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A B S T R A C T

Background and purposes: Motion management is crucial for optimal stereotactic body radiotherapy (SBRT) of
moving targets. We aimed to describe our clinical experience with real-time tracking of lung-specific electro-
magnetic transponders (EMTs) for SBRT of early stage non-small cell lung cancer in free-breathing (FB) or deep
inspiration breath-hold (DIBH).
Material and methods: Seven patients were implanted with EMTs. Simulation for SBRT was performed in FB and
in DIBH. We prescribed 60 Gy in 3, 5 or 8 fractions to the tumor and delivered SBRT with volumetric modulated
arcs and a 6 MV flattening filter free photon beam. Patients’ setup at the linac was performed using EMT po-
sitions and cone-beam CT (CBCT) verification. Four patients were treated in DIBH because of a dosimetric
benefit. We analysed patient alignment and treatment delivery parameters using DIBH or FB and EMT real-time
tracking.
Results: There were no complications from the EMT implantation. Visual inspection of CBCT before and/or after
SBRT revealed good alignment of structures and EMTs. The median setup time was 9.8 min (range:
4.6–34.1 min) and the median session time was 14.7 min (range: 7.3–36.5 min). EMT positions in lungs re-
mained stable during overall treatment and allowed real-time tracking both in FB and in DIBH SBRT. The
treatment beam was gated when EMT centroid position exceeded tolerance thresholds ensuring correct delivery
of radiation to the tumor.
Conclusion: Using EMTs for real-time tracking of tumor motion during lung SBRT proved to be safe, accurate and
easy to integrate clinically for treatments in FB or DIBH.

1. Introduction

Optimal treatment of small moving targets remains a challenge in
stereotactic body radiotherapy (SBRT). Lung tumors, in particular, can
move up to 30 mm [1,2] and their motion can be unpredictable [3,4].
In order to avoid geometrical misses, large safety margins are often
added, compromising the delivery of a high dose to the target and
healthy tissue sparing.

Target margin reduction could be achieved by using breath-hold
techniques or other mitigation strategy which preferably requires
monitoring tumor motion during treatment. A pitfall of using an ex-
ternal surrogate for internal motion is that the external sensor does not
always correlate with tumor position and motion [5,6]. This can be

overcome by implanting radiopaque fiducials and/or performing ima-
ging during treatment [7,8], at the cost of additional radiation dose for
the patient, expect in the case where magnetic resonance imaging is
used [9,10].

The electromagnetic localization and tracking system used in this
study allows a real-time monitoring of electromagnetic transponders
(EMTs) implanted in (or close to) the tumor, without adding imaging
radiation dose. The EMTs are detected periodically (update rate of
24 Hz) by an electromagnetic array positioned above the patient. The
EMT tracking system can be interfaced with the linac to trigger beam-
holds when EMT centroid motion beyond pre-defined tolerance
thresholds is detected.

In this paper, we aim to describe the clinical experience in our
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institution with lung SBRT using implanted EMTs for real-time tracking
in free-breathing (FB) or deep inspiration breath-hold (DIBH).

2. Material and methods

2.1. Patients implantation

After providing informed consent, seven patients underwent diag-
nostic bronchoscopy for an inoperable suspicious pulmonary lesion
(Table 1). During bronchoscopy, two to three lung-specific EMTs an-
chored beacons (Calypso®, Varian Medical Systems, USA) were im-
planted into small peripheral bronchi close to the tumor. These beacons
were 16 mm long and had a 2 mm diameter. They were equipped with
five anchors which deployed when inserted in small sized bronchi. The
implant procedure was performed under general anesthesia by a
pneumologist using the SuperDimension™ Navigation System (Med-
tronic, USA) enabling Electromagnetic Navigation Bronchoscopy™
procedures [11–14]. The total procedure took approximately 30 min,
including onsite histopathological diagnosis.

