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Abstract: Cardiovascular disease (CVD) is the number one cause of global mortality and
atherosclerosis is the underlying cause of most CVD. However, the molecular mechanisms by which
cardiovascular risk factors promote the development of atherosclerosis are not well understood.
The development of new efficient therapies to directly block or slow disease progression will require
a better understanding of these mechanisms. Accumulating evidence supports a role for endoplasmic
reticulum (ER) stress in all stages of the developing atherosclerotic lesion however, it was not clear
how ER stress may contribute to disease progression. Recent findings have shown that ER stress
signaling through glycogen synthase kinase (GSK)-3α may significantly contribute to macrophage
lipid accumulation, inflammatory cytokine production and M1macrophage polarization. In this
review we summarize our knowledge of the potential role of ER stress-GSK3 signaling in the
development and progression of atherosclerosis as well as the possible therapeutic implications
of this pathway.

Keywords: atherosclerosis; risk factors; molecular mechanisms; endoplasmic reticulum (ER)-stress;
glycogen synthase kinase (GSK)-3

1. Introduction

Cardiovascular diseases (CVDs) are a group of disorders involving the heart and blood vessels.
They are the leading cause of mortality worldwide accounting for approximately 32% of all deaths
(17.9 million deaths in 2015) [1]. This number is expected to increase to over 23.6 million deaths
per year by 2030. Therefore, CVDs represent a major burden on health care systems around
the world. Risk factors for CVDs include hypertension (resting blood pressure >140/90 mmHg),
dyslipidemia (total cholesterol >240 mg/dL, low-density lipoprotein (LDL) >160 mg/dL, and high
density lipoprotein (HDL) <40 mg/dL), physical inactivity, obesity (body mass index >30 kg/m2),
diabetes mellitus (elevated blood glucose, fasting glucose level ≥126 mg/dL, or 2 h plasma glucose
during oral glucose tolerance test ≥200 mg/dL with a loading dose of 75 g, or random blood glucose
level ≥200 mg/dL, or glycated hemoglobin A1C ≥6.5%), and tobacco use [2]. Non-modifiable risk
factors include advancing age, ethnicity and family history.

Over the last few decades, significant advances have been made in the diagnosis, prevention and
treatment of CVDs. Current therapies target the risk factors (hypertension, diabetes, dyslipidemia)
as opposed to the disease itself because our knowledge of the underlying molecular mechanisms
and pathways by which these cardiovascular risk factors promote atherosclerosis are still poorly
understood. A better understanding of the molecular mechanisms that link risk factors to accelerated
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atherogenesis will provide novel targets for the development of new therapeutic strategies that act to
directly slow, block, or even reverse disease progression.

2. Atherosclerosis

Healthy arteries provide a dynamic and responsive conduit for oxygen- and nutrient-rich blood
to all tissues of the body, and their maintenance and repair is essential to sustain an efficient circulatory
system. Atherosclerosis is an inflammatory disease characterized by the accumulation of fatty lesions
or plaques in the walls of medium and large arteries that can ultimately impede blood circulation. It is
the major underlying cause of cardiovascular disease [3].

The artery wall is made up of three distinct layers; the tunica intima, tunica media and adventitia.
The intima consists of a single layer of endothelial cells that acts as the interface between the circulating
blood and the rest of the vessel wall. Endothelial cells are very responsive to blood flow characteristics.
Regions of the endothelium exposed to high shear stress and laminar blood flow are relatively protected
from atherosclerosis. In regions of the vascular wall that are exposed to turbulent, non-laminar blood
flow, including bifurcations, branches and inner curvatures, endothelial cells chronically express
increased levels of inflammatory factors [4]. These regions of non-laminar blood flow appear to be more
prone to insult or injury that may result from exposure to agents that further challenge the endothelium,
including elevated VLDL/LDL levels, high glucose concentrations, hypertension, and blood-borne
toxins from cigarette smoke. In response to injury, affected endothelial cells express surface proteins,
including vascular cell adhesion molecule (VCAM)-1 and P-selectin, which promote the accumulation
of monocytes at the site of damage [5,6]. Monocytes, T lymphocytes and other leukocytes migrate across
the endothelium into the sub-endothelial intimal layer (Figure 1). Once in the sub-endothelial space,
monocytes differentiate into macrophages, which internalize apolipoprotein B-containing lipoproteins
(VLDL and LDL) and especially oxidized-LDL particles that have entered the subendothelial space.
The lipid engorged macrophages, known as foam cells, make up the fatty streak in the artery wall,
which is the earliest type of discernible atherosclerotic lesion [7]. Macrophage foam cells also secrete
pro-inflammatory cytokines, including interferon (IFN)-γ, interleukin (IL)-1β, and tumor necrosis
factor (TNF)-α, as well as chemokines which enhance the recruitment of additional monocytes and
T cells into the growing lesion [8]. Recently it has become evident that many lesional macrophages,
especially in more advanced lesions, are derived from macrophage proliferation within the plaque,
as opposed to differentiation of recruited monocytes [9]. Other studies have shown that many lesional
macrophages are derived from a smooth muscle cell lineage [10]. The potential phenotypic differences,
and the corresponding impact on atherogenesis, of these differentially derived macrophage/foam cells
are not yet known.

