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Simple Summary: The pig is one of the most important domesticated meat animals. Some studies
have revealed that pigs with low meat production show more intense myogenesis at the early stage of
embryonic muscle development than pigs with high meat production. Here, by gas chromatography–
mass spectrometry GC–MS based metabolomics, we concluded that the nucleotide metabolism and
energy metabolism of the longissimus lumborum (LL) were increased in Lantang pigs compared with
Landrace pigs, indicating rapid synthesis of nucleic acids and ATP to meet the material and energy
requirements of rapid cell proliferation and differentiation in Lantang pigs.

Abstract: Elucidation of the complex regulation of porcine muscle development is key to increasing
pork output and improving pork quality. However, the molecular mechanisms involved in early
porcine embryonic muscle development in different pig breeds remain largely unknown. Here,
GC–MS based metabolomics and metabolomic profiling was used to examine the longissimus lum-
borum (LL) of the Lantang (LT) and the Landrace (LR) pig at embryonic day 35 (E35). Metabolites
showed clear separation between LT and LR, with 40 metabolites having higher abundances in LT
and 14 metabolites having lower abundances in LT compared with LR. In addition, these metabolic
changes were mainly associated with nucleotide metabolism and energy metabolism, such as purine
metabolism, pyrimidine metabolism, the pentose phosphate pathway, and the TCA cycle. More
interestingly, the contents of DNA, RNA, and ATP per unit mass of LL tissues were higher in LT,
indicating rapid synthesis of nucleic acids and ATP, to meet both the material and energy require-
ments of rapid cell proliferation and differentiation. Furthermore, enzyme activity associated with
the TCA cycle and pentose phosphate pathway, including α-ketoglutaric dehydrogenase (KGDH),
malate dehydrogenase (MDH), pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH),
and glucose-6-phosphate dehydrogenase (G6PDH), were higher in LT. Based on these results, we
conclude that there are significant differences in nucleotide metabolism and energy metabolism of
LL between LT and LR, and we speculate that the enhanced nucleic acid metabolism and energy
metabolism in LT can meet the material and energy requirements of rapid cell proliferation and
differentiation, making myogenesis more intense in LT compared to LR which might be the metabolic
mechanism underlying the distinct skeletal muscle development in the two breeds.
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1. Introduction

The pig is an important domesticated meat animal and it is also a useful model
for numerous human muscular diseases, therefore, a more thorough understanding of
porcine skeletal muscle development is informative [1,2]. Myogenesis is a highly complex
biological process that can be divided into three periods: primary myogenesis from E35 to
E64, secondary myogenesis from E54 to E90 [3], and a third generation of fibers around
birth [4,5]. Differences in muscle development between pig breeds are associated with
their specific qualitative and quantitative traits quality and quantity traits [6,7]. Analysis of
global gene expression profiles has identified genes related to porcine meat quality and
muscle growth [8–10]. It is also known that miRNAs and their muscle-specific targets
play a significant role in myogenic differentiation [11–13]. In addition, any alteration
in intracellular signaling pathways may result in muscular diseases, such as skeletal
muscle atrophy and pathological hypertrophy [14–16]. Thus, clarification of the complex
regulation of porcine muscle development is valuable in the improvement of meat quality
and production, and it might also contribute to the prevention and treatment of human
muscle diseases.

Lantang (LT) is an indigenous lard-type pig breed grown in southern China, which is
characterized by delicious meat, high intramuscular fat content, and early sexual maturity.
Landrace (LR) is a commercial meat-type pig breed with high lean meat percentage, fast
muscle growth and high body weight [17]. Because of the large differences in muscle devel-
opment between these two breeds, LT and LR are useful models to study the mechanisms
of muscle development between different breeds [18–21]. In our previous study regarding
the contrast in muscle development between LT and LR, the results revealed that primary
muscle fibers appear earlier in LT than in LR at E35 and E42, respectively [22]. Recent
reports indicated that the process of muscle formation is more intense in Meishan pigs
(Chinese indigenous miniature pig) than that in Large White pigs (a European lean breed)
at E35 [23]. These studies revealed that pigs with lower levels of meat production showed
more intense myogenesis at the early stage of embryonic muscle development than pigs
with high meat production, but the mechanisms concerning this phenomenon have not
been well elucidated.

