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Abstract 

Background and objective:  Emergency Department (ED) overcrowding is a chronic international issue that is 
associated with adverse treatment outcomes. Accurate forecasts of future service demand would enable intelligent 
resource allocation that could alleviate the problem. There has been continued academic interest in ED forecasting 
but the number of used explanatory variables has been low, limited mainly to calendar and weather variables. In 
this study we investigate whether predictive accuracy of next day arrivals could be enhanced using high number of 
potentially relevant explanatory variables and document two feature selection processes that aim to identify which 
subset of variables is associated with number of next day arrivals. Performance of such predictions over longer hori-
zons is also shown.

Methods:  We extracted numbers of total daily arrivals from Tampere University Hospital ED between the time period 
of June 1, 2015 and June 19, 2019. 158 potential explanatory variables were collected from multiple data sources 
consisting not only of weather and calendar variables but also an extensive list of local public events, numbers of 
website visits to two hospital domains, numbers of available hospital beds in 33 local hospitals or health centres and 
Google trends searches for the ED. We used two feature selection processes: Simulated Annealing (SA) and Floating 
Search (FS) with Recursive Least Squares (RLS) and Least Mean Squares (LMS). Performance of these approaches was 
compared against autoregressive integrated moving average (ARIMA), regression with ARIMA errors (ARIMAX) and 
Random Forest (RF). Mean Absolute Percentage Error (MAPE) was used as the main error metric.

Results:  Calendar variables, load of secondary care facilities and local public events were dominant in the identified 
predictive features. RLS-SA and RLS-FA provided slightly better accuracy compared ARIMA. ARIMAX was the most 
accurate model but the difference between RLS-SA and RLS-FA was not statistically significant.

Conclusions:  Our study provides new insight into potential underlying factors associated with number of next day 
presentations. It also suggests that predictive accuracy of next day arrivals can be increased using high-dimensional 
feature selection approach when compared to both univariate and nonfiltered high-dimensional approach. Perfor-
mance over multiple horizons was similar with a gradual decline for longer horizons. However, outperforming ARIMAX 
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Introduction
Emergency Departments (ED) worldwide serve a crucial 
purpose, providing immediate care to patients present-
ing with health conditions that vary from minor to life-
threatening. In this setting, the ability to provide timely 
and high-quality care is of utmost importance. Unfortu-
nately, ED’s all over the world suffer from regular over-
crowding which has been repeatedly associated with 
suboptimal care leading to both increased morbidity [1] 
and increased 10 days mortality [2–4]. The ability to suc-
cessfully forecast future overcrowding would enable bet-
ter resource allocation that could alleviate the problem or 
even eliminate it altogether.

Following this rationale, there has been a continued 
academic interest in ED forecasting [5] but much of the 
previous work has focused on investigating applicability 
of different algorithms [6–9] or the predictive value of a 
singular independent variable such as website visits [10], 
road traffic flow [11] or aggregated acuity of admitted 
patients [12]. Due to extremely interdependent nature of 
ED’s the number of potential input features is high and 
testing each of them one by one is a painstaking process. 
Moreover, since these input features likely demonstrate 
significant multicollinearity, testing them one by one can 
provide a misleading picture of their relative importance. 
Despite these issues, there has been little to no emphasis 
on the number and quality of the used independent vari-
ables and, most importantly, on their aggregated value 
when used in conjunction with one another.

Reluctancy towards high-dimensional multivariate 
input is understandable from both computational and 
practical standpoint. From computational perspective 
the amount of added noise is usually proportional to 
number of input dimensions which often leads to loss of 
predictive accuracy. Moreover, ED forecasting is almost 
always performed using statistical time series forecast-
ing algorithms [5] most of which are strictly univari-
ate by design, with the notable exception of regression 
with ARIMA errors (ARIMAX). It is thus not a coinci-
dence that ARIMAX with very limited and arbitrarily 
selected calendar and weather variables seems to outper-
form other statistical models [12, 13]. We hypothesise, 
that if this kind of arbitrary feature selection works as 
well as it does, it should be possible to completely auto-
mate the feature selection process, which would make it 

significantly faster to identify useful input features and 
potentially enhance model accuracy.

Feature selection processes have conventionally been 
utilized in pre-processing of imaging and biomedical 
signals as well as in genetic studies. In addition to elimi-
nating noise and increasing computational speed, they 
can provide new understanding on the factors behind 
the phenomenon of interest [14] which could ultimately 
inform wider health care policies. To our knowledge 
there is only one publication by Jiang et al. that has docu-
mented a feature selection process specifically in the ED 
forecasting context. However, even then the selection is 
done out of a very limited set of weather and holiday var-
iables, which questions the necessity and performance of 
their approach [15].

