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Purpose: Optical coherence tomography angiography (OCT-A) permits visualization of
the changes to the retinal circulation due to diabetic retinopathy (DR), a microvascu-
lar complication of diabetes. We demonstrate accurate segmentation of the vascular
morphology for the superficial capillary plexus (SCP) and deep vascular complex (DVC)
using a convolutional neural network (CNN) for quantitative analysis.

Methods: The main CNN training dataset consisted of retinal OCT-A with a 6 × 6-mm
field of view (FOV), acquired using a Zeiss PlexElite. Multiple-volume acquisition and
averaging enhanced the vasculature contrast used for constructing the ground truth for
neural network training. We used transfer learning from a CNN trained on smaller FOVs
of the SCP acquired using different OCT instruments. Quantitative analysis of perfusion
wasperformedon the resulting automated vasculature segmentations in representative
patients with DR.

Results: The automated segmentations of the OCT-A images maintained the distinct
morphologies of the SCP and DVC. The network segmented the SCP with an accuracy
and Dice index of 0.8599 and 0.8618, respectively, and 0.7986 and 0.8139, respectively,
for the DVC. The inter-rater comparisons for the SCP had an accuracy and Dice index of
0.8300 and 0.6700, respectively, and 0.6874 and 0.7416, respectively, for the DVC.

Conclusions: Transfer learning reduces the amount of manually annotated images
required while producing high-quality automatic segmentations of the SCP and DVC
that exceed inter-rater comparisons. The resulting intercapillary area quantification
provides a tool for in-depth clinical analysis of retinal perfusion.

Translational Relevance: Accurate retinal microvasculature segmentation with the
CNN results in improved perfusion analysis in diabetic retinopathy.

Introduction

Diabetic retinopathy (DR), a complication of
diabetes mellitus, is the most common cause of vision
loss among people with diabetes and affects 749,800
Canadians.1 DR damages the structure of the capillar-

ies in the retina,2 leading to widespread areas of retinal
ischemia as it progresses. Optical coherence tomog-
raphy angiography (OCT-A) is a rapidly emerging
imaging technology that allows for the retinalmicrovas-
culature to be seen volumetrically in micrometer-scale
detail.3,4 OCT-A has been shown to produce images
that closely relate to histology,5–8 and it presents a
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Figure 1. (Left) Original single-frame image of the deep vascular
complex. (Right) Image thresholded using Otsu’s method.

noninvasive and dye-free alternative with a lower risk
of complications9 when compared to the current gold
standard, fluoroscein angiography (FA).

Analysis and quantification of the retinal microvas-
culature benefit from multi-scale imaging with fields
of view (FOVs) ranging from ∼2 × 2 mm to
∼6 × 6 mm. At a smaller FOV, the capillaries that
comprise the structure of the microvasculature can be
individually resolved; with a larger FOV, macroscopic
features, including regions of capillary non-perfusion,
can be identified. With recent research hypothesizing
that early manifestations of DR form in the retinal
periphery,10 improving the vessel segmentations and
tools for quantification in wider fields of view for both
the superficial capillary plexus (SCP) and deep vascu-
lar complex (DVC)11 would be important to clinicians.
The DVC resulted from combining the intermediate
and deep capillary plexuses due to difficulty in resolv-
ing each plexus individually, and it has shown a higher
correlation to retinal ischemia in DR.12,13

OCT-A images are information rich, and it is
time consuming for a clinician to trace the vessels
for detailed analysis. For the cases of highest clini-
cal interest, small changes in the capillaries must
be detected. Consequently, developing accurate
automated methods of microvasculature segmentation
is an essential step toward quantification; however,
the efficacy of traditional image-processing algorithms
can vary based on artifacts present in the image, most
notably from noise. Segmentation of microvasculature
in funduscopic photographs, as well as by FA, has been
examined,14 but fewer algorithms specifically designed
for OCT-A have been developed. Simple thresholding
of the OCT-A image intensity has been applied,15,16
but such approaches pose numerous drawbacks in
their invariance to microvasculature features and
performance when applied to lower quality images
with a low signal-to-noise ratio (SNR). The disadvan-
tages of thresholding can be seen in Figure 1, where
an image of the DVC in a patient with mild diabetic

retinopathy was processed with Otsu’s method.17 This
representative example of thresholding demonstrates
that vessels do not maintain continuity, and a signifi-
cant portion of the speckle is erroneously delineated
as a vessel.

