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Abstract

Inflammatory responses may lead to tissue or organ damage, and proinflammatory peptides (PIPs) are signaling peptides that
can induce such responses. Many diseases have been redefined as inflammatory diseases. To identify PIPs more efficiently, we
expanded the dataset and designed an ensemble learning model with manually encoded features. Specifically, we adopted a more
comprehensive feature encoding method and considered the actual impact of certain features to filter them. Identification and
prediction of PIPs were performed using an ensemble learning model based on five different classifiers. The results show that the
model’s sensitivity, specificity, accuracy, and Matthews correlation coefficient are all higher than those of the state-of-the-art models.
We named this model MultiFeatVotPIP, and both the model and the data can be accessed publicly at https://github.com/ChaoruiYan019/
MultiFeatVotPIP. Additionally, we have developed a user-friendly web interface for users, which can be accessed at http://www.bioai-
lab.com/MultiFeatVotPIP.
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Introduction
Inflammation represents the host tissue or organ response to
detrimental stimuli and is characterized by various outcomes,
including functional impairment at the stimulation site [1],
localized vasodilation, and fever [2]. Cytokines are secretory
proteins that facilitate intercellular communication and regulate
key physiological processes including immune responses, inflam-
mation, and cell proliferation. Cytokines are produced by various
cells, including immune, inflammatory, and other tissue cells
[3]. By acting on specific receptors, they influence the function
and behavior of target cells [4]. Cytokines can be classified
into proinflammatory signals—proinflammatory cytokines
that promote the inflammatory response process, and anti-
inflammatory signals—anti-inflammatory cytokines that inhibit
the process [2]. The release of proinflammatory cytokines in
response to tissue damage or infection initiates an inflammatory
response. These cytokines promote vasodilation, migration,
and activation of white blood cells and the release of other
inflammatory mediators, ultimately leading to inflammation.
Ongoing research on inflammatory diseases has led researchers
to categorize several conditions including depression [5], obesity
[6], heart disease, and Alzheimer’s disease [7] as inflammatory. In
this context, an increasing number of researchers have realized
that studying the mechanisms underlying inflammation is
crucial.

Peptides that induce proinflammatory cytokines are referred
to as proinflammatory peptides (PIPs) and are considered

potential therapeutic candidates for alleviating and curing
various diseases [8–10]. Current traditional experimental methods
for identifying specific peptides have drawbacks, including time
consumption, high costs, and challenges in high-throughput
applications. Hence, researchers prefer sequence-based com-
putational approaches to screen potential candidates before
experimental verification to enhance efficiency and reduce costs
[11, 12]. Tools for predicting the pro-inflammatory response to
inducing peptides are limited, with only a few available tools,
such as the ProInflam method proposed by Gupta et al. [10],
the Proinflammatory Inducing Peptides - Ensemble Learning
(PIP-EL) method by Manavalan et al. [13], and the ProIn-Fuse
method by Khatun et al. [14]. The ProInflam and ProIn-Fuse
methods employ the Support Vector Machine (SVM) [15, 11]
and Random Forest (RF) [16, 17] classifiers, respectively, for
PIP prediction, whereas PIP-EL utilizes an ensemble learning
strategy. Ensemble learning, through the integration of multiple
algorithms, improves prediction accuracy and stability, making
it highly effective for complex bioinformatics challenges. These
methods have been used extensively for peptide identification. For
example, Hongwu et al. created an ensemble model combining
the Light Gradient Boosting Machine (LightGBM) and logistic
regression for Antimicrobial Peptide (AMP) prediction that yielded
positive outcomes [18]. Ke et al. employed an ensemble of four
classifiers for precise prediction of therapeutic peptides [19]. With
the continual updating of the Immune Epitope Database (IEDB)
[20] and further research, there is hope for more tools based on
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new technologies and methodologies to be developed, improving
and enriching the capability to predict the proinflammatory
response to inducing peptides. These new tools may integrate
more bioinformatics and machine learning algorithms, leveraging
large datasets for training and validation to enhance the accuracy
and reliability of predictions.