Macrophages make up the majority of the cellular composition of a typical plaque and they play
a central role in all stages of atherosclerotic plaque development and progression. Conditions within
the lesional microenvironment determine macrophage phenotypic polarization during plaque
development. Pro-inflammatory M1 (classical) and anti-inflammatory M2 (alternative) macrophages
represent the extreme phenotypes of a continuum of macrophage subtypes that are actually found in an
atherosclerotic lesion [8]. M1 macrophages appear to play an important role early in lesion development
by initiating the response to injury through the production of inflammatory cytokines [11,12].
M2 macrophages are more efficient at endocytosing apoptotic bodies (efferocytosis) and also
secrete anti-inflammatory cytokines (IL4, IL10), which are likely important in the resolution of the
inflammatory response [12]. It is generally accepted that the accumulation of intimal macrophage/foam
cells is a normal response to injury and part of the normal maintenance of the artery wall. Under ideal
conditions, macrophage/foam cell efferocytosis limits the growth of the lesion and maintains its
dynamic, cellular nature. Macrophage/foam cells can actively transfer lipids onto high density
lipoprotein particles (HDL) through the process of reverse cholesterol transport [13]. HDL particles
carry cholesterol away from the lesion and back to the liver. Experimental evidence suggests that
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unburdened macrophages can move out of the artery wall, thereby completing the artery repair
process [14].

Figure 1. Atherogenesis. (A) EC Injury: Atherosclerosis is initiated at sites of EC injury.
Damaged ECs express and present adhesive molecules, VCAM-1 and P-selectin, that facilitate
the accumulation of circulating monocytes and T cells at the site of vessel wall damage.
Monocytes move into the sub-endothelial intima where they differentiate into macrophages;
(B) Fatty streak: macrophages endocytose oxidized-LDL particles and apoptotic cell bodies
(efferocytosis), becoming lipid-engorged foam cells. Activated lesional macrophages also secrete
pro-inflammatory cytokines, including IFNγ, IL1β and TNFα; (C) Advanced plaque: cytokines and
chemokines induce vascular smooth muscle cells (SMCs) to migrate from the media to the intima
where they secrete collagen fibres that form a fibrous cap over the growing plaque. If macrophage
foam cell apoptosis exceeds the rate of efferocytosis, an acellular, cholesterol-rich necrotic core will
form and destabilize the lesion. Matrix metaloproteases that digest the protective fibrous cap can
further destabilize the atherosclerotic plaque; (D) Plaque rupture: if an atherosclerotic plaque ruptures,
the circulating blood comes into contact with the necrotic core, resulting in the formation of a thrombus
that can occlude the artery and cause a myocardial infarction or stroke.