Methods using vesselness filters have been devel-
oped,18,19 but they either are similarly limited by the
SNR or require manual correction. A tophat filter
and optimally oriented flux method for segmenting the
vessels20 have been implemented and demonstrated for
brain imaging in mice. In addition, some commercial
OCT systems also provide segmentation of the vessels
but generally face the same issues with images with low
SNRs.

Machine learning is a rapidly growing field, showing
promising results for numerous ophthalmological
applications. Topics in this field that have recently
been investigated include retinal layer21–23 and capil-
lary plexus24 segmentation, cone photoreceptor identi-
fication,25,26 macular fluid segmentation,27 geographic
atrophy segmentation,28 OCT image categorization,29
diagnosis and referral for retinal disease patients,30,31
and synthesis of funduscopic images.32 Additionally,
recent reports have published online tools to improve
the accessibility of machine learning-based retinal layer
segmentation through intuitive user interfaces that
can be used directly by clinicians.33 Machine learn-
ing algorithms have also been applied toward OCT-
A segmentation, with a recent approach (MEDnet)34
applying a convolutional neural network (CNN) to
identify and segment avascular areas in widefield
images of the SCP. We have also previously published
a method of using a CNN to segment 1 × 1-mm
images of the SCP.35 Machine learning algorithms
using CNNs are well suited to addressing the issues of
vessel segmentation through a series of trainable filters.
These filters allow the segmentation to be sensitive to
vessel boundaries; hence, they also have the poten-
tial to preserve vessel widths. However, even with the
strengths of machine learning, the quality of the OCT-
A images will have a significant impact on the results
of vessel segmentation and quantification.

In our previous work, we proposed a method to
register and average multiple sequentially acquired
OCT-A images in order to significantly improve
image quality and vessel discernibility.36 Related
works in the literature have also investigated averag-
ing of OCT-A images to improve vessel contrast37
and automated biomarker identification algorithms.38
However, these approaches require prolonged imaging
sessions, which is not always possible, particularly in
a high-volume clinical environment. Therefore, there
is greater clinical utility in the development of an
algorithm that can accurately segment and subse-
quently quantify the vasculature and correspond-
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ing intercapillary areas (ICAs) from one single-frame
OCT-A image. Quantification of individual ICAs has
been previously explored,15,18 but these studies used 3
× 3-mm images of the SCP. Similarly, quantification of
the vasculature in the DVC has been explored, but this
research did not include ICAs.19

With many approaches presenting accurate analy-
ses of ICAs in the SCP, the contribution of this
report lies in its description of an original and novel
method to accurately and automatically segment and
quantify these regions in the DVC. We used an
approach of transfer learning, referred to as fine-
tuning, for the segmentation of retinal microvascu-
lature in single-frame, widefield 6 × 6-mm OCT-A
images for the purposes of ICA quantification. The
developed framework allows for the adaptation of an
initial segmentation network to a new dataset with
significantly fewer manually graded training examples.
We combined the approach of OCT-A averaging to
generate high-contrast images of the vascular networks
with supervised learning to provide the CNN with
accurate ground truth data in order to guide the vessel
segmentation even in the case of a single (unaver-
aged) OCT-A image. The computer-generated segmen-
tations were qualitatively examined by retinal special-
ists and compared to manual segmentations from a
trained rater. The outputs of the automated vessel
analysis provide nearly immediately available, quanti-
tative information on the microvasculature and ICAs
from a single OCT-A volume and hence can potentially
accelerate treatment plans and improve DR prognosis.

