson’s disease is
contradictory, since high frequency DBS increases the rate of
discharge of the GPi instead of lowering it (Anderson et al.,
2003; Montgomery, 2006; Andres and Darbin, 2017). Applying
microdialysis techniques it has been shown that clinically
effective DBS increases cyclic guanosine monophosphate (cGMP)
in the putamen and GPi, supporting an increase of activity in
these nuclei (Galati et al., 2006; Stefani et al., 2011a,b). This
suggests that other features of neuronal activity than the rate
of discharge need to be taken into account to understand the
origin of parkinsonian symptoms and their amelioration by DBS.
In summary, the predictions of the classic model of the basal
ganglia are inconsistent with the effects of DBS and ablative
surgery, raising concerns on the validity of the rate of discharge
as a measure of the state of the basal ganglia (Tang et al., 2005;
Montgomery and Gale, 2008).

Non-linear time series analysis has inspired an alternative
view. A growing body of evidence indicates that complex
properties, in particular fractality, are crucial for the
understanding of basal ganglia pathophysiology (Obeso et al.,
2000; Zheng et al., 2005; Darbin et al., 2006; Rasouli et al., 2006;
Lim et al., 2010; Andres et al., 2011a; Alam et al., 2015). Complex
and non-linear temporal properties are present in basal ganglia
spike trains from rodents, primates and patients with movement
disorders (Li et al., 2008; Lim et al., 2010; Hohlefeld et al.,
2012, 2015; Darbin et al., 2013). The most popular non-linear
measure for the characterization of parkinsonian spike trains is
entropy, which diminishes due to pharmacologic or stimulation
treatment, and increases due to alertness (Lafreniere-Roula et al.,
2010; Lim et al., 2010; Andres et al., 2014a; Alam et al., 2015;
Darbin et al., 2015). Importantly, complex properties cannot be
understood isolated, but they relate to each other. For instance,
entropy can be estimated wrongly if the multifractality of a
system is not considered (Costa et al., 1997; Lyra and Tsallis,
1998; Latora et al., 2000). Hence the need to find methods that
can be used to study complexity at this level, and equations to
reproduce it.

This paper investigates some similarities between the fractal
organization of spike trains from parkinsonian neurons and
turbulent fluids. It presents a descriptive study of human
pathology and a simulation study. In previous work, I
hypothesized that neurons produce signals with correlations
on different scales (Andres et al., 2014b). This hypothesis
gives a reason to analyze high order structure functions. Since
structure functions of order M remove polynomials of order
M-1, low order linear processes are progressively eliminated by
the analysis, highlighting the effect of stationary, high order,
complex dynamics (Simonetti et al., 1985). This method was
developed initially to describe the behavior of turbulent fields in
the inertial range, and was used successfully both in experimental
and simulation studies (Kolmogorov, 1941; Benzi et al., 1993;

Briscolini et al., 1994). Later structure functions were applied
to the study of physiologic signals (Lin and Hughson, 2001;
Nanni and Andres, 2017). Although the length of the time series
analyzed must increase depending on the time lag studied, the
study of structure functions is robust to short time series in
comparison to other tools (Schulz-DuBois and Rehberg, 1981;
Van de Water and Herweijer, 1999; Monin and Yaglom, 2013;
Nanni and Andres, 2017). Time series of a length of thousands
of data points have been analyzed with high order structure
functions in different fields, and it was shown that this is a suitable
method to look for non-linearity in the exponent function, i.e., to
distinguish monofractality from multifractality (Yu et al., 2003;
Huang et al., 2011). The paper is organized as follows. First it is
shown that multifractality can be measured in neuronal signals
from the GPi analyzing structure functions of increasing order.
Then a neural field model is introduced inspired by Burgers’
equation, a well-known equation in the field of fluid dynamics
(Burns et al., 1998). Previous evidence indicated that this kind
of equations could be useful to study mathematical properties of
neuronal activity, which is analyzed here (Andres et al., 2011b).
The model is based on physical properties of neurons, and it
captures essential features of neuronal activity of the human
brain, reproducing multifractality as observed in the neuronal
activity of the human, parkinsonian basal ganglia.

