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Abstract 

Background:  To research the first-order features of apparent diffusion coefficient (ADC) values on diffusion-weighted 
magnetic resonance imaging (DWI) in maxillofacial malignant mesenchymal tumours.

Methods:  The clinical data of 12 patients with rare malignant mesenchymal tumours of the maxillofacial region (6 
cases of sarcoma and 6 cases of lymphoma) treated in the hospital from May 2018 to June 2020 and were confirmed 
by postoperative pathology were retrospectively analyzed. The patients were all examined by 1.5T magnetic reso-
nance imaging. PyRadiomics were used to extract radiomics imaging first-order features. Group differences in quanti-
tative variables were examined using independent-samples t-tests.

Results:  The voxels number of ADCmean and ADCmedian of sarcoma tissues were 44.9124 and 44.2064, respectively, 
significantly higher than those in lymphoma tissues (ADCmean (− 68.8379) and ADCmedian (− 74.0045)), the difference 
considered statistically significant, so do the ADCkurt and ADCskew.

Conclusions:  The statistical difference of ADCmean and ADCmedian is significant, it is consistent with the outcome of 
the manual measurement of the ADC mean value of the most significant cross-section of twelve cases of lymphoma. 
Development of tumour volume based on the ADC parameter map of DWI demonstrates that the first-order ADC 
radiomics features analysis can provide new imaging markers for the differentiation of maxillofacial sarcoma and lym-
phoma. Therefore, first-order ADC features of ADCkurt combined ADCskew may improve the diagnosis level.
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Background
The rapid development of MRI in the maxillofacial 
region has improved the recognition and diagnosis of 
maxillofacial tumours significantly. The vast majority of 
malignant maxillofacial tumours originate from epithe-
lial tissue, and mesenchymal tumours are rare. There-
fore, the imaging manifestations of these diseases are 
not well understood, and the rate of clinical misdiag-
nosis is high. Different types of tumours have different 

clinical treatment methods. Sarcoma is generally entirely 
removed by surgery. Chemotherapy is the standard lym-
phoma treatment. Therefore, it is vital to determine the 
type of tumour before operating. DWI could provide 
essential biomarkers in several kinds of tumours  [1, 2].

Radiomics is a new technology whereby algorithms 
automatically extract and transform a large amount 
of representative imaging data into exploitable feature 
spaces that reflect the microscopic characteristics of 
tumours  [3, 4]. MRI could detect and locate the focus 
and monitor the disease progression that a biopsy cannot  
[5, 6]. Recently, radiomics has played an important role 
in the identification of imaging biomarkers and clinical 
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management  [7–11]. However, there are few reports 
on the application and related literature of maxillofacial 
mesenchymal tumours. In this paper, several rare cases of 
mesenchymal tumours were analysed retrospectively to 
provide more reliable clinical evidence for the differential 
diagnosis of sarcoma and lymphoma. First-order features 
radiomics analysis, as an emerging tool in MRI analysis 
[12, 13], could provide insight into tumour heterogeneity 
and was valuable for differentiating tumour type  [14–19].

In this study, the first-order features of the volume of 
interests (VOI) were extracted from DWI-ADC param-
eters. These results, together with the mean ADC were 
analysed for characterisation of rare malignant mesen-
chymal tumours in the maxillofacial region.

Methods
Patients and MRI acquisition parameters
Patients
Twelve patients were retrospectively reviewed (seven 
men, five women; mean age was 54 [range 13–85] years) 
with a biopsy-proven malignant mesenchymal tumour. 
The sample patients had preoperative MRI scans between 
May 2018 and June 2020, and the pathological differen-
tiation could be determined. The sample included six 
sarcomas and six lymphomas, including one low-grade 
central osteosarcoma of the left zygoma, three well-dif-
ferentiated chondrosarcomas of the jaw, two leiomyo-
sarcoma of neck and jaw, two well-differentiated diffuse 
large B-cell tumour of the buccal region, one B-cell lym-
phoma related marginal area of tongue mucosa and three 
non-Hodgkin’s follicular lymphoma of the parotid gland. 
Only patients with sarcomas showed varying degrees of 
pain and limited facet joint movement, which had no 
specific clinical symptoms.