Metabolomics has emerged as a powerful tool for exploring metabolic processes,
identifying crucial metabolic biomarkers, and revealing metabolic mechanisms during cell
growth, development, and senescence [24,25]. Furthermore, metabolic characterization
of a well-defined group of patients is beneficial for revealing metabolic signatures to
explain muscle weakness in chronic diseases [26]. In addition, some studies have identified
metabolites associated with lean mass or body mass index (BMI) [27–29]. The association
between metabolites and muscle mass in a healthy, elderly Taiwanese population has been
explored. The results showed that the higher catabolic rate of amino acids was linked
with muscle-mass loss [30]. Studies have revealed that the characteristics of the skeletal
muscle metabolome, neuromuscular disease, and daily changes in tissue metabolites during
strenuous exercise in humans are associated with daily nutrient levels and aging [31,32].
Metabolic gene signatures associated with different myogenic cell cycle states were also
associated with metabolic signatures of mitochondrial function in young and aged mouse
muscle satellite cells [33,34]. These studies suggest that metabolic requirements are critically
linked to myogenic cell fates and skeletal muscle homeostasis. However, few metabolomics
studies have addressed porcine embryonic muscle development.

In the present study, to gain further insight into the mechanism underlying the
greater myogenic capacity in LT than in LR at the early embryonic stage, GC–MS based
metabolomics was used to analyze metabolic profiles in LL of LT and LR in E35 embryos.
Our study aimed to uncover the metabolic mechanisms associated with differences in early
embryonic muscle development between LT and LR breeds, which could contribute to the
improvement of pork output as well as the treatment and prevention of muscle diseases
in humans.
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2. Materials and Methods
2.1. Experimental Animals and Tissues

Six purebred LT sows with the same genetic background were inseminated with semen
from purebred LT boars, and six purebred LR sows with the same genetic background
were artificially inseminated with semen from purebred LR boars. All pigs were allowed
ad libitum access to feed and water and were housed under identical conditions. All sows
were slaughtered at 35 days after insemination, and all embryos of each sow were collected.
There was no visual difference between the embryos or LL tissues of LT and LR at E35. For
each sow’s embryo, the LL tissues were dissected. LL tissues from the same sow were cut up
and mixed as the experimental samples. These samples were immediately snap-frozen in
liquid nitrogen and stored until further use. For GC–MS detection, six biological replicates
were used in the LT group and the LR group, each from a sow; for measurement of ATP,
NADPH, and enzyme activity, at least three biological replicates were used in the LT group
and LR group, each from one sow.

2.2. Metabolite Extraction and Derivatization

For metabolite extraction, we referred to a reported study [35]. In brief, tissue samples
were stored at −80 ◦C and fully ground with a mortar and pestle in liquid nitrogen, and
then transferred into 1.5 mL centrifuge tubes. Subsequently, 10 µL of ribitol (0.1 mg
per mL) was added into each tube as an internal quantitative standard. From 100 mg
samples, metabolites were extracted using 1000 µL cold methanol (100%, Sigma-Aldrich, St.
Louis, MO, USA). The mixed samples were vortexed for 1 min, followed by centrifugation
for 10 min at 12,000× g. After centrifugation, supernatants were transferred to a new
Eppendorf tube and immediately concentrated in a rotary vacuum centrifuge device. For
metabolite derivatization, the residue was dissolved in 100 µL methoxyamine pyridine
solution (20 mg per mL) and incubated at 37 ◦C for 120 min in an incubator shaker. Lastly,
each mixture sample was treated with 100 µL MSTFA reagent (containing 1% TMCS) and
incubated at 37 ◦C for 30 min. All experiments were repeated using six biological replicates.

2.3. GC–MS Detection

GC–MS detection was performed with a variation on the two-stage technique [36].
By splitless injection, a 1µL derivatized sample was injected into a 30 m × 250 µm × i.d.
0.25 µm PH-5MS column (Agilent Technologies, Santa Clara, CA, USA). Then, analyses
were conducted using an Agilent 7890A GC equipped with an Agilent 5975C VL MSD
detector (Agilent Technologies, Santa Clara, CA, USA). The gas chromatography (GC) oven
was set to an initial temperature of 85 ◦C for 5 min, then increased 15 ◦C per min for 5 min
to 280 ◦C, followed by an increase to 310 ◦C at a rate of 20 ◦C per min. Helium was selected
as the carrier gas, and the flow was maintained at 1 mL per min. MS was conducted in a
range of 50–600 m/z.