To achieve this goal, we developed a new computational
method called MultiFeatVotPIP to assist in the preliminary
prediction of PIPs using computational techniques. In this study,
we created a nonredundant dataset that was divided into training
and independent test sets. We then encoded the raw peptide
sequence data using various encoding methods such as dipeptide
deviation from expected mean (DDE), dipeptide composition
(DPC), Amino Acid index (AAindex), amino acid composition
(AAC), and grouped di-peptide composition (GDPC). We further
applied the recursive feature elimination (RFE) strategy to
select the most relevant features, which were subsequently
used to train and predict the classification models. Finally, we
integrated five classifiers for prediction: AdaBoost, XGBoost,
RF, Gradient Boosting Decision Tree (GBDT), and LightGBM. Our
model demonstrated superior performance in several key aspects
compared to current state-of-the-art (SOTA) methods.

Methods and materials
Dataset
The IEDB [20] serves as an exhaustive resource specifically crafted
for the aggregation, structuring, and dissemination of antigen
and immune epitope information. The primary aim of the IEDB
is to offer an integrated platform that assists researchers in
accessing and sharing immune system-related data. Information
in the database is pertinent to areas such as immunology, vaccine
development, and immunotherapy.

Peptides triggering proinflammatory cytokines, known as PIPs,
include cytokines like IL-1, IL-2, IL-12, IL-17, IL-18, IFN-γ , and TNF-
α. In human and mouse T-cell experiments, peptides that induce
proinflammatory cytokines are classified as having a positive
proinflammatory effect. Based on previous studies, we found
that different ranges of proinflammatory cytokines were used
during dataset collection. The PronIn-Fuse and ProInflam meth-
ods limited the range of proinflammatory cytokines to IL-1α,
IL-1β, TNF-α [21, 22], IL-12, IL-18 [23], and IL-23 [24]. In con-
trast, the PIP-EL method employs a broader range of cytokines,
including IL-6, IL-8 [25], and IL-17 [26], which has been vali-
dated in various studies. Therefore, to ensure that our model
is more representative of real-world conditions and possesses
greater robustness, we adopted the same range of proinflam-
matory cytokines as the PIP-EL method. Additionally, consid-
ering that the dataset provided by the PIP-EL method was no
longer accessible and that the IEDB database was updated in
2018, we recollected the dataset. We searched the IEDB database
using the nine proinflammatory cytokines (IL-1α, IL-1β, IL-6, TNF-
α, IL-12, IL-23, IL-8, IL-18, and IL-17) as keywords, from both
human and mouse species. Peptides containing any of these nine
proinflammatory factors were considered positive, whereas those
not containing any of them were considered negative. Peptide
sequences outside the 5–25 length range were deemed outliers
and were excluded, focusing on sequences within this range in
our candidate dataset [10]. We then applied CD-HIT to reduce
redundancy and achieved a dataset sequence identity threshold
of 0.60 [27]. The collected dataset was divided into training and
test datasets. Given the necessity of a comparison with the current
SOTA model, we excluded the data used for training the SOTA
model from the independent test set. This step was performed to

Table 1. Dataset composition.

PIP
(train)

n-PIP
(train)

PIP
(test)

n-PIP
(test)

ProIn-fuse (SOTA) 607 1098 134 156
MultiFeatVotPIP 1245 1627 171 171

ensure the fairness and validity of the comparative experiment.
Ultimately, we obtained 2872 training samples and 342 testing
samples. The training dataset contained 1245 positive and 1627
negative samples, whereas the testing dataset included 171 posi-
tive and 171 negative samples. The detailed dataset information is
presented in Table 1. The training and independent datasets used
in this study are available at https://github.com/ChaoruiYan019/
MultiFeatVotPIP.

