
DrugHybrid_BS: Using Hybrid Feature
Combined With Bagging-SVM to
Predict Potentially Druggable Proteins
Yuxin Gong1,2,3, Bo Liao1,2,3*, Peng Wang1,2,3 and Quan Zou4

1School of Mathematics and Statistics, Hainan Normal University, Haikou, China, 2Key Laboratory of Computational Science and
Application of Hainan Province, Haikou, China, 3Key Laboratory of Data Science and Smart Education, Hainan Normal University,
Ministry of Education, Haikou, China, 4Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of
China, Quzhou, China

Drug targets are biological macromolecules or biomolecule structures capable of
specifically binding a therapeutic effect with a particular drug or regulating physiological
functions. Due to the important value and role of drug targets in recent years, the prediction
of potential drug targets has become a research hotspot. The key to the research and
development of modern new drugs is first to identify potential drug targets. In this paper, a
new predictor, DrugHybrid_BS, is developed based on hybrid features and Bagging-SVM
to identify potentially druggable proteins. This method combines the three features of
monoDiKGap (k � 2), cross-covariance, and grouped amino acid composition. It removes
redundant features and analyses key features through MRMD and MRMD2.0. The cross-
validation results show that 96.9944% of the potentially druggable proteins can be
accurately identified, and the accuracy of the independent test set has reached
96.5665%. This all means that DrugHybrid_BS has the potential to become a useful
predictive tool for druggable proteins. In addition, the hybrid key features can identify
80.0343% of the potentially druggable proteins combined with Bagging-SVM, which
indicates the significance of this part of the features for research.
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1 INTRODUCTION

Drug targets refer to the binding sites of drugs in the body. To date, there are approximately 130
protein families as therapeutic drug targets, which usually include enzymes (Liu et al., 2019a; Meng
et al., 2020; Xu et al., 2021a; Wang et al., 2021), G protein-coupled receptors (Ru et al., 2020), ion
channels and transporters (Han et al., 2019), nuclear hormone receptors, etc (Li and Lai, 2007). These
drug targets are of great significance for disease treatment and drug research and development (Ding
et al., 2019a; Ding et al., 2019b; Shi et al., 2019; Ding et al., 2020a; Wang et al., 2020a; Ding et al.,
2020b; Shang et al., 2021; Zhuang et al., 2021). However, the discovery and development of modern
drugs is usually a time-consuming and laborious process. It is estimated that it takes an average of
10–15 years to bring a drug to themarket, which costs approximately US $2,558million (Zhong et al.,
2018). Therefore, predicting whether a protein can potentially be used as a drug target has significant
value in disease treatment and reducing the time and cost of drug development, which greatly
accelerates the drug development process for the protein (Wang et al., 2020b; Yu et al., 2021).

The discovery of drug targets has attracted extensive attention in both academia and the
pharmaceutical industry. The commonly used methods for drug target prediction can be
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roughly divided into three types. The first type is to analyse
known drug targets at the genome level based on sequence
homology and to find potential drug targets from protein
families (Hopkins and Groom, 2002; Russ and Lampel, 2005;
Munir et al., 2019; Ao et al., 2021). Not all members of the same
protein family can be used as therapeutic drug targets. The second
type predicts whether the new target is druggable based on several
chemical properties, molecular drug similarity, and target
properties (Gayvert et al., 2016). This method is usually
limited by experimental cost. The third type is discovering
drug targets based on protein structure, which predicts the
protein’s drug properties by searching for the binding site and
binding affinity of the target protein (Salmaso and Moro, 2018).
However, this method has limitations because the three-
dimensional structure of most proteins is not easy to obtain.