2.4. Spectra Processing for GC/MS

After mass spectra were acquired, deconvolution and calibration were conducted by
AMDIS (Agilent OpenLAB CDS ChemiStation C.01.01). Peaks with a signal-to-noise ratio
(S/N) < 30 were excluded to avoid false positives [37]. The retention time was corrected,
and compound peaks were aligned using the alkane standards (C11, C12, C13, C14, C15,
C16, C17, C18, C19, C20, C22, C24, C26, C28, C30, C32, C34, and C36). Subsequently, artifact
peaks were removed by comparing with the blank samples. Metabolites from the GC–MS
spectra were identified by retrieval from the NIST 2011 (National Institute of Standards
and Technology, Gaithersburg, MD, USA) library according to the National Institute of
Standards. Metabolite abundance was calculated by taking the relative peak area value
of adonitol as the internal standard [38]. The acquired data array file was used for further
multivariate statistical analysis.
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2.5. Bioinformatics Analyses

Data transformations and manipulations were performed using Excel, and included
two core steps. The first was to convert the abundance of each metabolite from original
data of GC–MS detection into an Excel table for subsequent analysis. Second, in the process
of data standardization, the data matrix in Excel was calculated, which included the Log
transformation, scaling, centraling, and other transformation involved in PCA and OPLS-
DA analysis. Differential metabolites were obtained by comparing the two groups using
the Mann–Whitney U test (α = 0.05) with SPSS 23.0 (IBM, Chicago, Illinois, USA). Z-value
based on the LR was calculated to identify the differential abundance of metabolites of LT
compared to LR. The Z-score plot spanned from −10.94 to 24,536.17 in LT. On the Metabo
Analyst online website [39–41], principal component analysis (PCA) and orthogonal partial
least squares-discriminant analysis (OPLS-DA) of the metabolomic data was performed.
For Z-score analysis, each metabolite was scaled according to a reference distribution, and
a calculation was conducted with the mean and standard deviation of reference sets as a
control. Using the distance matrix, a hierarchical cluster analysis (HCA) was performed.
Then, the relationships among the samples were tested by PCA and OPLS-DA analyses.
Comparative metabolic pathway analysis between LT and LR groups was performed using
the Metabo Analyst online website (www.metaboanalyst.ca/) (accessed on 20 February
2021). A hypergeometric test was used to calculate the −log(p) value for reflecting the
impact of each metabolic pathway, and pathways with p < 0.05 were retained. Finally, data
were represented by histogram and scatter plots using Prism v5.01 (GraphPad, La Jolla,
CA, USA). Comparative metabolic pathway analysis between LT and LR was performed
using iPath2.0 [42].

2.6. Measurement of Activity of α-Ketoglutaric Dehydrogenase (KGDH), Pyruvate Dehydrogenase
(PDH), Malate Dehydrogenase (MDH), and Succinate Dehydrogenase (SDH)

The samples were fully ground in liquid nitrogen, and a 100 mg sample homogenized
with 1 mL PBS (pH 7.4) was broken down by sonication (at a 200 W power) for 10 min on ice.
The samples were then centrifuged at 12,000 rpm for 10 min to remove insoluble material.
The protein concentration of the supernatants was measured by BCA kit (Beyotime Biotech-
nology, Shanghai, China), then an equivalent amount of proteins in the supernatants was
vacuum freeze dried. The vacuum freeze dried powder containing 100 µg proteins were
redissolved and transferred to a ketoglutarate dehydrogenase (KGDH) reaction mix (1 mM
MgCl2, 0.5 mM MTT, 6.5 mM PMS, 50 mM alpha-ketoglutaric acid potassium salt, 0.2 mM
TPP, and 50 mM PBS), pyruvate dehydrogenase (PDH) reaction mix (1 mM MgCl2, 0.5 mM
MTT, 6.5 mM PMS, 2 mM sodium pyruvate, 0.2 mM TPP, and 50 mM PBS), succinate
dehydrogenase (SDH) reaction mix (0.5 mM MTT, 5 mM sodium succinate, 13 mM PMS,
and 50 mM PBS), and malate dehydrogenase (MDH) reaction mix (0.5 mM MTT, 5 mM
sodium malate, 13 mM PMS, and 50 mM PBS) to a final volume of 200 µL in a 96-well plate.
After incubation at 37 ◦C for 60 min, each plate was measured at 566 nm for absorbance.