In some cases, for reasons that are not fully understood, unresolved inflammation continues to
stimulate the growth of the lesion and impaired efferocytosis disrupts the ability of macrophages
to phagocytose apoptotic cells. As the lesion grows, foam cells continue to take up modified-LDL
particles. The accumulation of free cholesterol in the foam cells can ultimately initiate apoptosis [15].
Apoptotic macrophage-derived cell bodies that are not efficiently cleared undergo a process called
secondary necrosis, resulting in the formation of an acellular, lipid-rich, necrotic core within the lesion.
Necrosis is a key feature of advanced, unstable plaques that are prone to rupture.
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In advanced atherosclerosis, accumulating macrophage foam cells and lesional leukocytes
continue to amplify the inflammatory response by secreting cytokines and growth factors.
These cytokines induce the migration of vascular smooth muscle cells (VSMCs) from the tunica
media into the intima [16]. Advanced lesions are characterized by a fibrous cap, containing VSMC and
macrophage-synthesized collagen, which covers and stabilizes the lipid core. Macrophage/foam cells
also secrete collagenases, including matrix metalloproteinase (MMP)-1, -2, and -9, which disrupt
the biomechanical stability of the fibrous cap [17]. The thinning of the fibrous cap contributes
to the destabilization of the lesion, making it more susceptible to rupture. If the lesion ruptures,
coagulation factors in the blood come into contact with pro-coagulant proteins, including tissue factor,
in the necrotic core. This promotes platelet aggregation and the thrombosis superimposed upon
the atherosclerotic plaque (atherothrombosis) [18]. The thrombus may occlude the artery, resulting
in cardiovascular complications including myocardial ischemia or infarction. Plaque rupture is the
underlying cause of most myocardial infarctions [18]. To facilitate the comparative analysis of disease
progression, the stages of atherosclerosis have been graded according to observed morphology as
described by Stary and colleagues [7].

3. Molecular Mechanisms that Promote Atherosclerosis

A fine balance of stimuli, involving inflammation, monocyte recruitment, macrophage
polarization, efferocytosis and resolution of inflammation, are required to repair and maintain the
artery wall. An imbalance in one or more of these mechanisms can disrupt the process and lead
to the development of an unstable advanced atherosclerotic plaque. The presence of cardiovascular
risk factors likely tip this balance toward the disease state; however, the mechanisms by which
they do this are not well understood. Knowledge of the molecular mechanisms that link risk
factors to cardiovascular events is essential to the development of new strategies to slow or reverse
disease progression.

4. The Endoplasmic Reticulum (ER) and ER Stress

The endoplasmic reticulum (ER) is a eukaryotic organelle responsible for protein modification,
folding, and trafficking. A disturbance in ER function results in an accumulation of misfolded proteins,
a condition known as ER stress (Figure 2). The unfolded protein response (UPR) is a cellular self-defence
mechanism to help alleviate the problem and restore ER homeostasis [19–21]. The UPR consists of three
main signaling pathways, each initiated and regulated by an ER transmembrane sensor/signaling
protein; protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1), and activating
transcription factor (ATF)-6. Together, these signaling pathways contribute to the adaptive response of
the UPR, where the cell inhibits general protein synthesis, increases ER folding capacity by enhancing
ER chaperone expression, and promotes the degradation of irreversibly misfolded proteins. If the ER
stress persists, the UPR upregulates pro-apoptotic factors including the C/EBP homologous protein
(CHOP) to mediate apoptosis to eliminate the cell [22]. Crosstalk between the three UPR pathways is
believed to facilitate a coordinated response to conditions of ER stress. While the proximal responses
to ER stress have been examined in some detail, the more distal implications of chronic ER stress are
less well understood. Interestingly, ER stress and/or UPR activation have been implicated in several
diseases and disorders including neurodegenerative diseases (Alzheimer’s, Amyotrophic lateral
sclerosis, Huntington’s, Parkinson’s), diabetes (insulin resistance, beta cell dysfunction), non-alcoholic
hepatic steatosis, cancer, kidney diseases, and others [23].
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Figure 2. The unfolded protein response to ER stress. The accumulation of misfolded proteins in the
endoplasmic reticulum, defined as ER stress, activates three ER transmembrane signaling factors PERK,
IRE1 and ATF6, which initiate the unfolded protein response (UPR). Initially the adaptive UPR acts to
reestablish ER homeostasis by decreasing protein flux into the ER (translation block), increasing the
folding capacity of the ER (increased chaperone expression) and enhancing the ER associated protein
degradation (ERAD) pathways. Chronic ER stress results in the activation of C/EBP homologous
protein (CHOP) and the pro-apoptotic UPR, which can include pro-inflammatory responses and lipid
accumulation—hallmark features of atherosclerosis.