With the advent of the genome era, revolutionary changes have
taken place in the field of drug research and development. Many
computing methods were used for effective drug target prediction.
To better find potential drug targets and provide new options for
drug redirection, Cheng et al. (Cheng et al., 2021) established the
GraphMS model. They fused heterogeneous graph information
using mutual information in the heterogeneous graph to obtain
effective node information and substructure information. The
experimental results show that the area under the receiver
operating characteristic curve (AUROC) was 0.959, and the area
under the precision-recall curve (AUPR) was 0.847. Dezső et al.
(Dezső and Ceccarelli, 2020) developed a machine learning model
for tumour drug targets. A variety of protein features, including
features from sequences, features that characterize protein functions,
and network features from protein-protein interaction networks,
were included in the model. It has achieved high accuracy on the
drug target of independent clinical trial drug targets, with an area
under the curve of 0.89. In order to establish a high-quality
environment-specific metabolic model that can be used for drug
target prediction, Pacheco et al. (Pacheco et al., 2019) developed a
metabolic model FASTCORMICS RNA-seq workflow
(rFASTCORMICS) based on RNA-seq data. The genes and
response characteristics of 13 different types of cancer were
extracted. At the same time, 17 new colon cancer candidate
drugs were predicted, of which 3 drugs were verified in vitro in
colon cancer cell lines. Ji et al. (Ji et al., 2019) proposed a DTINet
method based on network propagation, starting from the diffusion
component analysis of potential drug targets and disease networks.
The DTINet performed well under the receiver operating
characteristic curve (AUROC � 0.86 ± 0.008). To achieve the
rapid identification of novel targets, Li et al. (Li and Lai, 2007)
constructed a simple model extraction characteristics from known
drug target protein sequences. Using this model, drug targets and
nondrug targets can be distinguished with 84% accuracy. Jamali et al.
(Jamali et al., 2016) based on the protein features derived from 443
sequences, the accuracy of predicting drug targets through neural
network models reached 89.98%.

This paper selected three feature extraction methods:
monoDiKGap (k � 2), cross covariance (CC) and grouped
amino acid composition (GAAC) (Zuo et al., 2017). The three
individual features were mixed in different combinations through
the hybrid feature method. The MRMD was used to remove

redundant hybrid features, and the integrated method bagging
was used to improve the classification performance of potentially
druggable proteins. We performed the importance analysis on the
best feature combination and selected the key features that
distinguish potentially druggable proteins. The results show
that the hybrid features of the three feature extraction
methods can predict the potentially druggable proteins well by
the integrated method bagging, and can correctly predict
96.9944% of the druggable target proteins. This model was
conducive to better promotion of drug development.
Furthermore, the potential drug targets screened out can
provide references for new drug targets.

2 MATERIALS AND METHODS

This paper mainly studied the following parts, and the step flow
chart was shown in Figure 1:

1. Establishment of dataset.
2. Use three single feature extraction methods, monoDiKGap,

Cross Covariance, and Grouped Amino Acid Composition, to
represent the features of dataset.

3. Combine three single feature methods to obtain hybrid
features.

4. The MRMD was used to remove redundant features, and the
MRMD2.0 obtained key features.

5. The feature subset predicted the potentially druggable proteins
through the optimized Bagging-SVM model.

This research was carried out under the software python
3.7.4. By comparing the new method DrugHybrid_BS with
other machine learning models, the study found that the
classification effect of DrugHybrid_BS was better, which
was helpful for the prediction of potentially druggable
proteins.

2.1 Dataset Construction
This paper cited the dataset proposed by Lin et al. (Lin et al.,
2019), in which the drug target dataset was downloaded from the
DrugBank (Wishart et al., 2006) database. In the original dataset,
1,224 druggable protein sequences were selected as the positive
sample set, and 1,319 non-druggable proteins were selected as the
negative sample set. We further processed the dataset by
removing the protein sequences containing non-standard
amino acid characters “B", “J", “O", “U", “X" and “Z". For the
remaining sequences, the CD-Hit program (Fu et al., 2012) was
used to set a critical value of 60% sequence identity to delete
highly similar sequences to avoid overfitting caused by
homologous deviation and noise in training (Zou et al., 2020).

The processed dataset was represented by D, which is the
combination of D+ and D−:

D � D+ ∪ D− (1)

where D+ represents potentially druggable protein samples
and D− represents non-druggable protein samples. The
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positive sample set contained 1,050 protein sequences, and the
negative sample set concluded contained 1,279 protein
sequences. Figure 2 showed the sample distribution of the
dataset.