2.7. ATP Measurement

ATP content was quantified using an ATP Assay Kit (Beyotime, Shanghai, China). In
brief, samples were lysed followed by sonication (750 W, operating at 40% power, 3 cycles
of 5 s on and 5 s off), then centrifuged at 12,000× g for 10 min. The supernatants were
used to measure the ATP level according to the manufacturer’s instructions. The produced
luminescence was analyzed (Mithras, Mikrowin 2000 software, Berthold Technologies,
Thoiry, France). Finally, the luminescence value was plugged into the standard curve to
determine the ATP content.

2.8. Measurement of Nicotinamide Adenine Nucleotide Phosphate (NADPH)

NADPH levels were determined using a NADP+/NADPH Detection Kit (Beyotime,
Shanghai, China). Tissue samples of 10 to 30 mg were homogenized on ice with 400 µL
NADP+/NADPH-extracting solution, then centrifuged at 12,000× g for 10 min at 4 ◦C and

www.metaboanalyst.ca/
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50 µL supernatants were used to measure NADPH. After being heated in a water bath at
60 ◦C for 30 min, each supernatant sample was added into 100 µL G6PDH working liquid
in a 96-well plate and incubated at 37 ◦C for 10 min. Following this, color reaction was
performed for 30 min. Finally, each plate was measured at 450 nm for the absorbance.

2.9. Measurement of Activity of Glucose-6-Phosphate Dehydrogenase (G6PDH)

G6PDH activity was detected using a G6PDH activity assay kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. The reduction of NADP was measured
spectrophotometrically at 450 nm.

2.10. Statistical Analysis

Measurement of ATP, NADPH, and enzyme activity was repeated at least three times
independently, and representative results are shown. SPSS 23.0 (IBM, Chicago, IL, USA) and
Prism v5.01 (GraphPad, La Jolla, CA, USA) were utilized for statistical analyses. Differences
between groups were assessed for significance with the t-test, and the results are presented
as mean ± SEM. Asterisks (*) indicate levels of statistical significance. * p < 0.05; ** p < 0.01;
*** p < 0.001.

3. Results
3.1. Metabolomic Profiling of LL in LT and LR at E35

To characterize the metabolic profiling of skeletal muscle in early embryos of local
Chinese pigs and foreign lean pigs, we applied an untargeted metabolomic analysis to
determine the metabolites in the LDM of LT and LR at E35. Representative total ion current
chromatograms from the LT and LR samples are listed in Figure 1A. After removing internal
standard ribitol and any known false positive peaks, the same compound was integrated,
and the correlation coefficients of the two technique repeats indicated the accuracy of
the results (Figure 1B). Using hierarchical cluster analysis, LT and LR were completely
separated (Figure 1C). Metabolite profiles of the LT and LR were displayed as a heat
map and 129 metabolites with reliable signals were detected in each sample (Figure 1D).
Obviously, there were significant differences in the metabolite expression levels between
the LT group and the LR group. For example, the levels of glutamine, laminaribiose, and
gluconic acid-6-phosphate were higher in the LT group, while the levels of urea, adenosine,
and mannitol were higher in the LR group (Figure 1D).

3.2. Differential Metabolomes Responsible for LT and LR LL

Using the Mann–Whitney U test, we found 54 differential metabolites (p < 0.05).
The identified metabolites are shown in Figure 2A as a heat map. Out of the differential
metabolites, 40 increased and 14 decreased for LT, and LR was the opposite (Figure 2B).
These results suggested that the metabolic differences between LT and LR might be one
of the reasons for the differences in embryonic skeletal muscle development between the
two breeds.