5. ER Stress and Atherosclerosis

It is now well established that ER stress plays a direct role in the development of atherosclerosis
and UPR activation can be detected at all stages of atherosclerotic progression [20,24–27]. Risk factors
for CVD including, hyperhomocysteinemia [28], obesity [29], dyslipidemia [30,31], hypertension [32],
and cigarette smoke [33], have been linked to increased ER stress in the arterial wall of mouse model
systems and indications of UPR activation have been observed in diseased arteries from human
patients [34]. Elevated concentrations of unesterified cholesterol, palmitic acid, glucose and toxins
associated with cigarette smoke have been shown to disrupt ER homeostasis and induce ER stress/UPR
activation in cultured ECs, VSMC and/or macrophages.

Results from experimental interventions targeting ER stress or the UPR also support a role for
this pathway in atherogenesis. Apolipoprotein E knockout (ApoE−/−) and LDL receptor knockout
(LDLR−/−) mice deficient in the pro-apoptotic UPR gene, CHOP, have significantly smaller necrotic
cores as well as reductions in atherosclerotic lesion area at the aortic sinus [35]. Systemic administration
of chemical chaperones, 4-phenylbutyrate (4PBA) or tauroursodeoxycholic acid (TUDCA), have been
shown to reduce ER stress levels and also reduced intima-to-media ratio in a wire injury model in
wild type mice [36]. In both LDLR−/− and ApoE−/− mouse models, systemic treatment with 4PBA
or TUDCA have been shown to significantly attenuate atherosclerotic progression [37–39]. Together,
these findings suggest that ER stress plays a significant role in promoting pro-atherosclerotic processes.

The mechanisms by which ER stress promotes atherosclerosis are still being delineated.
Experiments performed in vitro have demonstrated that ER stress-inducing agents can promote
lipid accumulation in macrophages, hepatocytes, and other cell types by activating/dysregulating
the sterol regulatory element binding proteins (SREBP1 and 2) [28,40,41]. SREBP1/2 are transcription
factors that regulate the expression of genes encoding the LDLR as well as genes encoding proteins
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involved in cholesterol and fatty acid biosynthesis. ER stress can also activate nuclear factor (NF)-κB,
a transcription factor responsible for the upregulation of inflammatory cytokines including TNFα and
IL-6 [42,43]. Finally, it is well established that ER stress can promote apoptosis in various cell types,
including endothelial and macrophage/foam cells, by activating the JNK/p38MAPK pathways [44–46].
The dysregulation of lipid metabolism and lipid accumulation, increased inflammation, and apoptosis
are hallmark features of atherosclerosis. However, the precise molecular mechanisms by which
chronic ER stress and/or the activation of the UPR can promote these pro-atherosclerotic responses are
not understood.

6. Glycogen Synthase Kinase (GSK)-3

Recent findings from our laboratory suggest that ER stress may signal through glycogen
synthase kinase (GSK)-3 to promote atherosclerosis [47–49]. GSK3α (51 kDa) and GSK3β (47 kDa),
are serine/threonine kinases that are expressed ubiquitously in mammals [50]. GSK3α/β are involved
in several metabolic pathways, and they have been linked to a number of diseases including
Alzheimer’s disease [51], diabetes [52], and bipolar mood disorder [53]. The kinase domains of
GSK3α/β are 98% homologous and there is broad overlap in substrate specificity [54]. However,
GSK3α and β are not functionally equivalent, and it is now clear that the α and β forms of GSK3
have distinct functions. The most striking difference is illustrated by the fact that mice lacking GSK3α
are viable, fertile and have no overt phenotype [55,56]. In contrast, GSK3β-deficient mice die of liver
failure and heart defects during mid-gestation (E13.5-16.5) [57,58].

GSK3α and β are different from many other kinases because they exhibit a significant level of
constitutive activity in resting cells. This can be further enhanced, or inhibited, by several upstream
signaling mechanisms involving mitogens and growth factors, as well as conditions of cellular stress,
including heat shock, oxidative stress, and ER stress [59–61]. Regulation of GSK3α/β activity is
thought to predominantly occur by phosphorylation and dephosphorylation of specific residues, but is
also controlled by interactions with a number of different scaffold proteins, as well as regulation of its
intracellular localization [62]. The hierarchical relationships between these regulatory pathways are
still being worked out.