Architecture of MultiFeatVotPIP
The workflow of MultiFeatVotPIP is shown in Fig. 1. Initially, data
were collected from the IEDB database, followed by preprocessing
and partitioning to acquire the training and test datasets used
in our study. Subsequently, the data underwent feature encoding,
in which they were manually encoded in five distinct ways using
iLearnPlus [28, 29] and integrated into a single feature space, pre-
liminarily encoding each peptide feature into a 1345-dimensional
feature vector. Second, considering feature reduction, we utilized
an RF to determine the importance ranking of features and per-
formed RFE based on feature importance, ultimately selecting the
top 490 features as the final feature space for peptide sequences
[30]. Finally, we employed five base learners for learning and
obtained the final prediction outcomes using a soft-voting ensem-
ble strategy.

Feature representation
Our peptide sequences consist of 20 amino acids, represented by
the abbreviations A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y. To transform amino acid sequence data into numerical rep-
resentations for machine learning classification, we utilized five
peptide sequence feature-encoding methods: AAC, DPC, AAindex,
DDE, and GDPC, creating a 1345-dimensional mixed feature space.
Adopting various feature-encoding methods enriches the feature
space. Table 2 lists all the feature-encoding methods used.

Amino acid composition
The AAC feature-encoding method produces a 20-dimensional
feature vector. These dimensions correspond to the proportion of
each of the 20 amino acids in a peptide. The formula is as follows:

AAC(i) = N(i)
N

(1)

where N(i) refers to the count of the ith type of amino acid among
the 20 amino acids, and N denotes the length of the peptide
sequence.

Dipeptide composition
The DPC describes the composition of dipeptides, each consisting
of two amino acids. This represents the distribution of dipeptides
within the peptide sequence. The DPC was calculated as the ratio
of specific dipeptides to the total number of possible dipeptides
(400 combinations), normalized between 0 and 1. The formula for
DPC is:

cDPC(i) = N(i)
Ntotal

(2)
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Figure 1. Workflow diagram of the MultiFeatVotPIP model. (A) Data collection and preprocessing. (B) Feature encoding. (C) Feature selection. (D) Model
training and ensemble learning.

where N(i) is the occurrence number of a specific dipeptide i in
the sequence, and Ntotal is the total number of possible dipeptide
occurrences in the sequence (for nonoverlapping dipeptides, Ntotal

equals the sequence length minus 1). The DPC feature yielded
a 400-dimensional vector, with each dimension representing a
specific dipeptide.

Amino Acid index
The AAindex encoding method was based on the amino acid
index database, which contains various physicochemical prop-
erties (PCPs) of amino acids. For each property, the database
provided numerical values for 20 standard amino acids. To encode
the peptide sequences, the AAindex database was queried to

retrieve the relevant PCPs of each amino acid in the sequence.
Properties with "NA" values are excluded, resulting in a feature
vector. Ultimately, this method yielded a 500-dimensional feature
vector representing the combined PCPs of the amino acids in the
peptide [31].

Dipeptide deviation from expected mean
The DDE encoding method quantifies the compositional proper-
ties of dipeptides in protein sequences by measuring the deviation
in the observed frequency of each dipeptide from its expected
mean value. This method generates a 400-dimensional feature
vector, as there are 400 possible dipeptides formed by 20 stan-
dard amino acids. The calculation process involved the following
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Table 2. The five manual feature encoding methods used and their encoding dimensions.

Feature descriptor Dimension Description Reference

Amino acid composition
(AAC)

20 Describes the proportion of amino acids in peptides, focusing on capturing the overall
compositional features of peptides.

[31]

Dipeptide composition
(DPC)

400 Describes the composition of dipeptides, focusing on capturing the interactions of
neighboring amino acids to predict functions.

[31]

Amino Acid Index
Database (AAindex)

500 Based on the Amino Acid index database, this method encodes various physicochemical
properties of amino acids, producing a feature vector that represents the combined
physicochemical properties of the amino acids in the peptide.