Methods

Subject Criteria and Data Preparation

Subject recruitment and imaging took place at the
Eye Care Centre of Vancouver General Hospital and
at North Shore Eye Associates. The project proto-
col was approved by the research ethics boards at
the University of British Columbia and Vancouver
General Hospital, and the experiment was performed
in accordance with the tenets of the Declaration of
Helsinki.Written informed consent was obtained by all
subjects.

Subjects in the control group (n = 8) displayed no
evidence of retinal or ocular pathology upon exami-
nation by an experienced retina specialist (Table 1).
Subjects classified as diabetic (n = 28) were diagnosed
withDRbased on the internationalDR severity scale.39
All subjects were screened for clear ocular media,
ability to fixate, and ability to provide informed consent
before imaging. In addition, patients with diabetic
macular edema were not included in the study.

Table 1. Demographics of the Control Dataset Used in
This Study

Gender n Mean Age, y (SD)

Male 4 24.5 (3)
Female 4 53.5 (23.1)

Optical Coherence Tomography
Instrumentation

The data used for this study were acquired with the
Zeiss PlexElite (Carl Zeiss Meditec, Dublin, CA) with
software version 1.7.31492. The nominal 6 × 6-mm
scanning protocol was used, sampling at a 500 × 500
resolution at a rate of 100,000 A-scans per second at a
visual angle of 20.94°. Each B-scan was repeated twice
at the same position, and the optical microangiography
implemented on the commercial imaging system was
used to generate the angiographic information. The
A-scan depth was 3 mm with an axial resolution of
6.3 μm and a transverse resolution of 20 μm, as
described in the product specifications.

The inner limiting membrane and posterior bound-
ary of the outer plexiform layer were used as the
segmentation boundaries for the commercial device,
and the inner plexiform layer/inner nuclear layer
complex was used as the SCP/DVCboundary. The SCP
and DVC were subsequently extracted, with projection
artifacts removed, via a built-in software feature in the
Zeiss PlexElite and exported at a 1024 × 1024 resolu-
tion. Scanswere only included in the study if the system
specified signal strength was 8 (out of 10) or higher.

Network Architecture

The network for vessel segmentation used a varia-
tion of the U-Net40 architecture, which was adapted
for two classes: vessel and background. The basic U-
Net architecture is shown in Figure 2 and consists of
convolutional and pooling layers. The convolutional
layers consist of a series of trainable filters, which are
correlated across the image and subsequently passed
through a rectifier linear unit activation with units
capped at 6 (ReLU-6).41 Each convolutional layer was
followed by a batch normalization layer, as well as a
dropout layer with a coefficient of 0.5.41 Pooling layers
were inserted to increase the receptive field of the subse-
quent filters in the convolutional layers, helping with
generalization to prevent overfitting.

The U-Net architecture provides high-resolution
feature extraction through its structure, which consists
of a contracting and expanding path. For each level
in the contracting path, high-resolution weights are
combined with the upsampled, generalized weights
(span connections) in the corresponding level of the
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Figure 2. U-net architecture.

expanding path. This allows the network to retain the
learned localization information and better segment
smaller, more detailed structures in the image. In
addition, methods using residual blocks for each
convolutional block were investigated; however, such
methods resulted in similar or lower performance (data
not shown).

Training

Two OCT-A datasets were used for training the
network. To construct the initial weights, data were
acquired from a previous study.42 Briefly, the data
consisted of 29 images with a 2 × 2-mm FOV acquired
with a prototype swept-source OCT instrument43 and
47 images with a 3 × 3-mm FOV acquired with a
commercial spectral-domain OCT instrument. Each
OCT-A image wasmanually segmented using a Surface
Pro tablet (Microsoft Corporation, Redmond, WA)
and GNU image manipulation program (GIMP) by
one trained rater and verified and accepted by two
additional trained raters.