In this empirical study we demonstrate a feature selec-
tion process to identify predictors of ED crowding using 
a dataset from a large Nordic ED along with a largest-to-
date collection of predictor candidates. Using this data, 
we test two feature selection mechanisms: simulated 
annealing and floating search and benchmark our results 
against current gold standard.

Materials and methods
Data
Tampere University Hospital is an academic hospi-
tal located in Tampere, Finland serving a population of 
535,000 in Pirkanmaa hospital district and as a tertiary 
hospital an additional population of 365,700 and provid-
ing level 1 trauma center equivalent capabilities. The hos-
pital ED “Acuta” is a combined ED with total capacity of 
111–118 patients with 70 beds (and additional 7 beds as a 
reserve) and 41 seats for walk-in patients. Approximately 
100,000 patients are treated annually. For this study, the 
daily numbers of all registered ED visits were obtained 
from hospital database created during the sample period 
from June 1, 2015 to June 19, 2019 resulting in 386 579 
individual visits. The number of next day total arrivals 
(DTA) was used as the target variable.

Based on previous literature and intuition, explana-
tory variables were collected from different data sources 
as listed in Table 1. Historical weather data was acquired 
in hourly resolution from the nearest observation station 
[16]. Timestamps of Finnish holidays were provided by 
University Almanac Office [17]. Calendar variables were 

remains a challenge when working with daily data. Future work should focus on enhancing the feature selection 
mechanism, investigating its applicability to other domains and in identifying other potentially relevant explanatory 
variables.
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encoded according to their status as national holidays and 
working days. Additionally, we included each national 
holiday as a categorical variable since their impact on ED 
service demand likely differs significantly due to different 
levels of social activity. Weekdays and months were also 
included as can be expected.

Timestamps of local public events were provided by 
Tampere city officials. The provided log contained an 
event name, date of organisation and event size. Two fea-
ture sets were engineered using this data. First, we com-
puted a timeseries of the total number of ongoing events 
each day within the Tampere area, with the hypothesis 
that increased activity (and often increased substance 
consumption) might have an impact in ED service 
demand. The total number of events was further divided 
by event size into the number of minor and major pub-
lic events. Additionally, we identified 73 recurring events 
that are organized each year. These events contained 
a wide array of social activities from concerts to sports 

events. The events were included as individual binary 
vectors, since, analogous to different holidays, different 
events likely have different, or even contradicting, impact 
on service demand.

A timeseries containing the number of available beds 
in 34 inpatient facilities in Pirkanmaa Hospital district 
catchment area was provided by Unitary Healthcare Ltd 
which provides a logistics software for patient transfers. 
The rationale of including these features into the data-
set resides in the hypothesis that the availability of hos-
pital beds is inversely correlated with ED arrivals. More 
precisely, if a primary care physician is unable to find a 
bed for a patient in need, they are often forced to send 
the patient to the ED merely to organise the bed that the 
patient requires. In addition to including the capacity of 
each individual hospital and health care centre we also 
included both the mean and sum of all the available beds 
on any given day. Temporal availability of hospital beds in 
included facilities is visualised in Fig. 1.

The numbers of website visits to two domains (www.​
tays.​fi and www.​tays.​fi/​acuta) were acquired from Tam-
pere University Hospital Information Management. The 
former of these was available in hourly resolution and 
the latter in daily resolution. Daily sums of visits to both 
domains were included. Additionally, we summed the 
visits between 18 pm and midnight in the identical man-
ner as was suggested and justified by Ekström et al. and 
named this feature as “Ekström’s visits” [10]. Moreover, a 
stationary version of this variable was included by divid-
ing the evening visits by earlier visits during the day. This 
variable is referred to as “Ekström’s ratio”. The number of 
daily Google searches for word “Acuta” was also used as 
an input [18].

Website visits, Google searches and available hospital 
beds were lagged by one day whereas weather variables 
were not, assuming that weather can be forecasted with 
satisfying precision one day ahead. All explanatory vari-
ables are collected and presented in Table 1.