The inclusion criteria: biopsy-proven malignant mes-
enchymal tumour without the concomitant disease. The 
exclusion criteria were as follows: without definitive post-
operative information on pathological characteristics, a 
minimum tumour diameter < 5 mm, poor MRI quality.

This study was conducted in accordance with the 
Helsinki Declaration of 1975, as revised in 2013 and 
approved by the ethics committee of China-Japan Union 
Hospital of Jilin University in May 2018. All patients 
signed an informed consent form for inclusion in the 
study.

MRI acquisition parameters
1.5-T Siemens Avanto with an eight-channel phased-
array neck coil was used in this study. The patient’s head 
was secured. Non-contrast axial, sagittal and coronal 
FS-T2WI sequences acquired in multiple breath-holds 
were obtained by the following parameters: a repeti-
tion/echo time of 5080/87 ms, a slice thickness/interslice 

gap of 4.0/0.4  mm, 20 slices and a matrix of 256 × 320. 
Axial T1-weighted images were also acquired in multiple 
breath-holds. Diffusion-weighted images were obtained 
in the coronal plane. Following the image acquisition, a 
pixel-wise ADC map was generated by the inbuilt soft-
ware using b values of 800  s/mm2. All patients received 
a 15-ml intravenous bolus injection of gadodiamide (GE 
Healthcare Ireland Limited, County Cork, Republic of 
Ireland). The contrast imaging was performed using a 
fat-suppressed three-dimensional (3D) T1-weighted vol-
umetric interpolated breath-hold examination sequence 
after the injection.

The shape, size, signal, bone destruction, adjacent tissue 
relationship on MRI were evaluated. Besides, the ADC 
map was generated based on DWI, and the sampling was 
selected to measure the ADC value at the maximum level 
of the lesion. The lesions were resected surgically in all 
eight patients. Histopathological and immunohistochem-
ical staining (IHC) was performed postoperatively.

MRI and radiomics analysis
Dr Wise Multimodal Research Platform was used for 
radiomics analysis. An open-source python package 
called PyRadiomics (2.2.0) was used for extraction of fea-
tures. The platform supports feature extraction used to 
calculate single values per feature for a region of interest 
(ROI) (‘segment-based’) or generate feature maps (‘voxel-
based’) (Fig. 1).

Delineation of tumour ROI
The tumour regions in the primary dataset were labeled 
manually by two experts. In the case of disagreement, a 
third opinion was requested. The DWI-ADC parameter 
diagram scan was selected as the labeling image, then 
tumour tissue was classified.

Extracting features from MRI scans
A B-spline interpolation resampling was used and the 
anisotropic voxels were resampled to form isotropic vox-
els of 2.0 mm × 2.0 mm × 2.0 mm. The MRI images were 
then normalised by centring it at the mean with standard 
deviation.

(s = 100; μχ represents mean value; σ represents standard 
deviation).

Eighteen first-order features were obtained from the 
original images based on the pixel value extracted from 
each ROI: Energy, Total Energy, Mean Absolute Devia-
tion, Robust Mean Absolute Deviation, Entropy, 10Per-
centile, 90Percentile, Minimum, Maximum, Mean, 

f (x) =
s(x − µx)

σx
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Median, Interquartile Range, Range, Root Mean Squared, 
Skewness, Kurtosis, Variance and Uniformity.

Statistical analysis
The research data was normally distributed with homo-
geneity of variance. All data analyses were carried out 
using SPSS 16.0 (IBM Corp., Armonk, NY, USA). Group 
differences in quantitative variables were compared using 
student’s t-test. A P-value < 0.05 was considered statisti-
cally significant.