[32]

Dipeptide Deviation from
Expected Mean (DDE)

400 Measures how much the observed frequency of each dipeptide deviates from its
expected mean value, generating a feature vector that captures the compositional
properties of dipeptides.

[33]

Grouped dipeptide
composition (GDPC)

25 Categorizes amino acids into five groups based on their physicochemical properties and
calculates the frequency of dipeptides formed by these groups, yielding a
25-dimensional feature vector.

[34]

steps:

Dc(i) = ni

N
(3)

TM(i) = Ci1

CN
× Ci2

CN
(4)

TV(i) = TM(i) × (1 − TM(i))
N

(5)

DDE(i) = DC(i) − TM(i)
√

TV(i)
(6)

where niis the frequency of dipeptide i in the sequence, and N
is the total number of dipeptides in the sequence (the sequence
length minus 1), Ci1 and Ci2 are the counts of codons for the first
and second amino acids in dipeptide i, respectively, and CN is
the total number of codons, excluding stop codons (61 codons).
The resulting DDE feature vector for a peptide sequence PPP is
represented as

DEEp = {DDE(1), DDE(2), . . . , DDE(400)} (7)

Grouped Di-Peptide Composition
The GDPC encoding method categorizes the 20 standard amino
acids into five distinct groups based on their PCPs [32]. These
groups were defined as follows: aliphatic, aromatic, positively
charged, negatively charged, and uncharged. The GDPC method
involves calculating the frequency of dipeptides formed by these
groups, resulting in 25 descriptors. The descriptors were com-
puted using the following formula:

GDPC = NRiRj

L−1
(8)

where NRiRj (1 ≤ i, j ≤ 5) represents the number of occurrences of
the residue pair RiRjin the sequence, where Ri and Rj are amino
acids belonging to one of the five groups. L is the sequence length.
The GDPC method ultimately yields a 25-dimensional feature
vector because there are 5 × 5 = 25 possible pairs of five groups.

Feature optimization
In our model, we employed five diverse manual encoding methods
to enhance the feature space, enabling a more thorough repre-
sentation of the PIPs’ characteristics. However, adopting these
diverse feature-encoding methods significantly increases data

dimensionality. High-dimensional feature spaces increase the
computational complexity and may introduce noise, potentially
diminishing the generalization ability of the model. To address
this challenge, we implemented a feature selection strategy
to refine the feature space. This approach not only simplifies
the model and shortens the training times but also boosts the
prediction accuracy.

In our study, we employed RF, a robust ensemble learning
method, to evaluate feature importance. The RF model provided
a contribution score for each feature, indicating its impact on
the predictive performance. We then applied an RFE strategy,
integrating parameter search and performance evaluation, to
sequentially remove less critical features based on their impor-
tance scores [33]. This iterative process was terminated when
∼490 features were retained, yielding the optimal performance of
the model.

Machine learning method
The MultiFeatVotPIP model incorporates five core learners:
AdaBoost [34], XGBoost [35, 36], RF [37], GBDT [38], and LightGBM.
By integrating these learners, our goal is to harness their
combined strengths and create a robust classifier for PIPs. For
fine-tuning, we used a grid-search strategy to optimize the
hyperparameters. Cross-validation ensures the generalizability
of the hyperparameter tuning and minimizes overfitting risks
[39].

To boost the predictive power of our model, we employ a voting
ensemble strategy [38], integrating five core learners. In ensemble
learning, the voting strategy is a meta-algorithm that combines
predictions from multiple models to produce more accurate fore-
casts and is widely adopted in the field of bioinformatics [40].
We implemented soft voting, which differs from hard voting in
that it aggregates probability estimates from each model and
selects the class with the highest average probability as the final
prediction. Soft voting leverages the confidence level of each
learner’s prediction, thereby providing a more nuanced and often
more accurate final decision, particularly in the case of diverse
models such as AdaBoost, XGBoost, RF, GBDT, and LightGBM.