2.2. Simulation for SBRT

At least one week after EMT implantation (Table 1), two simulation
CTs for SBRT planning were acquired for all patients in FB: a 4DCT-scan
and a 3DCT (both with 1 mm slice thickness). A DIBH CT with a 1 mm
slice thickness was also performed for patients who were compliant
with this technique. Patients were simulated supine on an im-
mobilization device compatible with the Calypso tracking system (Qfix,
Avondale, USA) and a custom made pillow. Delineation of target vo-
lumes and organs at risk (OAR) was performed in the contouring
module of the Eclipse™ treatment planning system (v13.6, Varian
Medical Systems). The quality of EMT implantation was evaluated by
analyzing their coordinates with respect to the tumor and the distance
separating individual EMT on the planning CT. The EMT positions were
judged adequate if they were non-coplanar on axial CT sections, sepa-
rated from each other by at least 10 mm, and by 70 mm at most, and if
the distance between the EMT centroid position and the tumor centroid
was small enough for acceptable representation of tumour motion
[15,16].

2.3. Treatment planning

An internal target volume (ITV) was generated from the 4DCT-scan
by contouring the gross tumor volume (GTV) on each phase of the
4DCT. A planning target volume (PTV) was created adding an isotropic
margin of 5 mm to the ITV, or to the GTV of the DIBH scan, (i.e.
PTVFB = ITV + 5 mm and PTVDIBH = GTV + 5 mm). We required 98%
of the PTV to be covered by 95% of the prescribed dose (60 Gy in 3, 5 or
8 fractions depending on the proximity to the chest wall and pulmonary
hilium, 2–3 times a week, Table 1). Treatments were planned on the FB
CT and, when available, also on the DIBH CT. The treatment isocentre

was set in the proximity of the EMT centroid position. The EMTs were
localized on the planning CT and their individual center-of-mass co-
ordinates relative to the treatment isocentre were transferred to the
Calypso console (Calypso® 4D localization system™, version 3). For
patients treated in FB, we checked that there was a correlation between
EMTs and GTV centroid motion. This was performed by contouring the
EMTs on each phase of the 4DCT, and then by comparing EMT centroid
motion to the GTV motion on each phase. EMTs could then be used as a
surrogate for GTV motion. Treatments were delivered with a 6 MV
flattening filter free photon beam using two half coplanar volumetric
modulated arcs, expect for patient 1 (P1) for whom two full arcs were
used due to a centrally located target. For the patients who had a DIBH
CT in addition to a FB CT, a dosimetric comparison was performed to
evaluated difference in terms of PTV volumes and dose reduction to the
OAR.

2.4. Patients setup and imaging at linac

A dry run session at the linac (TrueBeam, Varian Medical systems)
was performed to check for correct Calypso tracking system and cone-
beam CT (CBCT) EMT position detection for our first two patients (P1,
treated in FB, and P2, treated in DIBH). Patient setup at the linac was
performed by aligning the absolute position of the EMT centroid for
DIBH treatment, and the mean position of the EMT centroid (de-
termined visually) for FB treatment, to its planned position. This was
followed by a CBCT imaging (in FB or in DIBH, depending on the
treatment modality), which was monitored, but not gated, by the
Calypso tracking system. Imaging beam was manually interrupted when
EMT centroid position exceeded the tolerance threshold. When EMT
centroid shifts were detected by the EMT tracking system right after
CBCT-based couch corrections, CBCT was repeated. In these cases, we
sought to evaluate the potential effect these shifts could have had on the
dose distribution, were they not captured and adjusted, by re-calcu-
lating the plan with a corresponding displacement of the isocentre.
Additional CBCT imaging between or after arcs and kV-imaging during
beam-on, were acquired for selected fractions to monitor tumor posi-
tion and validate the Calypso tracking system. Further imaging was
performed when patient realignment was judged necessary.