METHODS AND RESULTS

Patients and Clinical Recordings
Six patients fulfilling the clinical criteria of the United Kingdom’s
Parkinson’s Disease Society Brain Bank for idiopathic Parkinson’s
(UK-PDS-BB) disease, Hoehn and Yahr (1967) IV, underwent
stereotactic neurosurgery and were included in this study. All
patients were on chronic treatment with L-DOPA, presented
similar motor affectation, with severe dyskinesias and motor
fluctuations, and fulfilled the Core Assessment Program for
Surgical Interventional Therapies in Parkinson’s Disease
(CAPSIT) criteria for inclusion in the surgery program (Defer
et al., 1999). All patients signed informed consent prior to
the procedure, previously reviewed and approved by the
institutional ethics committee, and were without medication
at the time of the surgery and during data acquisition. Age,
gender, and other details are not shown to protect patients’
privacy.

In total, 22 GPi recordings obtained from 6 patients were
analyzed. Details about the recording procedure have been
already published elsewhere (Andres et al., 2011a). Briefly,
microrecording, stimulation, and neurosurgical procedures were
performed in patients awake, under local anesthesia. Surgical
targets were planned employing magnetic resonance imaging
(MRI) and using a Leksell stereotactic system (Series G, Elekta,
Sweden). Microrecordings of neuronal activity were obtained
only during the surgery, after the GPi was identified by
an expert. Platinum/iridium (Pt/Ir 80/20%) microelectrodes
with nominal impedance of 0.8–1.2 megohms (mTSPBN-LX1,
FHC Inc.) were used. A differential amplifier with a built-in
impedance meter (FHC IS-AM-00-01 Iso-Xcell 3 Amplifier) and
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an isolated stimulus generator (FHC IS-PL-06 Isolated Bipolar
Pulsar Stimulator; FHC, Bowdoinham, ME, United States) were
connected to a preamplifier remote probe mounted onto a
motorized microdrive (FHC 65-00-1 Stepper Drive and ST-
M0-00 TMS Controller), located near the electrode tip to
minimize pickup of electrical noise. A dedicated acquisition
system (1401plus, CED) was employed to amplify, and digitize
the signal, filtering with second order 300–5,000 Hz bandpass
and 50 Hz line notch analog filters. The sampling rate was
50 kHz. The total amplification including probe was set at gain
×10000 (checked with a built-in calibration signal of 1 mV at the
beginning of each surgery).

Signal Processing
Signals were processed off-line. To obtain single cell recordings,
spikes were extracted from raw signals and separated into
classes using wavelet analysis and clustering (Quiroga et al.,
2004; Andres et al., 2014a). From these single cell data, time
series of interspike intervals (ISI) were constructed. Time series
had a mean length of 5668 ± 773 ISI (mean ± standard
error of the mean, SEM). From these time series, the
temporal structure function was computed as follows. An
interval I(t) is defined as the tth ISI, which is used to
calculate the increment 1I(τ) = I(t+ τ)− I(t), being τ the

time lag, between 1 and 1000. The temporal structure function
Sq(τ) is

Sq(τ) = 〈|1I(τ)|q〉, (1)

where 〈·〉 is the statistical average, and q is the order of the
structure function, an integer between 1 and 30. Next, Sq was
smoothed by applying a running average over a 30 points window
to obtain a smoothed structure function, S

∗

q (30 points shorter
than Sq). The behavior of interest here is the scaling behavior of
S
∗

q(τ). Given the general relationship

S
∗

q(τ) ∼ τζ(q), (2)

the scaling exponent is a function, ζτ(q), which defines the fractal
properties of the signal under study. For random processes,
ζτ(q) = 0. In the case of monofractals the exponent function
grows linearly, ζτ(q) = qζ(1). If the signal is multifractal, ζτ(q)
is a non-linear function (Lin and Hughson, 2001). Note that
different authors use different notations. The function that is
called here ζτ(q) is called τ(q) in Touchette’s work, according
to whom the spectrum of singularities f(α) does not need to
be concave (Touchette and Beck, 2006). A concave f(α) can
be calculated as the Legendre transform of ζτ(q), whereas a
not concave f(α) cannot. In any case, a concave ζτ(q) implies
multifractality.