2.2 Feature Representation
2.2.1 monoDiKGap
The monoDiKGap feature is a variant of the kmer feature
extraction method in the PyFeat package. Kmer, as our

FIGURE 1 | Flow chart of DrugHybrid_BSmodel (A) Process the referenced dataset (B) Three single feature representation methods were used to extract features
(C) Combine three single feature representation methods and select the best hybrid feature (D) Use MRMD to remove redundant features and MRMD2.0 to obtain key
features (E) Feature subsets were used to predict potentially druggable proteins through the optimized Bagging-SVMmodel (F) Evaluate model prediction effects based
on performance indicators.

FIGURE 2 | Sample distribution of dataset.
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common feature extraction method, is also called k-tuples (Liu
et al., 2019b; Lv et al., 2020; Niu et al., 2021a). MonoDiKGap
refers to the combination of subsequences with KGap used to
describe the sequence. While monoDiKGap generates all feature
sets, it can also use the AdaBoost (Zhu et al., 2006) classification
model to reduce redundant features to generate the optimal
feature set. The generated optimal feature set will not only
reduce the feature dimension but also ensure a good
prediction. In this study, we set KGap to 2. At this time, the
monoDiKGap feature can be expressed as:

VKGap � [fk1
1 , f

k1
2 , ..., f

k1
8000, f

k2
1 , f

k2
2 , ..., f

k2
8000]T (2)

where fk1
i (i � 1, 2, ..., 8000) represents the frequency of the ith

feature calculated when the feature was shaped like X XX, and
the generated feature at this time was like }A AA}.
fk2
i (i � 1, 2, ..., 8000) represents the frequency of the ith feature

calculated when the feature was shaped likeX——XX, the generated
feature was like }A——AA}, and X represents twenty natural amino
acids. Therefore, the total feature set generated by this feature
extraction method has a total of 16,000 features, which AdaBoost
automatically optimizes to generate 466 feature subsets with more
discriminative capabilities.

2.2.2 Cross Covariance (CC)
CC is the correlation between two different attributes separated
by lag (Guo et al., 2008). For this study, the CC variable described
the average interaction between two fragments with different
physical and chemical properties separated by lag fragments.
Suppose that the protein sequence P has L residues,
P � R1R2R3...RL. where
Ri ∈ {A,C,D, E, F, G,H, I, K, L,M,N, P, Q, R, S, T, V,W,Y}
represents the amino acid at position (i � 1, 2, ..., L) in the
sequence. Then, for each protein sequence, there is a physical
and chemical information matrix of the following L × 3 size,
which can be expressed as:

X � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 x13
x21

...
x22

...
x23

...
xL1 xL2 xL3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where xi1,xi2, xi3(i � 1, 2, ..., L) stands for the hydrophobicity
values, hydrophilicity values and side chain mass of amino
acid Ri, respectively.

CC converts protein sequences of different lengths into feature
vectors of the same length. The calculation formula of the CC
feature representation method is as follows:

CC(k, j, lag) � ∑L−lag
i�1

(xi,k − xk)(xi+lag,j − xj) (4)

lag � 1, 2, ..., lg, here lg � 2 was the default. Because CC was an
asymmetric vector, under this physical and chemical characteristic
condition, the feature dimension of the CC vector was twelve.

2.2.3 Grouped Amino Acid Composition (GAAC)
In the GAAC code, twenty amino acid types are divided into
five categories based on their physical and chemical properties

(Lee et al., 2011; Zheng et al., 2019; Zheng et al., 2021). These
five categories include the aliphatic group (g1: GAVLMI),
aromatic group (g2: FYW), positive charge group
(g3: KRH), negative charged group (g4: DE), and
uncharged group (g5: STCPNQ).

The GAAC descriptor refers to the frequency of each amino
acid group, which is calculated as follows:

f(g) � N(g)
N

, g ∈ {g1, g2, g3, g4, g5} (5)

N(gt) � ∑N(t), t ∈ g (6)

whereN(g) is the number of amino acids in group g,N(t) is the
number of amino acid types t, and N is the length of the protein
sequence.