Models
Benchmark models
Autoregressive Integrated Moving Average (ARIMA) is a 
widely used statistical forecasting model the performance 
of which has been previously extensively documented in 
ED forecasting [5, 19]. It has established a position as one 
of the most important benchmarks not only in ED fore-
casting but in time series forecasting in general [12, 20]. 
Due to established nature of the model, we refer to Chap-
ter 9 of [21] for the basic concepts. In essence, ARIMA 
is a combination of three components: autoregression 
(AR), integration (I) and moving average (MA). Integra-
tion step serves to ensure stationarity of the data. Num-
ber of required differences and the length of history that 

Table 1  List of potential explanatory variables

N number, Int integer, float floating point, N Columns number of columns

Variable name N columns Type Lag (days)

N of available hospital beds 33 Int  − 1

N of available hospital beds 1 Float  − 1

N of available hospital bedsΣ 1 Float  − 1

Weekday 7 Binary 0

Month 12 Binary 0

Specific holiday 18 Binary 0

Lagged holiday 3 Binary 0

Working day 1 Binary 0

Cloud count 1 Int 0

Air pressure 1 Float 0

Relative humidity 1 Float 0

Rain intensity 1 Float 0

Snow depth 1 Float 0

Air temperature 1 Float 0

Dew point temperature 1 Float 0

Visibility 1 Int 0

Air temperature min 1 Float 0

Air temperature max 1 Float 0

Website Visitstays.fi 1 Int  − 1

Website Visitstays.fi/acuta 1 Int  − 1

Ekstöm’s visitstays.fi 1 Int  − 1

Ekström’s ratiotays.fi 1 Int  − 1

Google Trends"Acuta" 1 Int  − 1

N of minor public events 1 Int 0

N of major public events 1 Int 0

N of all public events 1 Int 0

Specific public event 65 Binary 0

158

http://www.tays.fi
http://www.tays.fi
http://www.tays.fi/acuta
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is used as an input for AR and MA components consti-
tutes the model order which is referred to as (p, d, q) in 
which p is the number of time lags for AR, d is number 
of differencing and q is number of time lags for MA. The 
order of the model is then determined either manually by 
dedicated statistical procedures or using an automated 
approach. When additional independent variables are 
used in conjunction with the univariate historical sig-
nal, the model is referred to as regression with ARIMA 
errors or ARIMAX. For seasonal data, it is often useful 
to define time lags as a multiple of the known seasonal-
ity and perform seasonal differencing, in which case the 
model is referred to as Seasonal ARIMA or SARIMA. In 
this study, model order was defined with Auto-ARIMA as 
initially described by Hyndman et al. [22] using a Python 
implementation provided by Smith et  al. [23]. Auto-
ARIMA is a relatively complex algorithmic approach 
which completely automates both the order and param-
eter estimation of ARIMA modelling. This is ideal for 
potential future implementation since manual order esti-
mation would be very laborious if done hourly or daily. 

The code used to produce ARIMAX results is provided 
in Additional File 2. Using this approach we provide three 
ARIMA benchmarks: one trained with both univari-
ate signal and all 158 explanatory variables (ARIMAX-
A), one trained only with univariate historical signal 
(ARIMA) and one trained with features inspired by work 
of Whitt et  al. [13] (ARIMAX-W) containing a limited 
number of weather and calendar variables. ARIMAX 
trained with features identified by simulated annealing 
and floating search are referred to as ARIMAX-SA and 
ARIMAX-FS respectively. The known weekly seasonal-
ity of the target variable was provided to the optimizer 
which automatically defines whether seasonal lags are 
required for best available fit.

We also include Random Forest (RF) as a benchmark, 
which is one of the most used machine learning models 
and is particularly beneficial in the case of high dimen-
sional data since it natively uses subsets of the input data. 
In addition, it can work well with features of different 
types (binary, numerical, categorical). It is an ensemble 
technique, meaning that it uses a set of simpler models 

Fig. 1  Temporal availability of beds in 33 catchment area hospitals or health centres as extracted from Uoma© which is a software developed 
by Unitary Healthcare Ltd. used to facilitate easier patient transfers. Negative availability is drawn as 0 for clarity. White space represents missing 
data, caused mainly by sequential introduction of the software. There are interesting differences between facilities, some demonstrating constant 
overload which likely significantly contributes to catchment area access block
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to solve the assigned task [24]. In this case, RF uses an 
ensemble of decision trees. An arbitrary number of deci-
sion trees is generated, each considering a randomly 
chosen subset of the samples of the original dataset. To 
reduce the correlation between the individual decision 
trees, a random subset of the features of the original 
dataset is selected. The hyperparameters of the RF were 
selected using a randomized search algorithm [25]. More 
specifically, the search was made among the number 
of estimators, the depth of the tree and whether it uses 
or not the bootstrap. The best RF uses 1000 estimators, 
uses bootstrap and has no limit on the depth. Each tree 
is therefore trained on its subset of the data, and it can 
give a prediction on new unseen data. The RF regressor 
uses the results of all these trees and averages them to 
generate the prediction. Four versions of RF with differ-
ent inputs were tested: RF-U with only univariate signal, 
RF-FS with variables identified by FS, RF-SA with vari-
ables identified with SA and RF-A with all variables.