7. GSK3 and Atherosclerosis

Several lines of evidence have implicated GSK3α/β in the development of atherosclerosis
(Figure 3). High fat diet (HFD) fed LDLR−/− mice lacking GSK3α develop significantly smaller
atherosclerotic lesions compared to LDLR−/−GSK3α+/+ controls [49]. GSK3α-deficiency also protects
against HFD-induced hepatic steatosis. When fed a standard chow diet, these mice are phenotypically
indistinguishable from LDLR−/− control mice. Myeloid-specific deficiency of GSK3α, but not GSK3β,
significantly attenuates atherogenesis in HFD-fed LDLR−/− mice [63]. In vitro and in vivo analysis
suggests that GSK3α plays a role in M1 macrophage polarization. This is one of the first, and certainly
the most impactful, phenotype that has been specifically associated with GSK3α. Hepatic-deficiency of
either GSK3α or GSK3β does not affect atherosclerotic development or liver morphology. Interestingly,
a unique role for GSK3α and GSK3β has also been suggested in the polarization of CD4+ T cells [64].
In cultured lymphocytes, inhibition of GSK3α/β by lithium or CT99021 prevents the polarization of
CD4+ T cells into IFN-γ producing T helper (Th)-1 cells [64]. This effect is specific to the polarization of
Th1 cells as GSK3α/β inhibition does not alter Th17 or Th2 cell polarization. Moreover, when probing
GSK3α and GSK3β homolog specific functions, it was noted that deletion of GSK3α, but not GSK3β,
attenuated Th1 cell polarization. These observations are consistent with our observations of GSK3α,
both directly and indirectly mediating macrophage M1 polarization. Furthermore, bone marrow
deficiency of AKT, an upstream regulator of GSK3α/β, has been found to modulate atherosclerosis
development and macrophage polarization in mice [65]. Together these findings strongly support a
specific and direct role for GSK3α in the development of atherosclerosis. A number of other studies
suggest that GSK3α/β may also play a pivotal role in cardiac myocyte growth and metabolism [66–70].
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The downstream substrates through which GSK3α/β potentially regulate pro-atherogenic pathways
in macrophages are not well defined. Recent evidence suggests a role for GSK3α/β signaling in the
regulation of STAT phosphorylation [63,71–73]. GSK3α-deficient bone marrow- derived macrophages
exhibit increased phosphorylation/activation of STAT3 (p-Tyr705) and STAT6 (p-Try641). Activated STAT3
inhibits STAT1, which promotes the transcription of the M1 gene program [74,75]. Activated STAT6
promotes the upregulation of the M2 gene program [74,75]. Together these results suggest that ER
stress, or other signaling through GSK3α, may alter the balance of M1/M2 macrophages in the growing
atherosclerotic lesion—favoring the pro-inflammatory, pro-atherosclerotic M1 polarization. The mechanism
by which GSK3α regulates STAT3/6 is unclear, though it is likely indirect, as STATs are mainly regulated by
tyrosine-phosphorylation. Further investigations are required to delineate direct upstream and downstream
factors that link GSK3α/β to the JAK/STAT signaling pathways, as well as their role in the regulation of
macrophage phenotype, particularly in the context of atherosclerosis.

Figure 3. Potential mechanism by which macrophage ER stress GSK3α signaling promotes
atherosclerosis. Multiple cardiovascular risk factors promote ER stress which leads to the activation
of the adaptive UPR. PERK signaling can increase GSK3α/β activity. Evidence from our lab suggests
that signaling through GSK3α can promote macrophage foam cell formation, activate inflammatory
cytokine production and enhance CHOP expression leading to apoptosis. In support of this model,
we have shown that GSK3α-deficiency in macrophages is associated with attenuated atherosclerosis.

8. ER Stress Signaling through GSK3α/β

ER stress-inducing agents can promote GSK3α/β activity, however genetic deficiency or
pharmacological inhibition of GSK3α/β does not appear to alter the proximal adaptive UPR to
ER stress [48,59,76]. These observations suggest that GSK3α/β lies downstream of the proximal
UPR. However, GSK3α/β does contribute to ER stress-induced PERK signaling to upregulate the
transcription factors ATF4 and CHOP [76]. Furthermore, pharmacological inhibition of GSK3α/β
attenuates the ER stress-induced uptake of free and modified cholesterol, as well as the expression
of genes involved in regulating lipid and cholesterol metabolism, such as fatty acid synthase (FAS),
SREBP-1c, SREBP-2,3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and the LDLR [76].
GSK3α/β can regulate the expression of several pro-inflammatory cytokines including IL-6, IL-1β,
and tumor necrosis factor TNF-α through activation of nuclear factor NF-κB [57,71]. Moreover, inhibiting
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GSK3α/β reduces the expression of pro-inflammatory cytokines and augments anti-inflammatory
cytokine production such as IL-10. These findings suggest a role of ER stress-GSK3α/β signaling in cell
survival, and the formation of macrophage foam cells, and the production of inflammatory cytokines.