As an example, for the sequence
}EAHGAFLMDKPSMFNERV}, the amount of occurrences of
character “E" was 2, the amount of occurrences of character “A"
was 2, the amount of occurrences of character “H" was 1, the
amount of occurrences of character “G" was 1, etc. The length of
the sequence was 18,
N(g1) � 7, N(g2) � 2, N(g3) � 3, N(g4) � 3, N(g5) � 3.
Therefore, the GAAC feature of this sequence was expressed as
( 7
18,

1
9,

3
18,

3
18,

3
18).

2.3 Machine Learning Algorithm
In this study, predicting druggable proteins was a typical binary
classification problem. To better explore prediction models and
analysis features, we mainly used four machine learning
algorithms for prediction tasks, namely, support vector
machine, K-nearest neighbour, bagging integrated learning,
and random forest.

2.3.1 K-Nearest Neighbour (KNN)
The k-nearest neighbour algorithm is a classic machine learning
algorithm (Liao and Vemuri, 2002; Samanthula et al., 2014). The
principle of the k-nearest neighbour algorithm is straightforward:
a sample in the feature space will always find the k data closest to
it, that is, the nearest sample in the feature space. If most of the k
data belong to a specific category, the sample also belongs to this
category. In this study, the default parameters of the prediction
model were selected, and the value of k was 3.

2.3.2 Support Vector Machine (SVM)
Although the support vector machine has only a short
development history of more than 20 years. It shows strong
energy in classification problems (Ding et al., 2017; Wei et al.,
2018a; Wang et al., 2019; Wang et al., 2020c; Huo et al., 2020).
It has become the mainstream technology of machine learning
from the end of the 20th century to the beginning of the 21st
century, applied to many fields (Jiang et al., 2013; Xu et al.,
2018; Zhang et al., 2018; Wei et al., 2019a; Liu et al., 2021). The
support vector machine uses the maximum classification
interval to determine the optimal partitioning hyperplane to
obtain good generalization. For the binary classification
problem in this study, when we obtain a feature dataset
containing category information:
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S � {(x1,y1), (x2, y2), ..., (xn, yn)}, yi ∈ {1,−1} (7)

where n was the number of samples, the feature dimension of
each sample was d, and the samples were divided into positive
categories ( yi � 1 represents druggable protein) and negative
categories ( yi � −1 represents non-druggable protein). Our goal
was to find the optimal hyperplane to maximize the sample
interval between the positive class and the negative class.

We used ωTx + b � 0 to represent the partitioning hyperplane
and used the geometric margin to find the optimal partitioning
hyperplane. The geometric interval was numerically equal to the
distance from the sample point to the partition hyperplane. The
distance from the positive sample point (xi, yi � 1) to the
partition hyperplane was ωTxi+b

‖ω‖2 , and the distance from the
negative sample (xi, yi � −1) to the partition hyperplane was
−(ωTxi+b)

‖ω‖2 , where ω was the normal vector of the partition
hyperplane and b was the intercept. Therefore, the distance
from any sample (xi, yi) to the partition hyperplane can be
uniformly expressed as yi(ωTxi+b)

‖ω‖2 . To solve the optimization
problem of linear separable support vector machines. John C.
Platt proposed the sequential minimal optimization algorithm
(Platt, 1998) in 1998. The algorithm decomposed the large convex
quadratic programming (QP) problem to be solved in the training
process of support vector machines into a series of minimum
possible QP problems, avoided time-consuming internal iterative
optimization, and improves computational efficiency.

In addition, the kernel function is a unique feature of the
support vector model. For the same dataset, different kernel
function choices will have different prediction effects.
Appropriate kernel functions can improve prediction
performance. The commonly used functions include the linear,
Gaussian, and polynomial kernel functions. In this study, a linear
kernel function was selected as the kernel of the support vector
machine by comparing different kernel functions.

2.3.3 Bagging
Bagging is one of the common ensemble learning models (Dudoit
and Fridlyand, 2003; Jin et al., 2019; Jin et al., 2021; Wu and Yu,
2021). The ensemble learning model uses a series of weak learners
(also called basic models) for learning and integrates the results of
each weak learner to obtain a better learning effect than
individual learners.