To construct the initial weights, the network hyper-
parameters were optimized using three-fold cross-
validation. This resulted in a network trained over
120 epochs using the Adam optimizer, with an initial
learning rate of 10−4 and a custom epsilon value of
10−5. Evaluation was performed qualitatively on a set
of acquired 3 × 3-mm FOV OCT-A images across all
devices based on images most recently acquired at the
clinic. Segmentation of a single 3× 3-mm or 2× 2-mm
image using the network took approximately 2 seconds
on a Nvidia RTX 2060 graphics card (Nvidia Corpo-
ration, Santa Clara, CA), with a possible decrease to
0.3 seconds per image when segmented in larger
batches of ∼10 images.

The network with the initial weights was subse-
quently fine-tuned on the 6 × 6-mm FOV images
acquired with the PlexElite. This was done in two
stages: First, a smaller dataset of 10 single-frame

OCT-A images of each SCP and DVC for which
there existed corresponding high-quality averaged
images was identified. As described in our previ-
ously published study,36 images were registered and
averaged based on a template image that was free
of microsaccadic motion. This allowed us to use
the averaged OCT-A images to construct ground
truth labels for each single-frame template image.
These labeled ground truth vessel segmentations were
subsequently paired with the single-frame template
OCT-A images to train the deep neural network to
perform segmentations approaching the quality of
averaged images, while using only single-frame images
(Figure 3).

For the SCP, the automated segmentations of the
averaged images generated by the network with initial
weights were adequate, as determined by a separate
group of trained raters; hence, these results were fed
back into the network as additional training examples.
However, the automated segmentations on the DVC
required additional manual correction due to the lower
SNR of the images in this layer and the different
morphological features of the vasculature relative to
the SCP. Using the initial weights as a guideline for
the manual raters would introduce biases that could
negatively impact further stages of training; thus,
the vasculature of the DVC images was instead first
segmented through Otsu’s method.17 Another masked
and trained rater manually corrected the resulting
segmentation using a Microsoft Surface Pro tablet and
GIMP. All segmentations were reviewed and accepted
by two of three other trained raters. A second trained
rater segmented three images to obtain inter-rater
metrics.

Due to memory limitations when training, each
6 × 6 image was separated into four quadrants, which
were saved as four separate images. The same method
of augmentation and cross-validation was used. This
resulted in the network being trained through the
Adam optimizer, using an initial learning rate of 10−2
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Figure 3. (Left) Ten-frame averaged 6× 6-mm image of theDVC. (Center) Single-frame template image of the same region. (Right) Manually
segmented averaged image to be paired with the template image for training.

Table 2. Overview of the Three Datasets Used to Train the Fine-Tuned Network
Dataset

2 × 2 mm and 3 × 3 mm First 6 × 6 mm Second 6 × 6 mm

Training images SCP: 76 averaged and single-frame SCP: 10 single-frame
DVC: 10 single-frame

SCP: 39 single-frame
DVC: 39 single-frame

Ground truth segmentations SCP: manual SCP: automated
DVC: manual

SCP: automated
DVC: automated

and a custom epsilon value of 10−2. The forward
inference segmentation of a single 6 × 6-mm image
using the network took approximately 4 seconds, with
a possible decrease to 0.5 seconds per image when
segmented in larger batches.

To further reinforce the manually segmented
dataset, extensive data augmentation was performed.
Each OCT-A image (along with its corresponding
manual segmentation) in the training set was rotated
90° three times with no processing. Next, to account
for noise, each image was rotated 90° an additional
five times with various contrast adjustments, which
included contrast-limited adaptive histogram equal-
ization, as well as the built-in imadjust function in
MATLAB (MathWorks, Natick, MA). To account for
motion, each rotated image was also separated into
randomly sized strips, which were re-ordered randomly
to simulate motion artifacts in the image. The probabil-
ity maps resulting from the automated segmentations
were binarized at a value of 0.5, the default class cutoff
in the probability map. After binarization, isolated
clusters of fewer than 30 pixels were deemed false
positives and removed.