2.5. Patients treatment

During treatment, real-time EMT motion was registered by the
Calypso tracking system, interrupting SBRT if the tolerance thresholds
for beam gating were exceeded. We set thresholds smaller than the ITV/
GTV to PTV margins (5 mm). Patients treated in DIBH were coached to
perform DIBH by audio communication, and the treatment beam
started when EMT centroid coordinates in the three spatial directions
were within a 3 mm threshold compared to the EMT centroid positions
in the planning CT. For FB treatments, thresholds were defined by
adding 3 mm to the EMT centroid motion amplitude on the 4DCT.
Patients were asked to breathe normally during treatment, and we used

Table 2
Intra- and interfraction motion of EMT centroids positions during beam-on for the seven patients treated with EMT real-time tracking.

P1 P2 P3 P4 P5 P6 P7

Tolerance thresholds for EMT centroid beam gating (mm) LR 3.0 3.0 5.0 5.0 3.0 3.0 3.0
SI 3.0 3.0 8.0 7.0 3.0 3.0 3.0
AP 3.0 3.0 8.0 5.0 3.0 3.0 3.0

Median [min, max] EMT centroid motion excursions during
all sessions (mm)

LR 0.7 [0.6–0.7] 2.7 [1.7–4.7] 1.0 [0.8–1.7] 2.7 [2.2–6.9] 2.3 [2.1–2.9] 2.2 [1.9–3.5] 2.4 [1.2–2.5]
SI 2.2 [1.8–2.5] 2.0 [0.9–4.5] 8.7 [8.1–10.7] 9.4 [4.9–11.1] 4.5 [3.9–4.6] 2.0 [1.5–3.0] 2.9 [2.2–4.2]
AP 1.5 [1.3–1.6] 2.5 [1.7–3.3] 5.5 [5.0–6.5] 3.5 [3.0–5.5] 4.6 [3.1–5.0] 1.9 [1.7–2.7] 1.8 [1.4–2.3]

SD of median EMT positions (mm) LR 0.2 0.8 1.0 1.4 0.8 1.3 1.0
SI 0.6 1.1 2.8 0.8 1.0 0.6 0.7
AP 0.6 0.5 1.1 0.7 0.5 0.8 0.6

Abbreviations: EMT: electromagnetic transponder, SD: standard deviation, LR: left–right, SI: supero-inferior, AP: antero-posterior, P#: patient #.

M. Jaccard, et al. Physics and Imaging in Radiation Oncology 12 (2019) 30–37

32



EMT tracking to ensure that the tumor remained in the thresholds
(range: 3.0–8.0 mm, Table 2).

2.6. Sessions characteristics evaluation

The setup time, defined as the time between the beginning of setup
with the Calypso tracking system and the start of the first treatment
beam, as well as the session time, defined as the beginning of setup with
the Calypso system and the end of the second treatment beam, were
recorded for each SBRT fraction. Positional stability of the EMTs was
determined by comparing measured (by the Calypso system at setup) vs.
planned (i.e. as determined on the planning CT) inter-EMTs distances,
as well as by recording geometrical residuals, which represented the
discrepancy between the planned and measured EMT positions and
which were computed by the Calypso tracking system at the setup.

2.7. Intra- and interfraction motion

Intra- and interfraction motion of the EMTs was analyzed using the
Calypso tracking system log files, which contained EMT centroid posi-
tions and an approximate beam-on indication based on a radiation
detector in the treatment room (update rate of 24 Hz). Intrafraction
motion of the EMT centroid was determined by computing EMT cen-
troid excursion motions during beam-on (defined as the difference be-
tween the 99th and the 1st percentile) in the three directions.
Interfraction motions was evaluated by calculating standard deviations
of median EMT positions and range of EMT excursion motions during
beam-on of each fraction.