The bagging algorithm uses the simplest combination strategy
to obtain the integration model. For the classification problem,
the majority voting method is adopted. Each weak learner has one
vote, and the final prediction result is generated according to the
votes of all weak learners. The process of the bagging method is as
follows: suppose we have a training set containing N samples and
randomly put back the data to form a new training set. Because
there is a way to put back sampling, a sample may be selected
multiple times, or a sample may not be selected once. Hence, the
size of the sampled data samples is the same as that of the original
training data samples, but they contain different data. In this way,
after T groups of data are extracted, T weak learners trained by
different training sets can be obtained at the end of training.
According to the prediction results of T weak learners, the most

voting method is adopted to obtain a more accurate and
reasonable prediction model.

2.3.4 Random Forest(RF)
Random forest is a representative bagging algorithm based on
decision trees. Because random forest has good performance in
regression and classification prediction, it has attracted great
attention. It has been widely used in many practical problems,
such as genome data analysis and disease risk prediction. When
making classification prediction, each decision tree will make
classification judgment on the data according to the
characteristics of the data. Through the majority voting
method, the category with the most votes is the prediction
result of the random forest.

2.4 Feature Selection
In the feature extraction section, we introduced three feature
representation methods. The optimal feature subset of the dataset
sample generated by the monoDiKGap method had 466 features.
The CC feature representation method generated 12 features, and
the GAAC feature method generated five features. Different
feature extraction methods were combined to obtain hybrid
features. However, the hybrid of features may lead to feature
redundancy and affect the predictive effect of potentially
druggable proteins. Therefore, we used MRMD and MRMD2.0
to select features and used fewer features to distinguish between
potentially druggable and non-druggable proteins better.

In this study, the MRMD (Quan et al., 2016) was used to
remove redundant features in hybrid features. The MRMD will
leave the optimal feature subset after automatic feature selection.
The main principle of this method is to use the Euclidean
distance, cosine distance, and the Tanimoto coefficient to
calculate the redundancy between features and use the Pearson
correlation coefficient to calculate the correlation between dataset
features and class labels to generate feature subsets with low
redundancy and strong correlation automatically. When we
analyse the hybrid feature subset that can accurately predict
potentially druggable proteins, we also need to analyse the
importance of different features. MRMD2.0 (He et al., 2021)
combined seven algorithms, such as ANOVA, MIC, LASSO,
mRMR, and chi-square test, through the PageRank strategy
algorithm to rank different algorithm lists to form a directed
graph, and each feature obtained a score. According to the
ranking information, we analyse the importance of features
and obtain key features that influence the prediction of
potentially druggable proteins.

2.5 Performance Evaluation
To intuitively measure the quality of the model, we evaluated the
predictive effect of the model. This study used common
evaluation indicators, including TP rate (TPR), FP rate (FPR),
precision (Su et al., 2018), F-score (Sokolova et al., 2006), and
accuracy (ACC) (Wei et al., 2017a; Wei et al., 2017b; Wei et al.,
2018b; Wei et al., 2019b; Huang et al., 2020; Liang et al., 2020;
Zhang et al., 2020; Xu et al., 2021b; Zhu et al., 2021). The
calculation method of each measurement index was as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TPR � TP

TP + FN

FPR � FP

FP + TN

precision � TP

TP + FP

recall � TP

TP + FN

Fscore � 2 pprecision p recall
precision + recall

ACC � TP + TN

TP + FP + TN + FN

(9)

Here, TP represents the classification number of correct positive
samples, and TN represents the classification number of correct
negative samples. FP represents the classification number of false
positive samples. FN represents the classification number of false
negative samples. In addition, this study also used 5-fold cross-
validation to predict and evaluate the model.

3 RESULTS AND DISCUSSION

3.1 Performance of Single Feature
Extraction Methods
Because the monoDiKGap feature extraction method gradually
increases with the value of KGap, the number of corresponding
generated feature vectors increases exponentially. In this study, the
total feature set generated by monoDiKGap(k � 2) has 16,000
features, but in fact many small fragments appear very rarely,
and some even appear 0 or 1 times. At this time, a large number
of feature vectors composed of 0 or one also have no meaning
already. In order to avoid high-dimensional feature vectors
introducing dimensional disasters for subsequent machine
learning algorithms, resulting in a significant decline in predictive
classification performance. Therefore, this study used AdaBoost to

automatically generate a more discriminative 466-dimensional
feature subset, and compared the ACC values of the full feature
set and the feature subset of monoDiKGap(k � 2) under different
classifiers, as shown in Figure 3.