3.3. Differentially Enriched Pathways Responsible for LT and LR LL

To further understand metabolome alterations, we investigated which pathways were
enriched in the differential metabolites between the LT and LR groups. Using a bubble
map, this investigation showed that six main pathways were enriched, including the
pentose phosphate pathway, purine metabolism, starch and sucrose metabolism, pyrim-
idine metabolism, fructose and mannose metabolism, and the citrate cycle (TCA cycle)
(Figure 3A). Importantly, differential changes of metabolites in these pathways were found.
These six pathways included 22 important metabolites, among which the abundance of
five metabolites (adenosine, urea, fructose, ribose, and mannitol) were increased in LR and
the remaining 17 metabolites were increased in LT (Figure 3B).
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Figure 1. Experimental design outline and metabolomic profiling of 35 d embryos of Lantang (LT)
and Landrace (LR) pigs. (A) Three representative total ion current chromatograms from Lantang (LT)
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and Landrace (LR), respectively. RT, retention time. (B) Reproducibility of metabolomic profiling
platform used in the discovery phase. Metabolite abundances quantified in the samples over two
technical replicates are shown. The correlation coefficient between technical replicates approximated
to 1 (0.99905 to 0.99998). (C) Hierarchical cluster analysis of 12 samples. (D) Heat map showing the
metabolites detected. Light blue and red indicate an increase or decrease in metabolites relative to
the median metabolite level, respectively (see color scale).

Figure 2. Varied metabolomes in 35 d embryos between LT and LR. (A) Heat map showing the relative
abundance of significantly varied metabolites in LT and LR as indicated, respectively. (B) Z-values
(standard deviation from average) of the LT group correspond to data in significant metabolites.
Z-value based on the LR was calculated to identify the differential abundance of metabolites of LT
compared to LR.

3.4. Crucial Metabolites Responsible for LT and LR at E35

To explore the most crucial metabolites differentiating LT from LR, orthogonal partial
least square discriminant analysis (OPLS-DA) was conducted to recognize the sample
pattern. Results showed that LT and LR groups were distributed in two separate quarters
(R2X = 0.454, R2Y = 0.975, Q2 = 0.949) by Component p [1] (Figure 4A). Discriminating
variables were shown with an S-plot (Figure 4B), when the thresholds were set as the
absolute values of covariance and correlation coefficients were greater than or equal to
0.05 and 0.5, respectively. Through OPLS-DA analysis, biomarkers screened by component
p [1] and p (corr) [1] are shown in Figure 4B and marked in red. In addition, as demonstrated
by the Venn diagram, there were four identical biomarkers in both the pathway enrichment
analysis and OPLS-DA analysis (Figure 4C). Out of the four crucial metabolites, urea and
adenosine were elevated in the LT group, and they had the lowest z-score. Gluconic acid-6-
phosphate and mannose-6-phosphate were decreased in the LT group and had the highest
z-score (Figure 4D). We speculate that these four compounds may be key metabolites for
further study of embryonic muscle development.
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Figure 3. Pathway enrichment and analysis. (A) Pathway enrichment of various metabolites. A
hypergeometric test was used to calculate the−log(p) value for reflecting the impact of each metabolic
pathway, and pathways with p < 0.05 were retained. Significantly enriched pathways were selected for
plotting. According to the impact value, 1 to 6 are, respectively, the pathways of pentose phosphate,
purine metabolism, starch and sucrose metabolism, pyrimidine metabolism, fructose and mannose
metabolism, and the citrate cycle (TCA cycle). (B) Integrative analysis of metabolites in significantly
enriched pathways. Compared with LT, red and blue indicate an increase or decrease of metabolites
in LR, respectively. Number shows the relative area of varied metabolites.
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Figure 4. Identification of crucial metabolites. (A) PCA analysis of LT and LR groups according to the
treatments set. Each dot represents a technological replicate analysis of samples in the plot. PC1 and
PC2 used in this plot explain 79.8% of the total variance, which allows confident interpretation of the
variation. PC1, principal component 1; PC2, principal component 2. (B) S-plot generated from OPLS-
DA (R2X = 0.454, R2Y = 0.975, Q2 = 0.949). Predictive component p [1] and correlation p (corr) [1]
differentiate LT from LR. Dots represent metabolites, and candidate biomarkers are highlighted in red.
(C) Venn diagram analysis of key metabolites both in pathway enrichment analysis and OPLS-DA.
(D) Box plot of urea, adenosine, gluconic acid-6-phosphate, and mannose-6-phosphate.