3. Results

3.1. Patients implantation

None of the patients presented complications from the EMT im-
plantation procedure. For P1 only two EMTs were implanted due to the
lack of available adjacent bronchi. For the other patients, three EMTs
were successfully implanted. The EMT positions were satisfactory since
they were non-coplanar on axial CT sections, distances between the
EMT centroid position and the tumor centroid were between 4 and
18 mm, and median inter-EMTs distance on planning CT was 39 mm
(range: 9–61 mm) (Table 1).

3.2. Comparison of DIBH and FB

Among the five patients for whom both a FB and a DIBH CT were
acquired (P1, P2, P5, P6 and P7), P1 was treated in FB, as tumor motion
was negligible (apical tumor attached to the chest wall), while P2, P5, P6
and P7, for whom GTV motion was larger (Table 1), were treated in DIBH.
For these patients, we observed a dosimetric advantage compared to FB,
with a 31% median reduction in PTV volume, a better sparing of the

ipsilateral lung and of adjacent OAR (main bronchus, heart or chest wall)
because their distance from the PTV increased in DIBH (Table 3).

3.3. Treatment delivery

All but two lung SBRT fractions using EMT tracking were success-
fully delivered with excellent patient tolerance and no acute toxicity.
EMTs were monitored real-time and automatic beam interruptions were
triggered by detection of EMT centroid position out of tolerance. For P3
and P4, one fraction could not be delivered using EMT tracking because
of a deficient communication cable, and a system employing an ex-
ternal surrogate for breathing monitoring was used instead.

3.4. Patients setup at linac

The median setup time was 9.8 min (range: 4.6–34.1 min) and the
median session time was 14.7 min (range: 7.3–36.5 min) (Table 1). Dif-
ferences between planned and measured inter-EMTs distances were at the
most 4.5 mm, indicating stability of the EMT positions in the lung over the
overall treatment time, even with the impact of breathing motion on the
EMTs which could add tissue deformation. This was furthermore con-
firmed by geometrical residuals always smaller than 2.0 mm (Table 1).

3.5. Patients imaging at linac

During setup, CBCT-based couch shifts were applied if necessary,
while monitoring that the EMT centroid position remained within the
tolerance set in the EMT tracking system. Visual inspection of CBCT
imaging showed good alignment of all structures and of the EMTs
(Fig. 1a). For P4, in 6 setups out of 8, after applying a CBCT-based roll
of about 2–3°, the EMT tracking system captured a 5 mm lateral shift of
the EMT centroid position. This shift was confirmed by a subsequent
CBCT imaging and corrected for. Re-calculating the treatment plan with
a corresponding 5-mm lateral displacement of the isocentre showed
that the PTV covered by the 95% isodose line was reduced from 98% to
88%. However the ITV was still covered by the 95% isodose line (since
PTV = ITV + 5 mm). Moreover the maximum dose received by the
heart and the esophagus was increased by 8%.

For P2 (treated in DIBH), an additional CBCT after SBRT delivery
was acquired at the 1st fraction and confirmed the persistent correct
positioning of the target and the EMTs. At the 3rd fraction, a kV-ima-
ging during beam-on (18 images, every 10° of the half-beam during the
first half-arc) showed that the EMTs had no supero-inferior (SI) motion
(Fig. 2) as detected by the EMT tracking system.

3.6. Patients treatment

In DIBH, treatment beams started when EMT centroids were within
a 3 mm threshold compared to the planned position (Fig. 1b). The EMT
tracking system held the beam when patients released the DIBH before

Table 3
Dosimetric comparison of DIBH vs. FB treatment planning for the four patients treated in DIBH. Only the OAR receiving a Dmean > 2 Gy are reported.