Results
Imaging and radiomics features
The general characteristics of the twelve study partici-
pants were listed in Table 1. The sarcomas showed slightly 
higher signal intensity with b = 800  s/mm2, while ADC 
images showed a slightly lower signal intensity on DWI 
images. The mean ADC for all patients with sarcoma 
was approximately 1.40 × 10−3mm2/s, while the mean 
ADC for patients with lymphoma was approximately 
0.49 × 10−3mm2/s. A total of 18 first-order features were 
obtained. ADC first-order radiomics features were as fol-
lows: The mean voxels number of ADCkurt and ADCskew 
values of sarcomas were 4.1834 and 0.4956 respectively, 
the values of lymphomas were 9.6219 and 1.8514 respec-
tively. The ADCkurt and ADCskew differed significantly 

between sarcoma and lymphoma (P < 0.05). The voxels 
number of ADCmean and ADCmedian of sarcomas were 
44.9124 and 44.2064 respectively, which is significantly 
higher than that of lymphoma (ADCmean = − 68.8379 and 
ADCmedian = −  74.0045), the difference was statistically 
significant, shown in Table 2.

Figure  2a shows a low-grade central osteosarcoma of 
left zygoma with slightly higher ADC value; Fig. 2b shows 
a non-Hodgkin’s follicular lymphoma of the right parotid 
gland with low value. Figure  2c shows that lymphoma 
correlates with an ADCmean in the lower range, positive 
skew (i.e. high skewness) and a steep curve (i.e. high kur-
tosis). Sarcoma correlates with a higher ADCmean value, a 
negative skew (i.e. low skewness), and a flatter shape (i.e. 
low kurtosis).

Discussion
In this study, the ADCkurt, and ADCskew were signifi-
cant predictive factors. The ADCmean and ADCmedian 
were significantly different with statistical significance, 
the result is consistent with the mean of ADC value. 
The average ADC value of sarcomas is approximately 
1.40 × 10–3  mm2/s, and the average ADC value of lym-
phomas is approximately 0.49 × 10–3  mm2/s. Maeda 
et  al. [20] and Wang et  al. [21] found that the aver-
age ADC value of lymphoma was lower than head and 

Fig. 1  First-order ADC radiomics analysis scheme used in this study
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neck malignant tumours. Furthermore, Sumi et  al. [22] 
reported that an ADC smaller than 0.560 × 10−3  mm2/s 
could differentiate pharyngeal lymphomas from phar-
yngeal carcinomas. These results are consistent with our 
study. Also, the mean voxels number of ADCmean and 
ADCmedian of sarcomas were 44.9124 and 44.2064, respec-
tively, which is significantly higher than that of lymphoma 
(ADCmean = −  68.8379 and ADCmedian = −  74.0045), the 
difference was statistically significant. These results are 
consistent with the consequences of manual measure-
ment of the maximum cross-section ADC of twelve 
cases. However, the previous study is limited to the 
review of ADC; there is no distinction between single 
lymphoma and sarcoma. The cases in this study are rare, 
which may enrich the clinical data and further improve 
the understanding of the radiomics features of mesen-
chymal tumours.

This study found that ADCkurt and ADCskew differed 
significantly between sarcoma and lymphoma. Lym-
phoma correlated with an ADCmean in the lower range. 

Sarcoma correlated with a higher ADCmean value. This 
study demonstrates that first-order ADC radiomics 
analysis, used with the average ADC value to improve 
diagnostic accuracy, could provide new imaging mark-
ers for the differentiation of maxillofacial sarcoma and 
lymphoma. However, more cases need to be studied. Fur-
thermore, there is theoretical support for studying the 
difference between the first-order characteristics of sar-
coma and lymphoma. Besides, Lisson et al. [23] identified 
several first-order parameters in order to differentiate 
enchondroma and low-grade osteosarcoma. Meyer et al. 
[24] reported that texture analysis parameters derived 
from MRIs could reflect the Ki67 index in soft tissue sar-
coma. So, radiomics analysis can reflect microstructure 
differences between these tumour entities.