Additional training data were required to improve
the performance of the network on the DVC using a
single-frame OCT-A image. The intermediate network
(after training on the 10 manually segmented images)
was able to segment additional 6 × 6-mm averaged
OCT-A images of the DVC. Subsequently, the next

stage of fine-tuning the CNN involved using this inter-
mediate network to generate additional training data,
using manual inspection for quality but not requiring
laborious manual segmentation at the scale of capil-
laries. We applied the intermediate network trained on
the manual segmentations to all 50 averaged OCT-A
images in our 6 × 6-mm dataset. After manual inspec-
tion, we identified 39 images for each SCP and DVC
with adequate automated segmentations that consti-
tuted the new training set. A summary of the training
sets used is provided in Table 2.

Similar to what was done in the first stage, the
weights were initialized with the original network
trained with the first dataset of 2 × 2-mm and
3 × 3-mm images. The same methods of image
augmentation and training were applied, and cross-
validation resulted in an initial learning rate of 10−2

and a custom epsilon value of 10−2 using the Adam
optimizer.

Performance Evaluation

To evaluate the automated segmentation perfor-
mance, a number of metrics were calculated. The
number of true positives (TPs), false positives (FPs),
false negatives (FNs), and true negatives (TNs) was
calculated using pixel-wise comparison between a refer-
ence manual segmentation and the thresholded binary
output of the neural network. To calculate inter-rater
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metrics, these metrics were calculated by comparing
one manual segmentation to another by a different
rater. In the context of this study, pixels corresponding
to vessels and the background comprised the positive
and negative classes, respectively.Using the TP, FP, FN,
and TN numbers we can calculate the accuracy of the
segmentation, as shown in Equation 1:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Additionally, we can compute the Dice similar-
ity coefficient (DSC), which quantifies the similar-
ity between two segmented images, by measuring the
degree of spatial overlap. TheDSC values range from 0,
indicating no spatial overlap, to 1, indicating complete
overlap, and can be calculated by Equation 2:

DSC = 2TP
2TP + FP + FN

(2)

Three methods were tested: using only the initial
weights, using a network solely trained on the 6 × 6-
mm dataset, and using the fine-tuned network trained
on both datasets.

Post-Processing of the Automated Vessel
Segmentation

The neural network generated segmentation of the
vessels in the OCT-A images, but further process-
ing was required for quantitative analysis. Next, the
ICAs were identified, as determined by the non-vessel
pixels. The largest ICA within a small region in the
center of the image was defined as the foveal avascular
zone (FAZ). All erroneously segmented pixels within
the FAZ were set to a non-vessel classification, with
the centroid then used as the center of the Early
Treatment of Diabetic Retinopathy Study (ETDRS)
grid.

Two metrics were of interest when quantifying
ICAs: the area of the region and maximum ischemic
point, defined as the point of maximum distance to
the nearest vessel within the ICA. The metrics were
measured for each ETDRS region and compared to
a database of healthy eyes from which the SCP and
DVC were extracted. As outlined earlier, eight healthy
controls were recruited, resulting in a possible 16
eyes. Of these, we were able to obtain high-quality
averaged images for 12 eyes to construct the refer-
ence database, and these were also included in the
training dataset outlined in Table 2. Each measured
ICA was color coded and overlaid on the original
image based on the number of standard deviations
from the mean. Perifoveal vessel density (for each

ETDRS region) was also calculated as the proportion
of measured area occupied by pixels which were classi-
fied by the algorithm as a vessel. In addition, the projec-
tion artifacts remaining in segmentations of the DVC
were excluded for the calculation of vascular metrics,
including vessel density and vessel index. This was done
through an automated MATLAB post-processing step
using image erosion and dilation.