P2 P5 P6 P7

DIBH FB DIBH FB
FB

(%) DIBH FB DIBH FB
FB

(%) DIBH FB DIBH FB
FB

(%) DIBH FB DIBH FB
FB

(%)

PTV Volume
[cm3]

9.1 13.2 −31 11.5 20.9 −45 7.1 10.1 −30 13.2 18.7 −29

Ipsilateral lung V5 Gy (%) 15.6 27.1 −42 18.7 23.4 −20 11.8 17.4 −30 16.2 19.0 −15
V20 Gy (%) 3.6 7.5 −52 3.8 5.8 −34 3.1 5.4 −42 3.2 4.5 −29
V30 Gy (%) 1.8 4.2 −57 1.9 3.3 −42 1.7 3.2 −47 1.8 2.5 −30

Main bronchus (P2)/heart (P5)/chest
wall (P7)

Dmean (Gy) 8.7 13.7 −36 2.5 3.2 −22 – – – 8.7 10.2 −15
D2% (Gy) 22.4 28.2 −21 7.5 9.2 −18 – – – 47.5 66.1 −28

Abbreviations: PTV: planning target volume, FB: free-breathing, DIBH: deep inspiration breath-hold, OAR: organ at risk, Vx Gy: volume receiving x Gy, D2%: dose
received by 2% of the volume, Dmean: mean dose, P#: patient #.
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the end of the beam or when coughing (Table 1). For FB treatments,
beam-hold occurred once for P1 (isolated coughing). For P3 and P4
only micro-interruptions occurred because of breathing amplitudes
slightly out of tolerance (Table 1). Intra-fraction motion of the EMT
centroid positions during beam-on is shown in Fig. 3 and Table 2.

4. Discussion

The EMT tracking system used in this study has proved to be an
accurate tool to monitor in real-time the prostate gland during RT
[17,18] and its accuracy has been thoroughly investigated [19–21].

Fig. 1. Patient 2 treated in deep inspiration breath-hold: a) example of cone-beam CT imaging at linac (framed in yellow) overlaid with planning CT, showing also the
planning target volume (PTV) contour (red) and the electromagnetic transponder (EMT) (pink), b) EMT centroid positions during session 8. The shaded grey area
show the moments when the treatment beam was ON. The red horizontal lines indicate the ± 3 mm tolerance threshold for beam gating. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Various studies have investigated its potential for motion monitoring
and EMT-based gating of liver or pancreas tumors [22–26]. The first use
of this EMT tracking system in human lungs was described by Shah
et al. in an observational study evaluating the implantation, migration
and feasibility of tumor tracking using smooth EMTs (i.e. EMTs without
anchors) [27]. Lung-specific EMTs were first evaluated in a canine
model [28], and then successfully implanted in humans [29,30].
Schmitt et al. [31] reported on the use of anchored EMTs for real-time
monitoring during long course normofractionated lung RT, analysing
inter- and intrafraction motion, while the first treatment using EMT-
guided real-time adaptive MLC tracking for lung SBRT was described by
Booth et al.[32]. Recently, Boggs et al. presented their experience in
lung SBRT with the EMT tracking system using FB or phase gating [33].
We report our clinical experience of lung SBRT, in either FB or DIBH,
using EMTs for tumor real-time position tracking, which may minimize
the risk of target miss compared to when using an external surrogate
which does not always accurately correlate with tumor position
[5,6,34,35]. The use of DIBH in the treatment of four patients allowed a
dosimetric benefit compared to FB and might be faster to deliver than

gated treatment.
While transbronchial EMT implantation using the

superDimension™ Navigation System allowed fast, safe and adequate
EMTs positioning for all patients, there are limitations as to its access to
the bronchi surrounding peripheral tumors. For P1 only 2 out of the 3
EMTs planned were implanted as our experienced pneumologist did not
find a 3rd bronchus proximal enough to the tumor that was apical and
partially in contact with the chest wall. Finally, we reported no com-
plications from this minimally invasive procedure, being less invasive
and less prone to cause pneumothorax compared to transcutaneous
procedures [13,36].