FIGURE 1 | Multifractal spectra of human neurons. Temporal multifractal spectra of sample neuronal recordings, obtained from the globus pallidus interna (GPi) of
patients with Parkinson’s disease with the structure function method. The non-linearity of ζτ(q) indicates multifractality. The function ζτ(q) is calculated from temporal
structure functions of increasing order q, Sq(τ). Since structure functions are built from time series of neuronal activity, the spectra indicate multifractal organization in
the temporal domain.
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FIGURE 2 | Computer simulations. Left column: Time evolution of the velocity of spikes, u(x,t), as the diffusion coefficient δ increases (from top to bottom), with time
on the vertical axis and space on the horizontal axis. White areas represent the parts of the integration domain where the module of the velocity of spikes is below an
arbitrary limit (108), in opposition to black areas, where it is higher than this limit. As the diffusion coefficient increases, white areas are enlarged, as the total velocity
diminishes across the integration domain. Middle column: Sample temporal multifractal spectra ζτ(q) obtained from temporal structure functions of increasing order,
at fixed spatial points. Non-linearity indicates temporal multifractality. Right column: Sample spatial multifractal spectra ζx(q) obtained from spatial structure functions
of increasing order, at fixed times. Non-linearity indicates spatial multifractality.

To find ζτ(q), log(S
∗

q(τ)) vs. log(τ) was considered, and a
linear (scaling) region was looked for. The scaling region was
defined as the longest range of τ fitting a linear function with
non-zero slope (ζ 6= 0), for at least 1 ≤ q ≤ 10. Linear regressions

were considered acceptable if R2
≥ 0.6, and regressions with

regression coefficients smaller than that were discarded. A scaling
region of the temporal structure function was found for a
minimum range of 1 ≤ q ≤ 10 in every neuron. In 15 neurons,
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the fitting was sufficiently good for q up to 30 (qmax = 24± 2,
mean ± SEM). The length of the scaling interval over τ was 79
± 25; mean± SEM.

Results for the analysis of neuronal recordings obtained from
the patients with Parkinson’s disease are shown in Figure 1.
A multifractal organization of spike trains was found in 82% of
neurons, evidenced by non-linearity of the temporal exponent
function (ζτ(q)), obtained from structure functions of increasing
order.

Model and Simulations
To reproduce the behavior observed in the clinical data, a model
is introduced that takes the form of a neural field equation, as
follows:

∂u
∂t
+ u

∂u
∂x
= δ

∂2u
∂x2 + aW, (3)

where u(x, t) represents the velocity of spikes (a function of time
t and space x), δ is a diffusion coefficient and W is a stochastic
drive with amplitude a.

The model describes neuronal activity in terms of the velocity
of spikes. While spikes travel with constant velocity along axons,
the same does not hold for neural tissue or neural networks at
larger scales. Indeed, consider the following simplified situation.
Take a single spike S that arrives to a neuronal soma whose
membrane potential V is below the triggering threshold ϑ. If this
spike induces an excitation with an amplitude e in the neuron,
such that the V+ e > ϑ, then the neuron will fire in response,
which is equivalent to saying that the spike S has traveled through
the neuron (a node of the network). Importantly, the condition
V+ e > ϑ can be satisfied for a range of potentials V and, since
summation is a time-consuming mechanism, the spike triggered
in response to the excitation e will be fired faster for membrane
potentials that are closer to the threshold, giving place to a
higher velocity of transmission u. Not only is velocity variable,
but it is non-linearly so: the process of summation is typically
a non-linear function of time, introducing non-linear variability
in the profile of u. Even more, due to the close relation between
the variables u (velocity of spikes) and f (neuronal frequency),
it is expected that any non-linearity of u will be reflected on
the time series of interspike intervals. The relation between
both variables is simple: since u = 1x/1t and f = 1/1t, then
u = f ·1x. Consequently, for distances 1x = 1 the module of the
velocity |u| has the same value than the frequency. Regarding the
time intervals between spikes (interspike intervals I, ISI), they are
equal to the inverse of the instantaneous frequency of discharge,
and therefore |u| = 1/I.