Naïve and Seasonal Naïve (SNaive) were also included 
as benchmark models to establish the ultimate baseline 
of performance. Naïve model uses the latest observed 
value as the prediction, e.g. when predicting arrivals of 
Wednesday, observed values of Tuesday are used. SNaive 
uses the latest observed value a season ago as the predic-
tion, e.g. when predicting arrivals of next Wednesday, 
observed value of last Wednesday is used.

LMS and RLS filters
Due to the nature of the data used, characterized by sea-
sonal variations and high number of input dimensions, 
we focused our attention on classical signal processing 
including LMS filters and RLS filters [26]. These models 
have the benefit of being both simple and efficient which 
is required due to high number of train-test iterations in 
the feature selection phase. LMS and RLS can be char-
acterized as gradient learning models, as they adjust the 
model parameters according to the gradient of the pre-
diction error.

LMS filter is a digital Finite Impulse Response filter 
with time-varying (adaptive) weights. As such the LMS 
filter is commonly used for adaptive signal processing 
tasks, where the environment changes dynamically such 
as echo cancellation [26]. As the environment in our 
study is not necessarily stationary, and all latent factors 
affecting the dynamics are not measurable, the predic-
tion model needs to be able to adapt to the changes in 
the input–output relationships and the LMS filter is able 
to do so.

The LMS filter can be formulated as follows. Denote 
the prediction target (e.g. ED arrivals) at time step n as 
y(n), and inputs as x(n), n = 1,2,…,N. The inputs are con-
structed as a vector, whose elements in our case consist 

of both endogenous variables (historical values of arriv-
als) and explanatory variables. The LMS filter predicts 
the output ŷ(n) as a weighted sum (inner product) of 
inputs and weights:

The weight vector h(n) is initialized with zeros and 
adaptively updated. The update computes the prediction 
error e(n) = y(n)− ŷ(n) and applies the gradient update 
rule:

where µ > 0 is the learning rate.
The Recursive Least Squares (RLS) filter is another 

adaptive filtering formulation, that has significantly faster 
convergence compared to LMS. The RLS filter is approxi-
mate the theoretical solution for the weight vector w 
minimizing the prediction error:

where R is the expectation of the autocorrelation matrix 
of input x, and r is the expectation of the cross-correla-
tion of input x and target y:

Under a nonstationary situation, these correlations 
must be computed for each time step. In practical imple-
mentation, the expectations are replaced by their sample-
based estimates which are updated at each time step to 
minimize a weighted prediction error that downweighs 
older errors. Moreover, the RLS algorithm directly 
updates the inverse of the autocorrelation matrix in order 
to avoid matrix inversion. Similar to the learning rate of 
the LMS filter, the speed of adaptation of the RLS filter 
can be controlled by the forgetting factor λ, which deter-
mines the weight given to old measurements.

Feature selection
To obtain the most important features in terms of pre-
dictive accuracy, we used two different techniques: 
simulated annealing (SA) and floating search (FS). 
These algorithms were chosen since they are both fast 
to deploy and easy to understand. Moreover, both pro-
vide a faster execution compared to other greedy feature 
selection techniques, while still maintaining excellence 
performance.

ŷ(n) = h(n)Tx(n)

h(n+ 1) = h(n)+ µe(n)x(n)

w(n) = R−1(n)r(n),

R(n) =

n
∑

i=0

�
n−ix(i)xT (i),

r(n) =

n
∑

i=0

�
n−iy(i)x(i),
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SA consists of selecting an arbitrary variable and ran-
domly selecting a neighbor to minimize the internal 
energy of the system. More specifically: for each vari-
able selected, the algorithm selects a second and checks 
whether the new “solution” is better (low energy state) 
or worse than the previous one. If the selected feature 
improves the overall result, it is kept, otherwise a new 
variable is tested.