Initially, we independently trained each learner and then aggre-
gated their predictions for the final outcome using a soft voting
strategy. This strategy enables our model to harness the diverse
expertise of learners and ensure robust and reliable PIP classifi-
cation. The observed performance improvement in the validation
process validated this approach.
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Performance evaluation
To assess the performance of our model, we utilized four key
metrics [41]: sensitivity (SN), specificity (SP), accuracy (ACC), area
under the ROC (AUC), and Matthews correlation coefficient (MCC)
[42]. These metrics were derived from true positives (TPs) for cor-
rectly identified positive cases, false positives (FPs) for incorrect
positive identifications, true negatives (TNs) for correct negative
identifications, and false negatives (FNs) for incorrect negative
cases. The formulae for these metrics are as follows:

SN = TP
TP + FN

(9)

SP = TN
TP + FN

(10)

ACC = TP + TN
TP + FP + TN + FN

(11)

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(12)

These metrics were critical for evaluating the performance of
the proposed model. SN measures how well the model identifies
positive cases, SP assesses the accuracy in identifying negative
cases, ACC denotes the overall correctness of the model’s predic-
tions, and the MCC offers a balanced evaluation and is particularly
valuable for imbalanced datasets [10]; AUC gauges performance
across all classification thresholds, with a high AUC indicating
strong differentiation between classes [43].

Results
Compositional and positional information
analysis
Amino acid enrichment at specific positions can help distinguish
between PIPs and n-PIPs. Using Two Sample Logo [44] allows
us to analyze the enrichment of amino acids at different
positions within the sequences. This method generates two sets
of visual information: the enrichment of positive samples and
the depletion of positive samples. In this study, we used Two
Sample Logo to analyze the amino acid enrichment at the first
15 positions of PIP and n-PIP, as shown in Fig. 2A. We found that
PIP and n-PIP exhibit different amino acid preferences. PIPs were
enriched with serine (S) at positions 1, 2, 7, and 13; leucine (L) at
positions 5, 7, 8, 10, 11, 14, and 15; arginine (R) at positions 3 and
9; and phenylalanine (F) at position 4. In contrast, n-PIPs were
enriched with aspartic acid (D) at positions 1, 5, 7, 8, and 13 and
glycine (G) at positions 10 and 14.

Figure 2B presents the distribution of data lengths: the left
shows the length distribution of all data, the middle illustrates
the length distribution of the positive samples, and the right
displays the length distribution of the negative samples. Most of
the sequence lengths were between 15 and 20, and there were no
sequence lengths below 10 bp. Therefore, based on the distribu-
tion pattern of the data, we can consider that controlling the data
length within the range of 5–25 will not exclude important data.

Manual features and dimensionality refinement
To enable the model to learn more valuable features for distin-
guishing PIPs from n-PIPs, we tested different encoding meth-
ods and initially tested their performance in distinguishing PIPs
from n-PIPs. Specifically, we used 10 different feature encoding
methods commonly used in peptide classification tasks for the
training set data: DDE, DPC, AAindex, AAC, GDPC, Composition
of K-Spaced Amino Acid Group Pairs (CKSAAGP), Composition,

Table 3. Comparison of performance before and after feature
selection.

SN SP ACC AUC MCC

Before selection 0.508 0.822 0.686 0.714 0.350
After selection 0.508 0.830 0.691 0.718 0.360

Bold values indicate the best performance.