In this paper, three single feature extraction methods,
monoDiKGap(k � 2), CC and GAAC, were used to represent
the features of the dataset. Three single feature representation
methods extracted 466-dimensional, 12-dimensional, and 5-
dimensional features. The prediction performance of each
extraction method under SVM, KNN, and RF was shown in
Table 1. The data in Table 1 showed that the accuracy of the
monoDiKGap(k � 2) feature representation method in predicting
potentially druggable proteins through the SVM classification
algorithm was higher than that of KNN and RF. The model can
accurately predict 96.608% of the potentially druggable proteins.
At this time, the TPR value reached 0.965, the FPR value reached
0.033, the F-score reached 0.962, and the ROC curve area was
0.966. The GAAC feature extraction method had an accuracy of
77.2864% in predicting potentially druggable proteins under
SVM, which was 1.20 and 2.40% higher than that of the RF
and KNN classification models, respectively. The accuracy of the
CC feature extraction method to predict proteins through the
SVM feature representation method was only 1.07% lower than
that of the KNN algorithm. Therefore, considering the
performance evaluation of the three feature representation
methods under different classifiers, the SVM classification
algorithm was more suitable for accurately predicting
potentially druggable proteins.

3.2 Performance of Hybrid Feature
Representation Methods
To explore the prediction performance of hybrid features, we
combined the above three feature representation methods and
obtained new feature vectors of different combinations. After the
combination of three single feature extraction methods, four new
feature vectors were obtained: monoDiKGap + CC, monoDiKGap +
GAAC, CC + GAAC and monoDiKGap + CC + GAAC. Table 2
showed the evaluation performance of different combinations of
hybrid features using the SVM classification algorithm. Table 2
indicated that compared with the single feature representation
method, the hybrid feature showed higher performance. The
accuracy of the combination of monoDiKGap and other feature
representation methods was more than 96%. In addition, the
prediction performance of the CC + GAAC feature combination
was also higher than that of the single feature representationmethod.
Importantly, we found that the combination of monoDiKGap, CC,
andGAAC features showed the best prediction performance, and the
hybrid feature could accurately predict 96.6509% of potentially
druggable proteins.

3.3 Kernel and Parameters of Support
Vector Machine
The kernel function is an important feature of support vector
machines. The kernel function choice of the support vector
machine affects the prediction performance of the model. For

FIGURE 3 | Comparison the ACC values of the full feature set and 466-
dimensional feature subset extracted by monoDiKGap(k � 2) under different
classifiers.
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the monoDiKGap, CC, and GAAC hybrid features to
represent the dataset features, we used different kernel
functions and 5-fold cross-validation to select the
appropriate kernel function. We compared the performance
of the linear kernel function, quadratic polynomial kernel
function, and radial basis kernel function. The ROC curves of
different kernel functions were shown in Figure 4. The ROC
values were 0.966, 0.955, and 0.846. The evaluation indicators

of the three kernel functions were shown in Table 3. We can
see that the prediction effect of the hybrid feature using the
linear kernel function was better than the quadratic kernel
function and the radial basis function. At this time, the three
kernel functions predicted 96.6509, 95.5346, and 85.745% of
the potentially druggable proteins, respectively. Therefore, this
paper chose a linear kernel function as the kernel of the
support vector machine.

TABLE 1 | Compare the results of different feature methods under different classifiers.

Method Classifier ACC(%) TPR FPR Precision F-score auROC

monoDiKGap (k � 2) SVM 96.608 0.965 0.033 0.960 0.962 0.966
KNN 58.437 0.083 0.004 0.946 0.152 0.628
RF 85.272 0.788 0.094 0.873 0.828 0.928

CC SVM 57.364 0.243 0.155 0.563 0.339 0.544
KNN 58.437 0.625 0.449 0.533 0.575 0.599
RF 63.718 0.569 0.306 0.604 0.586 0.679

GAAC SVM 77.286 0.768 0.223 0.739 0.753 0.772
KNN 74.882 0.745 0.248 0.712 0.728 0.807
RF 76.084 0.729 0.213 0.738 0.733 0.850

TABLE 2 | Performance comparison of different feature combinations under SVM classifiers.