DWI has been used in head and neck tumor imaging 
and is considered as a sensitive marker for monitoring 
treatment response in head and neck cancer  [25]. While 
many researchers focused on the interpretation of con-
ventional CT and MRI, the MRI’s imaging extraction fea-
ture presents an intriguing way to differentiate sarcoma 
and lymphoma  [26, 27]. Suo et  al. [28] reported that 
ADCskew, ADCkurt and ADCmean differed between benign 
bladder lesions and bladder carcinoma. Wang et al. [29] 
applied first-order ADC texture analysis in order to dif-
ferentiate lymphoma from metastatic nodes in the head 
and neck region.

Table 1  The clinical and MRI characteristics of patients (n = 12)

MR1 scan Sex Age Region ADC 
valuc (l0 3 
mm2/s)

Pathological and IHC

Patient 1 F 26 Zygoma 1.12 spindie shaped tumor cells and scattered in trabecular bone tissue and bone like matrix tissue; 
Ki-67 (10–20%), CK (−), SMA and CD99 (+)

Patient 2 F 40 Jaw 1.56 a large number of chondrocytes with obvious heteromorphism and bone septum; viaentin (+), 
S-100 and CK (−), Ki-67(60%)

Patient 3 M 56 Jaw 1.54 A large number of chondrocytes; S-100(−), Viacntin(+), CK(−), Ki-67(50%)

Patient 4 M 85 Neck 1.25 A large number of spindle cells arranged in bundles or vortices, and the cells were slightly 
deformed, with visible nuclei and mitotic images; viaentin (+), S-100 and CK (−), Ki-67(30%)

Patient 5 F 62 Jaw 1.36 A large number of spindle cells; Ki-67(10–20%), CK(−), SMA (+)

Patient 6 F 59 Jaw 1.55 a large number of chondrocytes with obvious heteromorphism and bone septum; viaentin (+), 
Ki-67(30%)

Patient 7 F 62 Buccal 0.56 Lymphoid hyperplasia; PCK(−), EMA(−), CD20(+), CD79a(+), PAX-5(+), CD3(−), CD38(+), 
CyclinDI(−), MUMl(−), CD30(−), CD 10(+), Bcl-6(−), Bcl-2(−), CD23(−), CD5(+), Ki67(70%)

Patient 8 M 85 Tongue 0.31 Lymphoid hyperplasia, destroyed lymphoid follicles structure; CD3T(+), BCL-6(−), BCL-2(+), CD 
10(−), cyclinDl(−), CD79a(+), Pan-5(+), kappa(−), Ki-67(< 10%)

Patient 9 M 56 Parotid gland 0.37 Lymphoid hyperplasia with obvious heteromorphism; CD3(+), CD20(+), BCL-2(+), BCL-6(+), CD 
10(+), Muml(+), PAX-5(+), CD79a(+), Ki-67(70 -80%)

Patient 10 M 67 Parotid gland 0.54 Lymphoid hyperplasia, tumor cells infiltrated glands in some areas, serous acini and adipose 
tissue display; CD20(+), CD 10 (+), CD3 partial cells (+), CD21 showed FDC network, BCL-6 (+), 
BCL-2 (+), CD38 germinal center positive (+)

Patient 11 M 13 Parotid gland 0.57 Lymphoid hyperplasia, CD3T(+), CD10(−), BCL-6(+), BCL-2(+), CD79a(+), Ki-67(40–50%)

Patient 12 M 40 Buccal 0.61 Lymphoid hyperplasia, CD3T(+), CD20(−), CD10(−), BCL-6(+), BCL-2(+), CD3 partial cells (+), 
Ki-67(20%)