Transition, and Distribution of Codons (CTDC), Generalized Topo-
logical Polar Coefficient (GTPC), Composition, Transition, and Dis-
tribution of Tripeptides (CTDT), and Pseudo Amino Acid Com-
position (PAAC). An RF trainer is used to train the models. We
compared the performance of these 10 features through five-fold
cross-validation. The results are shown in Fig. 3A. To enhance
the informativeness of the feature space, we investigated the fea-
ture combination strategies. Based on the feature ranking results
from Fig. 3A, we incrementally added different types of features
starting from a single DDE feature, trained the RF classifiers, and
recorded the ACC scores across a five-fold cross-validation. As
shown in Fig. 3B, we selected a combination of five features: DDE,
DPC, AA index, AAC, and GDPC.

To enhance feature efficiency, we employed an RF model as a
feature selector using the training dataset to rank features based
on their importance. Faced with the challenge of selecting the
optimal number of features for efficiency without compromising
feature space integrity, we utilized the RFE method [33]. The
RFE method iteratively determined the optimal feature set size,
resulting in a streamlined feature set for training. Specifically,
because the number of dimensions to be retained for the best RFE
performance was uncertain, we adopted a recursive approach.
This involved gradually evaluating the ACC obtained using RFE
while retaining different feature dimensions. The final results,
shown in Fig. 3C, indicated that the optimal feature space was
achieved when the feature dimensions were reduced from 1345 to
490. Table 3 presents the comparison results of the five-fold cross-
validation of the training set before and after feature selection.
Feature selection slightly improved the accuracy of PIP prediction.
Although the improvement was not significant, reducing the
dimensions not only impacted the model’s accuracy but also
helped us train the model faster and reduced computational
costs.

Subsequently, we analyzed the composition of the retained
490-dimensional features. As shown in Fig. 4A, among the 490
features ultimately retained by the RF-RFE method, the AA index
features accounted for the highest proportion, followed by DDE
and GDPC. Given the different base quantities of the features,
we analyzed the dimensions and proportions of each feature
type before and after feature selection, as shown in Table 4. The
highest retention ratio was observed for AAC, followed by GDPC
and the AA index. This indicates that the initial AAC, GDPC,
and AA index features contained a significant amount of useful
information that helped us distinguish between PIP and n-PIP. We
also performed a SHapley Additive exPlanations (SHAP) analysis
on the retained 490-dimensional features. Figure 4B presents the
SHAP summary plot for the top 10 features, showing that most
of the selected features had a significant impact on the model
predictions. We found that the features with the highest SHAP
values were mostly the AA index and DDE types, suggesting
that the deviation between the observed and expected frequen-
cies of specific dipeptides, as well as the overall composition
characteristics of amino acids, also contributed to better distin-
guishing between proinflammatory peptides and no proinflam-
matory peptides. Complete information on the selected features
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Figure 2. (A) Analysis of the amino acid enrichment of the 15 N-terminal amino acid sequences of PIPs and n-PIPs using Two Sample Logo. The statistical
test method used was the t-test, with a significance threshold set at P < .05. (B) Distribution of sequence lengths (total samples, positive samples, and
negative samples).

and full SHAP plots are available on GitHub (https://github.com/
ChaoruiYan019/MultiFeatVotPIP).

Comparison of MultiFeatVotPIP with other
methods
MultiFeatVotPIP employs a soft-voting algorithm from ensemble
learning that integrates the outputs from five algorithms.
Before selecting the baseline models, we compared several
commonly used machine learning models, including SVM, K-
Nearest Neighbors (KNN), Logistic Regression (LR), Stochastic
Gradient Descent (SGD), Linear Discriminant Analysis (LDA),
Decision Tree, RF, AdaBoost, XGBoost, GBDT, and LightGBM. These
models were evaluated using five-fold cross-validation on the
training set to compare their AUC performances. As shown in
Fig. 5A, the results indicate that GBDT, RF, LightGBM, XGBoost,
and AdaBoost performed notably better than the other models.
Therefore, these five models were chosen as baseline models for
the subsequent ensemble work. To validate the effectiveness of
our ensemble strategy on these baseline models, we compared
the performances of the five baseline models and the ensemble
model using a five-fold cross-validation of the training set. The
heat map in Fig. 5B shows a comparison of the results. Our
ensemble model achieved the highest values across all evaluation
metrics. This improvement can be attributed to the ability of
the ensemble model to integrate diverse decision patterns from
multiple algorithms, thereby enhancing the overall predictive
performance and robustness compared to individual baseline
models.