Results

Network Performance Evaluation

Quantitative Segmentation Comparison
Tables 3 and 4 show comparative quantitative

results when segmenting the SCP and DVC, respec-
tively. The network trained on the initial dataset of
2 × 2-mm and 3 × 3-mm images, the network solely
trained on the 6 × 6-mm dataset, and the network
trained with our proposed transfer learning method
were labeled as Networks A, B, and C, respectively. The
accuracy and Dice index for Network C showed a high
similarity between segmentations of the single-frame
template images and the averaged images. The inter-
rater metrics were conducted only on the manually
segmented datasets and are intended to be a represen-
tative number illustrating the difficulty of this problem
and the variation in the metrics between human
raters. Table 5 shows the same networks but evaluated
on the original 2 × 2-mm and 3 × 3-mm dataset.

Qualitative Segmentation Comparison
The fine-tuned network was qualitatively evaluated

on data unseen by the CNN during training on control
and DR patients. Figure 4 focuses on a peripheral area
of the SCP located close to the optic nerve head, where
the elongated vascular structure of radial peripapillary
capillaries (RPCs) are visible. As shown in Figure 4C2,
Network C (the fine-tuned network) preserved the
features characteristic of the RPCs and segmented
larger vessels more accurately than did Network A (the
initial weights). The differences between Network B
(trained solelywith the 6× 6-mmdataset) andNetwork
C are less pronounced, due to the higher SNR present
in images of the SCP.

Figure 5 shows an additional enlarged comparison
for an image of the SCP. It can be seen here that
Network C was able to accurately segment the areas
of ischemia observed in the averaged images and, as
also shown in Figure 4, segmented larger vessels more
accurately. Figure 6 shows an enlarged comparison of
the segmentations results obtained by Network A and
Network C when segmenting the elongated, lobular
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Table 3. Comparative Quantitative Results of the Segmentation of the SCP Among Three Networks

Network A Network B Network C Inter-Rater

Accuracy 0.8141 0.8534 0.8599 0.8300
Dice similarity index 0.8060 0.8586 0.8618 0.6700

Network A consisted of only the initial weights, Network B was trained on only the images from the 6× 6-mm dataset, and
Network C was the fine-tuned network using our proposed transfer learning method.

Table 4. Comparative Quantitative Results of the Segmentation of the DVC Among Three Networks

Network A Network B Network C Inter-Rater

Accuracy 0.6934 0.7822 0.7986 0.6874
Dice similarity index 0.6469 0.8065 0.8139 0.7416

Network A consisted of only the initial weights, Network B was trained on only the images from the 6× 6-mm dataset, and
Network C was the fine-tuned network using our proposed transfer learning method.

Table 5. Comparative Quantitative Results of the Segmentation of the 2× 2-mm and 3 × 3-mm Dataset Among
Three Networks

Network A Network B Network C Inter-rater

Accuracy 0.8677 0.8329 0.8350 0.8300
Dice similarity index 0.8395 0.8059 0.8066 0.6700

Network A consisted of only the initial weights, Network B was trained on only the images from the 6× 6-mm dataset, and
Network C was the fine-tuned network using our proposed transfer learning method.

Figure 4. (A1) A 2 × 2-mm window of an averaged 6 × 6-mm image taken of the SCP. (A2) A 2 × 2-mm window of the corresponding
region in the equivalent single-frame template image. (B1) Averaged image segmented using the initial weights (Network A). (B2) Single-
frame image segmented using Network A. (C1) Averaged image segmented using the fine-tuned network (Network C). (C2) Single-frame
image segmentedusingNetworkC. (D) Comparisonbetween theautomated segmentationsbetween theaveragedand single-frame images
producedbyNetworkC, representedbymagenta andgreen, respectively,withwhite representing theunion. (E) Comparisonbetween single-
frame segmentations between Network B and C, represented bymagenta and green, respectively, with white representing the union.