3.5. Comparative Metabolic Pathway Analysis between LT and LR

Comparative metabolic pathway analysis between the LT group and the LR group
was carried out in iPath. The resulting global overview map provided a better insight into
the different metabolic states, where the red line represent increased pathways in LT and
the blue line represent increased pathways in LR. We identified that most of the presented
pathways were elevated in LT, especially nucleotide metabolism and energy metabolism
(Figure 5A). To validate the contributing role of the TCA cycle in LT muscle development,
the activity of four key enzymes in the central carbon metabolism of LT and LR LL tissues
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was measured, including PDH, KGDH, SDH, and MDH. Activity of the four enzymes were
elevated in LT compared with LR (p < 0.005, Figure 5B). In line with this, the content of
ATP in LT LL was higher than for LR (p < 0.005, Figure 5C). Further, the increased activity
of the G6PDH enzyme and the increased content of NADPH indicated that the pentose
phosphate pathway was enhanced in LT (p < 0.005, Figure 5D). As shown in Figure 5E
(p < 0.005), the content of DNA and RNA in unit weight LL of LT was higher than that of
LR, which further proved that LT had boosted nucleotide metabolism.

Figure 5. Comparative metabolic pathway analysis between LT and LR. (A) Analysis of the porcine
metabolic profiles provides a better insight into the effects of 54 significant metabolites (p < 0.01)
and enzyme activity. Based on the KEGG compound (http://www.kegg.jp/kegg/compound/)
(accessed on 6 April 2021), metabolic network pathways are further analyzed with iPath2.0 (http:
//pathways.embl.de/iPath2.cgi) (accessed on 6 April 2021). Red line represents an increase in LT
groups; blue line represents an increase in LT groups. (B) The activity of KGDH, PDH, MDH, and
SDH in LL tissues of LT and LR. (C) ATP measurement in LL tissues of LT and LR. (D) The activity of
G6PDH and the measurement of NADPH. (E) The content of DNA and RNA per unit mass of LL
tissue metabolites in both pathway enrichment analysis and OPLS-DA. Asterisks (*) indicate levels of
statistical significance. *** p < 0.001.

http://www.kegg.jp/kegg/compound/
http://pathways.embl.de/iPath2.cgi
http://pathways.embl.de/iPath2.cgi
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4. Discussion

Increasing evidence shows that there is a genetic difference in the regulation of muscle
development, which leads to distinct early embryonic porcine myogenesis processes be-
tween pig breeds [8,9]. Here, GC–MS-based metabolomics was used to analyze metabolic
profiles in LT and LR skeletal muscle at E35. Multivariate statistical analysis of skeletal
muscle metabolites showed that LT displayed a significant increase in energy metabolism
and nucleotide synthesis, which might be related to the rapid myogenic differentiation of
LT in the embryonic stage [22,43]. As a result, strong cell proliferation and differentiation
ability requiring high energy consumption could take place.

The importance of nutrient utilization and metabolism in the process of muscle cell
differentiation has been well described [44,45]. Postnatal growth rate and skeletal muscle
fiber type composition of pigs are influenced by metabolic status [46,47]. It has been
shown, in vitro, that different metabolic environments seriously affect the proliferation and
differentiation of myoblasts [48,49]. In the current study, significant metabolomic differences
were found between the LL tissues of LT and LR. Among the differential metabolites, in
terms of purine metabolism, the increase in guanine, guanosine, and glutamine reflected a
higher accumulation for purine nucleotides synthesis in LT. Likewise, in terms of pyrimidine
metabolism, a higher abundance of uridine, uridine-5′-monophosphate, beta-alanine, and
glutamine was found in LT. Purine metabolites and pyrimidine metabolites, serving as
building blocks for DNA and RNA, are integral to the promotion of cell survival and
proliferation [50]. Consistent with this, DNA and RNA content in LL were higher in LT pigs.

Glutamine can be used as a substrate for nucleotide synthesis (purines, pyrimidines,
and amino sugars), as well as NADPH and many other biosynthetic pathways involved in
the maintenance of cellular integrity and function [51]. Therefore, we speculated that the
increase in glutamine might promote nucleic acid synthesis. It has previously been reported
that intracellular L-glutamine levels per se play a role in the control of protein content in
skeletal muscle myotube, and L-glutamine supplementation improves skeletal muscle cell
differentiation [48,52]. Previous studies also report that LT show more intense myogenesis
than LR at E35 [22]. Thus, the greater purine metabolism and pyrimidine metabolism could
satisfy the large demand for nucleic acid substances for muscle development.