As our model employs a soft voting ensemble strategy, as
shown in Fig. 6A, we evaluated different ensemble methods on
an independent test set. Notably, the AUC for the hard-voting
strategy could not be calculated directly; therefore, it was approx-
imated using the soft-voting AUC. The results demonstrate that
our soft voting method generally outperforms other ensemble
methods, probably because it considers probabilistic predictions
from each base model, leading to more accurate final predictions.
By contrast, hard voting and stacking may not effectively capture
this level of detail. Owing to the discontinuation of the ProInflam
and PIP-EL servers, we compared our model with the ProIn-Fuse
SOTA model to validate its performance. Figure 6B presents the
results of the comparison between the ProIn-Fuse and Multi-
FeatVotPIP models, and Table 5 lists the specific performance
metrics. Our model showed improvements in the SN, SP, ACC,
and MCC, with sensitivity increasing by 1.9%, specificity by 5.4%,
accuracy by 3.6%, and MCC by 7.6%.

Deep learning has demonstrated exceptional performance and
robust data processing capabilities across multiple domains, and
its application in bioinformatics has become increasingly com-
mon [45–47]. For example, the team led by Li et al. proposed a deep
learning framework based on a dual transformer and dual Gated
Recurrent Unit (GRU) architecture to predict small secreted pep-
tides in plants [48]. In this study, we explored cutting-edge deep
learning models for the analysis of biological sequences. Specif-
ically, we trained six deep learning model frameworks, namely,
Convolutional Neural Network (CNN), Long Short-Term Memory
(LSTM) [32], BiLSTM [49], Transformer [50], Bert_CNN [51], and
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Figure 3. Evaluation of feature encoding methods and feature selection process. (A) Mean accuracy of 10 different feature encoding methods using
five-fold cross-validation. (B) Comparison of five-fold cross-validation accuracy for different combinations of feature encodings. (C) Cross-validation
accuracy scores for different numbers of retained features using RFE.

Figure 4. Composition and impact of retained features. (A) Proportion of feature types among the 490-dimensional features retained through RF-RFE.
(B) SHAP beeswarm plot showing the impact of the top 20 features on model predictions.
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Table 4. Analysis of feature retention.

Features Original feature
dimensions

Selected feature
dimensions

Selected/Original
feature ratio (%)

Selected/490-dimension
space ratio (%)

AAindex 500 321 64.2 65.5
DDE 400 120 30.0 24.5
GDPC 25 22 88.0 4.5
AAC 20 20 100.0 4.1
DPC 400 7 1.75 1.4

Figure 5. Comparison of baseline models and ensemble models. (A) Bar chart showing AUC performance of various machine learning models on the
training set using five-fold cross-validation. The top five models were selected as baseline models. (B) Performance comparison of different ensemble
methods on an independent test set. The soft voting method demonstrates superior overall performance.

Figure 6. Comparison of ensemble methods and model performance. (A) Line plot comparing the performance of three ensemble methods across various
metrics on an independent test set. (B) Radar chart comparing the performance of the MultiFeatVotPIP and ProIn-Fuse models. (C) Performance of six
deep learning models on an independent test set.

Table 5. The performance of models PronIn-fuse and
MultiFeatVotPIP on independent test sets.

SN SP ACC AUC MCC

ProIn-fuse 0.502 0.736 0.619 0.704 0.246
MultiFeatVotPIP 0.521 0.790 0.655 0.686 0.322

Bold values indicate the best performance.