capillary structure of theDVC in a lower quality image.
As shown in Figure 6B2, certain clusters of vessels
were erroneously treated as noise byNetworkA, result-
ing in regions of false negatives. This is character-
istic of single-frame OCT-A images; the blurred-out

regions were replaced by a discernible vessel structure
when using the averaged OCT-A images. The results
presented in Figure 6C2 are representative of the
outputs from Network C, which eliminated a portion
of these false negatives.
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Figure 5. (A1) A 2 × 2-mm window of an averaged 6 × 6-mm image taken of the SCP. (A2) A 2 × 2-mm window of the corresponding
region in the equivalent single-frame template image. (B1) Averaged image segmented using the initial weights (Network A). (B2) Single-
frame image segmented using Network A. (C1) Averaged image segmented using the fine-tuned network (Network C). (C2) Single-frame
image segmentedusingNetworkC. (D) Comparisonbetween theautomated segmentationsbetween theaveragedand single-frame images
producedbyNetworkC, representedbymagenta andgreen, respectively,withwhite representing theunion. (E) Comparisonbetween single-
frame segmentations between Network B and C, represented bymagenta and green, respectively, with white representing the union.

Figure 6. (A1) A 2 × 2-mm window of an averaged 6 × 6-mm image taken of the DVC. (A2) A 2 × 2-mm window of the corresponding
region in the equivalent single-frame template image. (B1) Averaged image segmented using the initial weights (Network A). (B2) Single-
frame image segmented using Network A. (C1) Averaged image segmented using the fine-tuned network (Network C), with projection
artifacts to be excluded highlighted in cyan. (C2) Single-frame image segmented using Network C, with projection artifacts to be excluded
highlighted in cyan. (D) Comparison between the automated segmentations between the averaged and single-frame images produced
by Network C, represented by magenta and green, respectively, with white representing the union. (E) Comparison between single-frame
segmentations between Network B and C, represented bymagenta and green, respectively, with white representing the union.

Residual projection artifacts from the SCP were
automatically identified and are highlighted in cyan
in Figures 6C1 and 6C2. As outlined earlier, these
regions obscured the capillaries underneath and were
subsequently excluded as a post-processing step when
calculating the vessel density and vessel index metrics.
When segmenting with Network A, these projection
artifacts were erroneously segmented as additional
capillaries. This can also be seen in Figure 6E where

the green spots along the projection artifacts indicate
that the segmentation produced by Network B was not
as continuous as for Network C. With accurate and
continuous projection artifact delineation, these can be
more accurately removed in post-processing.

Figure 7 shows an additional enlarged compari-
son of the results when segmenting the DVC with
different versions of the deep neural network. The
images segmented byNetworkC, shown inFigures 7C1
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Figure 7. (A1) A 2 × 2-mm window of an averaged 6 × 6-mm image taken of the DVC. (A2) A 2 × 2-mm window of the corresponding
region in the equivalent single-frame template image. (B1) Averaged image segmented using the initial weights (Network A). (B2) Single-
frame image segmented using Network A. (C1) Averaged image segmented using the fine-tuned network (Network C), with projection
artifacts to be excluded highlighted in cyan. (C2) Single-frame image segmented using Network C, with projection artifacts to be excluded
highlighted in cyan. (D) Comparison between the automated segmentations between the averaged and single-frame images produced
by Network C, represented by magenta and green, respectively, with white representing the union. (E) Comparison between single-frame
segmentations between Network B and C, represented bymagenta and green, respectively, with white representing the union.

and 7C2, more closely follow the elongated, lobular
ICA morphology of the DVC and the results were
less prone to over-segmenting noise. This presents a
substantial improvement over the images segmented
by Network A, as shown in Figures 7B1 and 7-B2,
the results of which incorrectly applied the branching
structure characteristic of the SCP to the DVC.

Intercapillary Area Evaluation

Figure 8 shows representative images, segmenta-
tions, and standard deviationmaps for diabetic subjects
without DR, with mild/moderate non-proliferative
DR, and with severe non-proliferative DR as graded
by a retina specialist.