We found that patient setup with an EMT tracking system was
generally fast and easily integrated in the workflow. Target motion in
FB (Table 2 and Fig. 3) reproduced data reported in literature [1],
namely it was greatest in the SI direction and smallest in left–right. No
drift of EMT position was observed during treatment, in contrast with
Schmitt et al. who reported a reduction in the distance between EMTs
over the course of a long course treatment of 30 RT fractions [31]. This
might be explained by our shorter overall treatment times since we used

Fig. 2. Kilo-Voltage imaging performed during deep inspiration breath-hold (DIBH) treatment of patient 2 in a single breath-hold. A selection of images acquired
every 10° from 270° to 80° imaging beam angle is shown (top), as well as a zoom on the region were the electromagnetic transponders (EMTs) are located (bottom).
The horizontal yellow lines show that the EMTs had negligible supero-inferior motion during DIBH, in accordance with the EMT tracking system signal. The
electromagnetic array is visible on the images acquired at angle 330°, 360°, 30° and 60°. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 3. Boxplots showing 1st percentile, 1st quartile, median, 3rd quartile and 99th percentile of the vertical, longitudinal and lateral electromagnetic transponders
centroid positions registered during beam-on for each fractions of the seven patients. The red lines show the tolerance thresholds for beam gating. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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less fractions (Table 1), therefore reducing possible EMT motion caused
by fixation stability, and tissue and tumor changes due to irradiation.

For two patients, one fraction could not be delivered using EMT
real-time tracking because of a system breakdown. For these sessions,
the real-time position management system (RPM) (Varian Medical
Systems) was used to monitor and gate the breathing amplitude, fol-
lowing our conventional procedure for patients treated with SBRT
without EMT tracking. The RPM could be activated at the linac as long
as the respiratory curves were associated to the plan, and we had this
backup solution ready for each patient. Even though an external sensor
does not always perfectly correlate with tumor position [5,6], the use of
this backup solution was clinically judged superior than a postpone-
ment of the fraction. Besides, we did not decrease PTV margins when
using the EMT tracking system compared to conventional SBRT treat-
ments.

For P4, the EMT tracking system allowed us to capture a 5 mm
lateral shift after applying a CBCT-based roll to a patient’s initial po-
sition. We can speculate that an external breathing monitoring would
probably not have detected this shift since they are in general not based
on the detection of an absolute position, and baseline references are
acquired after patient repositioning. Our dosimetric evaluation of the
potential effect of this shift indicates that table rolls should be applied
carefully, in particular when using small PTV margins or if OAR are
close to the PTV. As our institutional experience increases we are
considering in the future to reduce the ITV to PTV margin when using
EMT tracking for lung SBRT.

The Calypso EMT tracking system supports respiratory amplitude
gating and this option might be used to reduce ITV margin for patients
exhibiting a large amplitude breathing motion [33]. We did not use this
approach for FB treatments because the CBCT at the moment is not
gated by the EMT tracking system and we use CBCT images to validate
both PTV and EMT positions.

Although several micro-beam interruptions occurred during treat-
ment due to breathing amplitudes slightly larger than planned, the la-
tency for the EMT tracking system to beam-hold is low enough (65 ms)
to allow accurate treatment of the target that exits the gating limit at
each respiratory cycle [23,37].

Finally, for implanted organs with follow-up by MRI, EMTs create
significant artifacts, precluding the use of MRI in the post-treatment
assessment [38]. This is not a concern for patients with lung EMTs, as
they are routinely followed with CT-scans.

The present study is limited by the small number of patients, but
based on these promising findings, the use of EMTs for patients with
early stage lung cancer treated with SBRT is now routinely assessed at
our multidisciplinary tumor board, and implemented when feasible. We
are among the first European hospitals to integrate EMT real-time
tracking system for SBRT treatment of early lung cancer, treating suc-
cessfully seven patients, and the first center to report on DIBH lung
SBRT with this system.

In conclusion, this study showed that EMT implantations in lungs
were performed safely and EMT positions in lungs were stable during
the overall treatment time. Patient positioning resulted fast, accurate
and reproducible using EMT tracking.
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