LSTMAttention [52] with training dataset data, and tested them
using an independent test set, obtaining the evaluation results
as shown in Fig. 6C. As shown in Fig. 6C, despite the potential of
deep learning for high-dimensional data, our comparison of these

six deep learning frameworks with traditional machine learning
algorithms indicates no distinct advantage of deep learning in
PIP classification. We attribute this to two possible reasons. First,
deep learning models require larger datasets for training and fine-
tuning, and, in cases where the dataset is limited, these models
cannot be fine-tuned effectively. Secondly, for PIPs, manually
curated features may capture key patterns and characteristics
more accurately than automatically extracted features, thus
providing a more precise description of the biological functions
and characteristics of PIPs. Nonetheless, deep learning holds
considerable promise for predicting PIP. First, the performance
of the six commonly used deep learning models for sequence
prediction is highly sensitive to hyperparameters such as the
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number of layers and batch size. Exploring a broader range of
hyperparameter configurations can potentially yield improved
outcomes. Furthermore, several future research avenues could
be pursued to enhance the model’s performance. For instance,
integrating traditional machine learning with deep learning
techniques can be explored, where deep learning models are
employed for advanced feature extraction, followed by the
fusion of high-performing features, such as the AAindex, and
subsequent classification using traditional machine learning
models. Moreover, given that deep-learning models typically excel
with larger datasets, the increasing availability of validated PIP
data suggests that deep-learning approaches are likely to exhibit
progressively superior performance in PIP prediction.

Web servers
To facilitate user access, we created a user-friendly web server
interface based on MultiFeatVotPIP (http://www.bioai-lab.com/
MultiFeatVotPIP). This server offers prediction functionality,
allowing users to upload their data for prediction. Additionally,
the data used in this study are available on GitHub (https://github.
com/ChaoruiYan019/MultiFeatVotPIP), and we downloaded links
to the web server for user convenience.

Discussion and conclusion
The onset of inflammation can lead to abnormalities in the body
tissues or organs. In this study, datasets were collected from the
IEDB database using specific processes and constraints. Subse-
quently, we propose MultiFeatVotPIP, a method dedicated to iden-
tifying PIPs using computational techniques to reduce research
costs and accelerate progress. To enhance model performance
and computation speed, we employed feature selection methods
to reduce the feature dimensions. We compared several baseline
models and selected the most suitable one for ensemble learning.
We further validated the effectiveness of the MultiFeatVotPIP
model integration strategy and compared MultiFeatVotPIP with
SOTA models, finding that MultiFeatVotPIP outperformed SOTA
models in several aspects, including higher precision and accu-
racy for positive and negative samples and achieving higher MCC
values. In addition, we developed a user-friendly web service
based on the MultiFeatVotPIP model, accessible at http://www.
bioai-lab.com/MultiFeatVotPIP.

Although the MultiFeatVotPIP designed in this study has
already surpassed the SOTA models, there are still some aspects
that could be improved. First, the dataset used for training had a
minor imbalance issue, with more negative than positive samples
collected. However, because this issue was not very prominent,
we did not adopt specific methods to resolve it. Second, as deep
learning continues to evolve, it has demonstrated exceptional
performance and robust data-processing capabilities across
various fields, and its application in bioinformatics is becoming
increasingly common. Although our preliminary experiments
showed that some commonly used deep learning techniques
may not be ideal for PIP prediction tasks, we believe that deep
learning has great potential for predicting PIPs. Therefore, in
future work, we will leverage deep-learning techniques to achieve
more accurate PIP predictions.

Key Points

• A novel ensemble learning model, MultiFeatVotPIP, was
developed to identify proinflammatory peptides.

• Five types of feature encoding were fused for proin-
flammatory peptide sequences using a recursive feature

elimination strategy combined with RF feature impor-
tance to reduce the feature dimensions.

• Soft voting strategy was used to ensemble five different
classifiers to enhance predictive performance.

• Achieved superior results compared to state-of-the-art
models.

• Provides a user-friendly proinflammatory peptide iden-
tification website.
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