Discussion

Early detection of DR is paramount to ensuring
effective treatment and improved patient quality of life.
Changes in both the SCP and DVC have been identi-
fied as potential early biomarkers of DR. As a result,
accurate segmentation and quantification of increas-
ingly widefield images of both the SCP and DVC will
provide further insight into the emergence and progres-
sion of DR.

We designed a transfer learning-based framework
for automated segmentation of the microvasculature
in the SCP and DVC, as well as quantification of

the ICAs in 6 × 6-mm single-frame OCT-A images.
The framework consists of two convolutional neural
networks: an initial network trained on 2 × 2-mm and
3 × 3-mm images and a second network that utilized
the pre-existing weights and fine-tuning on a smaller
dataset of 6× 6-mm images of both the SCP andDVC.
This approach allowed for accurate feature detection
despite a limited training set, with results that exceed
the intra-rater accuracy. In particular, fine-tuning from
an existing set of data provided more robust projection
artifact delineation in the DVC, allowing for removal in
post-processing when computing vascular metrics. The
resulting ICA quantifications allow for a closer investi-
gation into suspected areas of low perfusion but do not
expressly define what constitutes such areas.

A prevailing limitation of many machine learning
problems is training dataset acquisition. For our study,
manually segmenting an individual 6 × 6-mm image
of the DVC took each rater an average of 4 hours
to complete, which can pose a significant challenge
for problems requiring larger datasets. Solely training
a new network on our limited, manually segmented
6 × 6-mm dataset would overfit to the training set,
and including this new dataset with the original would
result in a heavy data imbalance. The introduction
of additional automated segmentations of averaged
images greatly increased the size and quality of our
training set, from 10 images of each SCP and DVC to
39 images. This allowed for a larger variation in train-
ing samples, consequently improving network perfor-
mance.
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Figure 8. Labeled standard deviation maps for subjects with no diabetic retinopathy, mild/moderate non-proliferative diabetic retinopa-
thy, or severe non-proliferative diabetic retinopathy. Original images of the DVC have been brightened for clarity. All intercapillary areas are
labeled based on the number of standard deviations its maximum ischemic point and area exceeded the reference mean.

The impact of the training examples is most evident
in the segmentations of the DVC, where the initial
weights produced segmentations that differed signif-
icantly from the images produced by the fine-tuned
network. As seen in Figures 6 and 7, vessels segmented
by the initial weights closely resembled the denser
morphological characteristics of the SCP. In particu-
lar, the ICAs in the DVC followed a lobular pattern,
which was reflected more accurately in the segmenta-
tions generated by the fine-tuned network.

Another limitation is the quality of the data. Images
with a signal strength index of 8 or lower, as well
as images with excessive microsaccadic eye motion,
were omitted from the study. If there are excessive
microsaccadic artifacts, microvascular features begin
to blur and can be subsequently classified as noise by
the network. This emphasizes the importance of using
the averaged 6 × 6-mm images as the ground truth
data obtained from manual segmentations because it
will be the most anatomically accurate. Our previ-
ously published method of averaging and registering

single-frame images based on a template36 allowed
for segmentations of averaged images to be paired
with single-frame training data, greatly improving the
quality of our training samples. Segmentation quality
appeared to be independent of location in the image,
as automated segmentation accuracy was consistent
across the 6 × 6-mm FOV in the absence of additional
artifacts.

To summarize, we designed a machine learn-
ing framework to accurately segment and quantify
the retinal microvasculature in the SVP and the
DVC. It produces immediately available segmenta-
tions that provide clinicians with a tool for in-depth
analysis of ICAs and the level of retinal perfu-
sion. Through this framework, patient care for DR
can be adapted individually, improving compliance
and patient prognosis. In addition, visualization and
quantification of retinal vasculature at a high level
of accuracy provide more information about disease
activity and thereforemay add to individualized patient
care.
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