9. Targeting the ER Stress-GSK3α/β Pathway

Pre-clinical studies do support the concept of targeting various aspects of the ER stress-GSK3α/β
pathways as a strategy to block or delay atherogenesis. Efforts to develop methods to manipulate the
UPR have already begun, especially with respect to other diseases and disorders in which ER stress
is thought to play a role. At least three general approaches have been used to address this problem.
One approach is to reduce ER stress levels directly, through the addition of exogenous chemical
chaperones, like 4PBA or TUDCA. Chemical chaperones have been shown to protect against ER stress
associated neurodegenerative apoptosis [77], pancreatic β cell death [78], leptin resistance [79] and
insulin resistance [80]. While treatment with chemical chaperones to reduced ER stress levels has
proven to be efficacious at impeding atherosclerotic development in mouse models, the effective
concentrations of these compounds that are required is too high to be clinically reasonable. A second
approach to reduce ER stress levels is to augment specific protective aspects of the UPR to more
efficiently deal with unfolded proteins. This has been accomplished by over expression of ER resident
chaperones including GRP78 and calreticulin [28,81] or by treatment with a small molecule inducer
of endogenous GRP78 expression, BIX [82]. This strategy is currently limited by the lack of small
molecules capable of activating the adaptive UPR in vivo. A third approach is to target specific
downstream factors that act to signal some of the detrimental downstream effects of ER stress,
including GSK3α. Lithium and valproate are relatively non-specific GSK3α/β inhibitors. Both of these
compounds have been shown to attenuate atherosclerosis in murine models [27,38,48,83]. However,
these treatments have many off target side effects. While GSK3α appears to be an ideal target, there are
no currently known inhibitors that can distinguish between GSK3α and β.

10. Conclusions

CVD continues to be a major cause of global mortality and morbidity and more effective treatments
and preventative strategies are required to combat this disease. A more complete understanding of the
molecular mechanisms and pathways that link CVD risk factors to the development and progression of
atherosclerosis will illuminate new potential targets for drug interventions. Recent findings from our
lab, and others, have shown that risk factors including dyslipidemia, obesity, diabetes, hypertension
and cigarette smoke can promote ER stress in the walls of major arteries. ER stress signaling
through GSK3 can activate pro-atherogenic pathways involving lipid accumulation, inflammation and
apoptosis. In the near future, it will be important to continue to test and validate the contribution of ER
stress-GSK3α/β signaling to accelerated atherosclerosis, in both in vivo and in vitro systems. It will be
especially important to explore the possible effects or new interventions on atherosclerotic regression.
An increased understanding of this pathway may lead to the establishment of novel intervention
strategies for future anti-atherosclerotic drug development.
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Abbreviations

ApoE Apolipoprotein E
ATF6 Activating transcription factor 6
CHOP C/EBP homologous protein
CVD Cardiovascular disease
EC Endothelial cell
ER Endoplasmic reticulum
ERAD ER stress associated protein degradation
GSK3α/β Glycogen synthase kinase 3α/β
HDL High-density lipoprotein
HFD High fat diet
IFN γ Interferon γ

IL Interleukin
IRE1 Inositol-requiring enzyme-1
JAK Janus kinase
JNK c-Jun N-terminal kinase
LDL Low-density lipoprotein
LDLR Low-density lipoprotein receptor
MAPK Mitogen-activated protein kinase
MMP Matrix metalloprotease
NF κB Nuclear factor κB
4PBA 4-phenylbutyrate
PERK Protein kinase RNA-like ER kinase
SREBP Sterol element binding protein
STAT Signal transducer and activator of transcription protein
Th T helper cell
TNFα Tumor necrosis factor α
TUDCA Tauroursodeoxycholic acid
UPR Unfolded protein response
VCAM1 Viral cell adhesion protein 1
VLDL Very low-density lipoprotein
VSMC Vascular smooth muscle cell
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