FS feature selection, iteratively adds and removes 
some of the variables until it reaches a stable subset of 
features. During the addition phase, the algorithm tests 
recursively one feature at the time, adding a new feature 
if this improves the result: this is done until 10 features 
are added. In the removal phase, it removes one feature 
at the times from the subsect selected in the previous 
phase, until the 5 least beneficial features are removed. 
The FS continues until it doesn’t exist a set of 10 features 
which improves the result when added, nor it exists a set 
of 5 features which improve when removed.

Both LMS and RLS were used as predictive models in 
feature selection phase, resulting in four models which 
are later referred to as LMS-FS, LMS-SA, RLS-FS and 
RLS-SA.

Cross validation, error measures and statistical tests
The dataset was divided into training set containing 
the samples from June 1, 2015 to December 31, 2017 
(944 days, 64%) and test set containing the samples from 
January 1, 2018 to June 19, 2019 (534 days, 36%). Out-of-
sample accuracies over the test set were calculated using 
a rolling forecast origin with predictive horizon of one 
day. Mean Absolute Percentage Error (MAPE) was used 
as the error metric since it is scale-invariant and because 
its wide adoption allows comparisons to previous studies 
[5]. The formula for MAPE is defined as follows:

where n = number of samples, yi = ground truth, 
ŷi = prediction.

We used ANOVA and two-tailed Dunnett’s post-
hoc test to investigate statistical significance between 
reported MAPE’s. Multiple comparisons to both Sea-
sonal Naïve and to the best performing model were per-
formed. Statistical significance was specified as P < 0.05. 
Statistical analyses were performed using SPSS Statistics 
version 27.0.1.0.

Results
Model accuracy
ANOVA showed statistically significant differences 
between models with p < 0.001. Model performance and 

MAPE =
100

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣

yi

multiple comparisons are presented in Table 2 and pre-
dictions are visualized in Figs. 2 and 3. ARIMAX-W(2, 0, 
2) provided the best out-of-sample accuracy with MAPE 
of 6.6% but did not differ statistically from RLS-FS or 
RLS-SA. Estimated coefficients of this model are pro-
vided in Table  3. RLS was identified as the second-best 
model with MAPE of 6.9% when trained with SA features 
and MAPE of 6.9% when trained with features identi-
fied by FS. Univariate LMS resulted in MAPE of 7.0%. 
LMS-U, RLS-SA and RLS-FS outperformed univariate 
ARIMA(1, 0, 0)x(1, 0, 0)7 which provided an accuracy 
of 7.1%. Predictions of the models compared to ground 
truth are shown in Fig.  2 and Fig.  3. Detailed residual 
analysis of the model performance is provided in the dig-
ital supplementary materials (Additional File 3).

Additionally, multi-step accuracy of the three best 
performing models was investigated for each predictive 
horizon up to 28  days into the future. For each model, 
the selected feature set was the same as in the next day 
prediction task. For ARIMAX-W, the multi-step forecast 
at time t for horizon h was generated in a standard man-
ner [20] by simply running the 1-day forecast procedure h 
times, with the predicted values of the previous horizons 
concatenated to the input time series and unobserved 
residuals set to zeros. For RLS-SA and RLS-FS, to gen-
erate the forecast for each horizon h the filter was run 
for the test set with the prediction target at time t set to 
the number of arrivals at time t + h . Error as a function 
of increasing predictive horizon is visualized in Fig.  4 
for the three best performing models, showing gradual 
decline in accuracy with no statistically significant differ-
ences between the models irrespective of the predictive 
horizon. Detailed multi-step results for one-way ANOVA 
and Dunnett’s post hoc test are provided in Additional 
File 4.

Identified features
For the sake of brevity, only features identified by better 
performing RLS are presented here. RLS-SA identified a 
total of 62 features, out of which 30 were individual pub-
lic events, 11 were available beds vectors from wards, and 
8 were holiday variables. Ekström’s visits were included 
as were the numbers of major and all public events. All 
weekdays were included except Saturday. December, 
September, and March were identified as impactful. Out 
of weather variables all but snow depth were excluded. 
Please see Table 4 for details.

RLS-FS identified a total of 55 features, out of which 29 
were individual public events and 7 were individual holi-
days. Website visits to both domains were included. Out 
of weather variables all but cloud count were excluded. 
All weekdays were included, but out of months only 
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March, February and December were considered signifi-
cant. Please see Table 5 for details.