Computer simulations were run with custom MATLAB
and R code. The model was studied numerically in 1D. The
discretization scheme selected was a Crank-Nicholson scheme,
which is suitable for this kind of study (Kadalbajoo and Awasthi,
2006). The space steps and time steps were 1x = 1t = 0.001,
and u(t) = 0 at the boundaries of the spatial domain. The initial
condition considered was a random distribution of u(x) between
−1 and 1, with a power spectrum obeying the scaling law
P(ω(u)) = ωβ, where β < 0. Following Hayot and Jayaprakash
(1996), the same kind of colored noise W was used as a drive

to the equation, with an amplitude a = 10 −6 . The temporal
evolution of u(x) was studied for 1000 time and space steps
and for a range of diffusion coefficients 10−3 < δ < 0.11, varying
δ in increments of 0.02. To make the data obtained from the
model more directly comparable to clinical data, the inverse
of the absolute value of the velocity was considered, obtaining
a variable equivalent to I(x, t). This variable I(x, t) = 1

|u| was
analyzed applying the same algorithm that was described in point
2.2 for the analysis of clinical ISI time series to obtain a temporal
structure function Sq(τ) at fixed points in space. Finally, a spatial
structure function Sq(X) was computed in a similar manner, but
considering adjacent points of u for fixed times. Scales between
1 and 50 were used to compute the structure functions both in
space and time. A multifractal spectrum was looked for both
in the space (ζX(q)) and time domains (ζτ(q)), by analyzing the
behavior of Sq(τ) ∼ τ(q) and Sq(X) ∼ X(q) for q varying between
0 and 2 in steps of 0.1.

The diffusion coefficient is the critical parameter in the model.
Figure 2 (left column) shows the results of computer simulations
for increasing diffusion coefficient δ. At the white areas the
module of the velocity of spikes (equivalent to frequency) is
lowest, 1

|u(x,t)| ≥ 108, in opposition to the black areas, where it
is highest. As the diffusion coefficient increases, white areas are
enlarged, as the total area of high velocity diminishes. At the same
time the whole integration domain becomes more homogeneous,
with individual areas of high velocity becoming wider. This
indicates that diffusion not only contributes to the dissipation
of energy (lowering the global velocity of spikes transmission),
but it also modifies the temporal and spatial organization of the
neuronal activity across the neural field. Importantly, hallmarks
of multifractality appear both in space and time for the whole
range of δ investigated. The middle and right columns of Figure 2
show typical examples of the temporal and spatial multifractal
spectra obtained from the model, ζτ(q) and ζX(q), respectively.
Multifractality is characteristic of the model, with non-linear
exponent functions in the spatial as well as temporal domains.

CONCLUSION

In the neural field studied, complex geometrical properties
arise from a combination of diffusive properties, a gradient
field and a stochastic drive, in a manner similar to that of
fluids undergoing turbulence. While this is an analogy, and
any physical implications should be considered with care, some
inferences might be interesting. For instance, the model provides
a mechanism for the generation of the complex patterns observed
in parkinsonian neuronal activity, i.e., that high-pass filtering
of turbulent-like velocity signals produces intermittent bursts
in non-linear systems with stochastic drive, such as the present
one (Frisch and Morf, 1981). Here the stochastic drive can
be interpreted as a high dimensional environmental input
to the neural network, but the gradient field represents an
intrinsic property of the network, i.e., neuronal excitability at
a specific point of space, determining the change of the spikes’
velocity. Regarding the diffusive term, diffusive properties are a
physical consequence of neuronal processes, given the diffusive
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nature of electric fields. Previous modeling work on the basal
ganglia showed that a diffusion coefficient is a critical parameter
for the control of information transmission and information
deterioration in the parkinsonian GPi (Andres et al., 2014b).
However, the role of these so-called passive electric properties
of neuronal activity is not usually considered in neurophysiology
studies, which more commonly focus on spiking activity solely.
In the neural field introduced here: (1) multifractality of
neuronal spike trains is related to diffusive properties, and (2)
multifractality of temporal activity is reflected on the spatial
domain. The model predicts that passive (diffusive) properties of
neuronal activity determine the structure of temporal and spatial
neuronal activity in the basal ganglia, and must be considered in
the study and treatment of movement disorders.
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