The pentose phosphate pathway (PPP) which produces ribose-5-phosphate for de
novo nucleotide biosynthesis also generates NADPH, which is crucial for supporting
cell proliferation via the reductive biosynthesis of macromolecules such as lipids [53,54].
In addition, NADPH functions as a reactive oxygen species (ROS) scavenger and plays
an important role in cellular antioxidant defense [55]. Therefore, elevated NADPH lev-
els contribute to the rapid proliferation and differentiation of myoblasts and may be a
feature of rapid biosynthesis in LT LL, which contributed to the rapid proliferation and
differentiation of myogenic cells. Glucose-6-phosphate dehydrogenase (G6PDH) is a rate-
limiting enzyme in the PPP; it catalyzes the dehydrogenation of 6-phosphoglucose to form
6-phosphogluconate-δ-lactone [56]. The increased activity of G6PDH further demonstrated
that the PPP was enhanced in LT.

The TCA cycle plays a central role in metabolism by completely oxidizing acetyl-CoA,
a key product of carbohydrate, fatty acid, and amino acid catabolism, into carbon dioxide,
producing ATP and meeting most of the cell’s energy requirements [57]. Metabolome
analysis revealed that TCA cycle metabolites such as citric acid were increased in LT. More
interestingly, we showed that ATP levels were significantly lower in LR muscle tissue.
The TCA cycle consists of a series of biochemical reactions occurring in the mitochondrial
matrix, in which some metabolic enzymes are involved [58–60]. To further demonstrate
that it was boosted and the TCA cycle provided sufficient ATP for intense cell development
in LT, the activity of four enzymes involved in the TCA cycle were measured. These
enzymes included PDH that transforms pyruvate into acetyl-CoA, KGDH that converts
α-ketoglutarate to succinyl-CoA, MDH that catalyzes the reversible conversion between
oxaloacetic acid and malate, and SDH that catalyzes the transformation of succinate into
fumarate [57]. According to expectations, the activity of these enzymes in LT LL tissue was
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significantly greater than in LR. These findings revealed that enhanced TCA cycles lead
to the rapid generation of ATP, which could meet the energy requirements of rapid cell
proliferation and differentiation in LT.

The above shows that different myogenic abilities of LT and LR pigs in early embryo-
genesis are related to cellular metabolic status. We found that the metabolic profiles of
embryonic skeletal muscle of LT was more conducive to the rapid formation of myofiber.
Although metabolic regulation of skeletal muscle development has been widely reported, it
has not been further verified whether the differences in metabolic profiles between LT and
LR at E35 are the cause or consequence of the differences in skeletal muscle development.
It is also unclear whether the differences affect muscle mass at a later stage. This is the
deficiency of this study. In addition, the mechanism underlying the metabolome differences
is unclear; this may be owing to several factors. As the alterations were observed in em-
bryos whose parents were raised under uniform conditions, different levels of metabolism
may be linked with a genetic or epigenetic origin. For example, the occurrence of severe
obesity is related to differing methylation modification signatures near the gene promoter
of several metabolic enzymes, resulting in altered gene expression [61,62]. It has also been
hypothesized that post-translational modification (i.e., acetylation and phosphorylation)
of metabolic enzymes can impair TCA cycle flux or cause metabolic disorders [63,64]. A
limitation of the current study was not directly examining either of these factors. Although
we revealed that the activity of several metabolic enzymes involved in the TCA cycle and
PPP in LT pigs was significantly stronger than that in LR pigs, the underlying mechanism
remains unclear. In addition, the TCA cycle occurs in cell mitochondria, so the increased or
decreased content of mitochondria in skeletal muscle cells may contribute to the changed
TCA cycle flux [65,66].

5. Conclusions

In conclusion, GC–MS-based metabolomics was adopted to understand the mecha-
nisms by which LT had a more intense myogenic capacity than LR at the early embryonic
stage. Results showed that abudances of individual metabolites were clearly different in the
LL tissues of LT and LR. Furthermore, comparative metabolic pathway analysis and enzyme
activity detection revealed that nucleotide metabolism and energy metabolism, including
purine metabolism, pyrimidine metabolism, PPP, and the TCA cycle, were increased in
LT, permitting rapid generation of nucleic acids and ATP, to meet the material and energy
requirements of rapid cell proliferation and differentiation. By OPLS-DA and pathway
enrichment analysis, four crucial biomarkers were identified that may have important
effects on porcine muscle development. To our knowledge, this is the first report that
reveals the relationship between functional metabolomics and differences in embryonic
muscle development among pig breeds. It will provide a new insight for elucidating the
regulatory mechanism concerning porcine embryonic muscle development.
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