Discussion
To the best of our knowledge, this was the first study to 
investigate feature selection in truly high-dimensional 
multivariate ED forecasting. We demonstrated that using 
high-dimensional multivariate input in conjunction with 
appropriate feature selection slightly enhances predictive 
accuracy when compared to using complete feature set or 
a univariate model. Calendar variables, load of second-
ary care facilities and local public events were dominant 
in the identified predictive features. The best predictive 
model achieved an absolute percentage error of 6.6 to 
7.1%. The models demonstrate a similar, relatively linear 
decay over a horizon of 28 days.

Both feature selection methods resulted in a some-
what similar collection of features and in almost identi-
cal predictive accuracies. A high number of local public 
events was included in both feature sets, some of which 
are intuitively unlikely to have marked impact on ED ser-
vice demand mostly due to their small size. It is possible 
that some public events end up in the final feature set not 
because they are especially important but simply because 
of their abundance. For example, in the case of FS, a high 
number of features increases their likelihood to appear in 

the addition phase which might risk an increase in false 
positives. It is also difficult to differentiate the impact 
of the weekly seasonality from the impact of the pub-
lic events since most of the public events are naturally 
organized in the weekend. It is possible that the weekly 
seasonality “leaks” into the public event variables due to 
multicollinearity with calendar variables. Similar season-
ality also likely explains the inclusion of certain calendar 
months in the feature sets.

Capacity of many secondary care facilities was promi-
nent among explanatory variables identified by SA. 
If any underlying causality can be assumed, it serves 
to highlight the interdependent nature of the ED and 
importance of access block as an important contributor 
to overcrowding as previously suggested by [27] and as 
hypothesised above.

RLS-FS provided better accuracy than the 8.4% that 
was documented by Whitt et al. using a ARIMAX model 
[13]. However, reproducing the approach of Whitt el al 
on our data (ARIMAX-W) produced the best accuracy 
with 6.6% suggesting that MAPE errors are not directly 
comparable over different facilities despite the desired 
scale-invariance of the metric. Ekström et al. documented 
one day ahead accuracy of 6.1% in two ED’s with simi-
lar size as ours using a General Linear Model (GLM) 
with website visits and calendar variables as inputs [10]. 

Table 2  Model accuracies in terms of absolute percentage errors

ARIMA autoregressive integrated moving average, ARIMAX regression with ARIMA errors, RLS recursive least squares, RF random forest, LMS least mean squares, SA 
simulated annealing, FS floating search, SNaive = seasonal naïve, A all features, U univariate, W Whitt’s features. Statistical significance is calculated using two-tailed 
ANOVA with Dunnet’s post hoc test for multiple comparisons

Mean Standard 
deviation

Median Max Differs from SN (p) Worse than best (p)

Naive 8.4 6.4 6.9 36.4 1.00  < 0.001
ARIMAX-A 8.4 6.2 6.9 33.7 1.00  < 0.001
RLS-U 8.3 6.2 7.1 37.7 1.00  < 0.001
SNaive 8.2 6.6 6.6 41.8  < 0.001
ARIMAX-SA 8.0 6.5 6.5 39.0 1.00  < 0.001
RF-FS 8.0 5.9 6.6 33.5 1.00 0.002
LMS-FS 7.8 5.9 6.5 32.6 0.98 0.007
RF-SA 7.7 5.7 6.5 28.5 0.72 0.035
RF-U 7.5 5.7 6.1 33.2 0.42 0.10

RF-A 7.4 5.7 6.4 36.6 0.22 0.22

LMS-A 7.3 5.6 6.3 34.3 0.16 0.30

ARIMAX-FS 7.3 5.9 5.9 36.2 0.12 0.37

LMS-SA 7.2 5.5 6.1 31.6 0.07 0.53

RLS-A 7.2 5.5 6.4 39.3 0.048 0.64

ARIMA 7.1 5.5 5.7 29.5 0.019 0.86

LMS-U 7.0 5.3 5.8 30.7 0.011 0.95

RLS-SA 6.9 5.1 5.9 24.6 0.003 1.00

RLS-FS 6.9 5.2 5.9 30.1 0.002 1.00

ARIMAX-W 6.6 5.3 5.3 31.7  < 0.001
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Interestingly both of our feature selection algorithms 
included website visits in the final feature set support-
ing findings of Ekström et al. but, the resulting accuracy 
was slightly worse than they documented. We believe 
this is at least in part due to relatively short validation set 
of 3 months used by Ektsröm et al., in which the inabil-
ity of a GLM to adjust to changes in the time series does 
not become evident in the manner that can be seen with 
RF in our study (Fig. 2) which leads to overly optimistic 
interpretation of model performance.