Table 2  Results of the two-sample t-test (ADCkurt, ADCskew, 
ADCmean and ADCmedian)

A P-value < 0.05 was considered statistically significant

First-order features ADCkurt ADCskew ADCmean ADCmedian

P-value 0.02 0.02 0.01 0.01
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DWI could detect non-invasively the diffusion of water 
molecules in living tissues  [30]. The characteristics of the 
dense distribution of lymphoma cells and small extracel-
lular space can decrease the ADC value  [22]. However, 
cystic degeneration and necrosis are common in sarco-
mas, and ADC value is slightly higher  [31]. Although 
ADC value is helpful for clinical identification of maxil-
lofacial lymphoma and other diseases, the rate of clini-
cal misdiagnosis is high because of a low incidence rate 
and typical clinical manifestations. Therefore, more diag-
nostic criteria are needed, thus increasing the accuracy 
of clinical diagnosis. Conventional MRI examinations 
mainly reflect the shape, composition and water mol-
ecule diffusion of a tumour. Texture analysis can extract 
and quantify the grey level, roughness and homogeneity 
of lesions that cannot be distinguished by the naked eye  
[32]. That allows the practitioner to reflect on the char-
acteristics of lesions more comprehensively and carefully  
[33]. Recent studies found that histogram-based param-
eters reflected the different histopathological features in 
several tumour entities  [13, 34]. This relationship maybe 
help to better characterise tumours through radiological 
imaging and aid in differentiating between tumour types  
[35].

Based on the number of cases and features selected in 
this paper, 18 kinds of first-order features of lesions were 
extracted for analysis. First-order statistics describe the 
distribution of voxel intensities. Skewness measures the 
asymmetry of the distribution of values. A higher kur-
tosis reflected that distribution mass is concentrated 

towards the tail(s) rather than towards the mean. Lower 
kurtosis implies the reverse. Fine texture usually appears 
in healthy tissue, while rough texture highlights the het-
erogeneity of the tumour. In this study, the first-order 
feature analysis of rare cases showed that sarcoma and 
lymphoma were different in malignant mesenchymal 
tumours of the maxillofacial region. Therefore, radiom-
ics analysis can provide quantitative parameters in the 
tumour ROI.

Limitations
First, the number of patients was limited. Analysing a 
more significant number of patients’ textural parameters 
may have shown vital information related to tumour 
characteristics. Second, the differences relating to the 
imaging parameters and image viewer remain unknown. 
Future studies of this nature should include a more sig-
nificant number of cases.

Conclusions
In conclusion, the development of tumour volume based 
on the ADC parameter map of DWI first-order ADC 
radiomics analysis makes it possible to provide new 
imaging markers for the differentiation of maxillofacial 
sarcoma and lymphoma. Primarily, the feature parame-
ters ADCkurt and ADCskew, combined with the mean ADC 
value, effectively improves the diagnostic level. However, 
due to the low incidence rate and a limited number of 
cases, this study explored only first-order features that 
were closely related to malignant mesenchymal tumours. 

Fig. 2  DWI-ADC images of a scarcoma and b lymphoma. a A 28 years old female patient with a sarcoma within the left zygoma, DWI-ADC image 
the lesion appears relatively inhomogeneous slightly higher signal compared to the adjacent muscle. ADC value is about 1.12 mm2/s; b a 67 years 
old male patient with a lymphoma within the right parotid gland, DWI-ADC image the lesion appears relatively homogeneous lower signal 
compared to the adjacent muscle. ADC value is about 0.54 mm2/s; c lymphoma correlating with an ADCmean in the lower range, positive skew (high 
skewness), and a steep curve (high kurtosis). Sarcoma correlating with a higher ADCmean value, a negative skew (low skewness), and a flatter shape 
(low kurtosis)
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It can be concluded from the results of the study that 
tumour classification can be predicted based on radiom-
ics features, and further study is recommended.
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