To the best of our knowledge, as previously stated, 
there is only one article that has previously investigated 
feature selection processes specifically in the context of 

ED forecasting by Jiang et al. [15]. They documented an 
approach in which a Genetic Algorithm was used for 
feature selection prior to fitting a Deep Neural Network 
(DNN). However, their initial feature space contained 
mere 22 dimensions consisting completely of calen-
dar and weather variables and it begs the question of 
whether performing dimensionality reduction in their 
setting makes sense in the first place. This question will 
remain unanswered, since they don’t document the per-
formance of DNN with the complete feature set. More-
over, Jiang et al. divided their test set of 128 days into 
6 folds and report aggregated accuracies for different 
forecasting horizons. For these reasons it is impossible 

Fig. 2  Predictions superimposed with ground truth. Light grey line = ground truth, dark grey line = prediction. RF = random forest, RLS = recursive 
least squares, LMS = least mean squares, ARIMA = autoregressive integrated moving average, ARIMAX = regression with ARIMA errors, FS = floating 
search, SA = simulated annealing
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to make meaningful comparisons between their and 
our results.

In broader context, feature selection in multivariate 
time series forecasting is a relatively under-examined 
subject and readily available software solutions do not 
exist. For this reason, it would be interesting to see how 
our approach generalises into other domains such as 
industrial, commercial, or econometric forecasting in 
which high-dimensional multivariate time series are 
abundant but manual feature selection is either imprac-
tical or impossible. In retail, for example, the number of 
target variables of interest are often counted in tens of 
thousands, and costs of performing any manual model 
engineering for each target independently greatly sur-
passes the benefits of potential aggregated accuracy 
increase. However, computational extraction of relevant 
features as suggested in this study could result in signifi-
cant accuracy increase with marginal labour cost.

Neural networks (NN) are readily applied in fields 
such as machine vision in which number of input dimen-
sions is inherently extremely high, but their use specifi-
cally in time series prediction has been a challenge. Only 
recently a NN used in conjunction with a statistical 

Fig. 3  Three best performing models. Light grey line = ground truth, dark grey line = prediction. ARIMAX-W = regression with ARIMA errors using 
features identified by Whitt et al. [13], RLS = recursive least squares, SA = simulated annealing, FS = floating search

Fig. 4  Error as function of predictive horizon for the three best 
performing models. ARIMAX-W = regression with ARIMA errors using 
features identified by Whitt et al. [13], RLS = recursive least squares, 
SA = simulated annealing, FS = floating serach, MAPE = mean 
absolute percentage error
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model outperformed pure statistical time series tools in 
the M4 time series forecasting competition [20]. Follow-
ing this result, some potentially performant multivariate 
NN algorithms for time series forecasting have appeared 
[28] and documenting their performance in ED forecast-
ing with high number of features would be an interesting 
subject for a follow-up study. Alternatively, retaining the 
computationally lower requirements of statistical model-
ling, further work could entail incorporation of a feature 
selection step into the auto-ARIMA procedure itself. In 
addition to potentially better performance, this approach 
would have the additional benefit of bringing feature 
selection capabilities conveniently to the same interface 
already widely used by the forecasting community.

Limitations
Despite the carefully performed cross validation 
and moderate size of the validation set, this was a 

retrospective cohort study, and its results must be con-
firmed in a prospective setting. This is mainly due to 
inherent uncertainty in the accuracy of the older visit sta-
tistics. Our study suggests that adding non-conventional 
exogenous variables such as public events and avail-
ability of hospital beds and operation room schedules as 
inputs in a predictive model might increase model per-
formance. However, availability of these inputs in a pro-
spective setup might be a challenge in a hospital with 
suboptimal IT infrastructure. We observed a significant 
drop in the DTA from September 3, 2018 onwards due to 
a reorganization of the ED in which underaged patients 

Table 3  Estimated coefficients of the ARIMAX-W(2, 0, 2) model

ɸ non-seasonal autoregression, θ non-seasonal moving average

Estimate Standard error p

January 112.93 3.68  < 0.001

February 111.17 3.30  < 0.001

March 101.35 3.80  < 0.001

April 90.24 3.70  < 0.001

May 83.41 4.70  < 0.001

June 84.78 3.49  < 0.001

July 81.19 4.08  < 0.001

August 78.43 4.39  < 0.001

September 86.49 3.69  < 0.001

October 88.64 3.46  < 0.001

November 94.97 3.09  < 0.001

December 109.51 3.16  < 0.001

Monday 170.97 2.00  < 0.001

Tuesday 148.29 1.94  < 0.001

Wednesday 147.47 1.97  < 0.001

Thursday 145.46 2.23  < 0.001

Friday 164.24 2.04  < 0.001

Saturday 176.05 2.10  < 0.001

Sunday 170.63 2.05  < 0.001

Min temp 0.45 0.21 0.03

Max temp 0.89 0.23  < 0.001

Holiday + 1 5.68 3.35 0.09

Holiday + 0  − 8.57 2.99  < 0.001

Holiday − 1 19.12 2.66  < 0.001

φ1  − 0.11 0.14 0.44

φ1 0.69 0.10  < 0.001

θ1 0.28 0.14 0.05

θ2  − 0.58 0.10  < 0.001

σ2 352.37 16.26  < 0.001

Table 4  Most important explanatory variables for next day 
arrivals identified by simulated annealing and recursive least 
squares

*Individual public events are not shown here due to their high number

Feature family Feature

Website visits Ekströms visits

Holiday name Independence day eve

Holiday name Easter day

Holiday name Shrove sunday

Holiday name All saint’s day

Holiday name May day

Holiday name Ascension day

Holiday Holidayt+0

Holiday Holidayt+1

Available hospital beds Regional hospital A, Ward 9

Available hospital beds Health centre 10

Available hospital beds Regional hospital A, Ward 8

Available hospital beds Health centre 12

Available hospital beds Regional hospital A, Ward 5

Available hospital beds Health centre 11, Ward 3

Available hospital beds Health centre 2

Available hospital beds Health centre 11, Ward 2

Available hospital beds Regional hospital B, Ward 1

Available hospital beds University hospital, ED ward

Available hospital beds Health centre 11, Ward 1

Month December

Month September

Month March

Public event 30 individual public events*

Public event Number of major daily public events

Public event Number of total daily public events

Weather Snow depth

Weekday Sunday

Weekday Monday

Weekday Wednesday

Weekday Friday

Weekday Thursday

Weekday Tuesday
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were redirected to a newly opened pediatric ED. This 
most likely has a negative impact in the model perfor-
mance, and it should be considered when interpreting 
the results. There was a non-trivial amount of missing 
data in available hospital beds because the software that 
was used to monitor capacities was introduced sequen-
tially one hospital at a time during the period of our train 
set. Missing values were imputed using constant zero. 
This might have had a negative impact on model perfor-
mance. Please see Fig.  1 for visual representation. The 
list of local public events provided to us was intuitively 
non-exhaustive with some well-known events missing, 
which risks overly pessimistic evaluation of their impor-
tance. Otherwise, no missing data was observed. We also 
note that due to lack of available weather prediction data, 
historical weather variables were used instead of weather 
predictions.

Table 5  Most important explanatory variables for next day 
arrivals identified by floating search and recursive least squares

*Individual public events are not shown here due to their high number

Feature family Feature

Holiday name Shrove sunday

Holiday name Easter day

Holiday name Midsummer

Holiday name Christmas eve

Holiday name All Saint’s day

Holiday name Independence day eve

Holiday name Ascension day

Holiday Holidayt−1

Available hospital beds Health centre 2

Available hospital beds Health centre 11, Ward 1

Available hospital beds University hospital, ED ward

Calendar variable Working day

Month March

Month February

Month December

Public event 29 individual public events*

Public event Number of major public events

Weather Cloud count

Website visits Website visitstays.fi/acuta

Website visits Website visitstays.fi

Weekday Thursday

Weekday Saturday

Weekday Friday

Weekday Wednesday

Weekday Tuesday

Weekday Sunday

Weekday Monday

Conclusions
Our study provides new insight into potential underly-
ing factors associated with number of next day presenta-
tions. It also suggests that predictive accuracy of next day 
arrivals can be increased using high-dimensional feature 
selection approach when compared to both univariate 
and nonfiltered high-dimensional approach. Performance 
over multiple horizons was similar with a gradual decline 
for longer horizons. However, outperforming ARIMAX 
remains a challenge when working with daily data. 
Future work should focus on enhancing the feature selec-
tion mechanism, investigating its applicability to other 
domains, and in identifying other potentially relevant 
explanatory variables.
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