Method ACC(%) TPR FPR Precision F-score auROC

monoDiKGap + CC 96.651 0.967 0.034 0.959 0.963 0.967
monoDiKGap + GAAC 96.350 0.958 0.032 0.961 0.959 0.963
CC + GAAC 78.360 0.770 0.206 0.755 0.801 0.782
monoDiKGap + CC + GAAC 96.651 0.961 0.029 0.965 0.963 0.966

FIGURE 4 | ROC curves of support vector machines in different kernel functions.
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For the linear kernel of the support vector machine, the penalty
parameter C is an important parameter. The larger the value of C is,
the easier it is to overfit, while the smaller the value of C is, the easier
it is to underfit. The most commonly used C values are 1, 10, 100,
and 1,000. We selected the appropriate C value with the help of grid
search. Table 4 showed the prediction performance of different
penalty parameters. When the C value was 1, the support vector
machine classification algorithm achieved a better prediction effect
and shortened the running time.

3.4 Hybrid Feature Selection
The best hybrid features are 483-dimensional features mixed by
the monoDiKGap, CC, and GAAC feature representation
methods. These features may contain redundancy and affect
the performance. Since the monoDiKGap feature extraction
method automatically generated the optimal feature subset, we
also need to remove redundant features from the CC and GAAC
feature extraction methods. We used MRMD to filter the feature
sets extracted by CC and GAAC and generated the optimal
feature subset with low redundancy and strong correlation.
Finally, we combined the feature subsets to obtain the filtered
new hybrid features. These hybrid features not only reduced the
feature dimensions but also had more expressiveness (Table 5).

3.5 Bagging Algorithm and Comparison
With Other Algorithms
The expressive ability of a single support vector machine
classification model may be limited so that the bagging ensemble
algorithm based on a support vector machine has room for

improvement. Compared with a single model, the bagging
integration method can enhance the expressive ability of the
model and reduce the error. When it is difficult for a single
model to correctly distinguish the two types of data, the
ensemble algorithm can often improve the model’s prediction
performance by constructing multiple independent base models.

In this study, a support vector machine with a penalty coefficient
of one and a linear kernel function was used as the basic model, and
the number of optimal basic models was selected to construct a
Bagging-SVM classification algorithm. The hybrid features of
monoDiKGap, CC, and GAAC, which removed the cumbersome
features, were shown in Figure 5 under the Bagging-SVM
classification algorithm where the number of base models was
1–20. The accuracy of combining hybrid features and Bagging-
SVM to predict potentially druggable proteins was basically more
than 96.73%, and the highest prediction accuracy was 96.9944%
when the number of base models was 12.

Based on the hybrid features of monoDiKGap, CC, GAAC, and
Bagging-SVM, a new predictive model, DrugHybrid_BS, was
constructed. To further explore the prediction model, we
evaluated the performance of SVM, RF, and KNN using the
same hybrid feature set. Table 6 showed that the DrugHybrid_BS
model can better predict potentially druggable proteins. At this time,
the TPR value reached 0.970, the F-score reached 0.967, and the
AUC value reached 0.992. In addition, Table 6 showed the
prediction performance comparison between the DrugHybrid_BS
model and the previous model when using the same dataset as Lin
et al. (Lin et al., 2019) and Jamali et al. (Jamali et al., 2016). The study
found that the accuracy of the original data set using the

TABLE 3 | Performance comparison of hybrid features under different kernel functions.

Kernel function ACC(%) TPR FPR Precision F-score auROC

liner kernel 96.651 0.961 0.029 0.965 0.963 0.966
polynomial kernel 95.535 0.953 0.043 0.948 0.951 0.955
RBF 85.745 0.730 0.038 0.940 0.822 0.846

TABLE 4 | Performance comparison of hybrid features with different penalty
parameter C values under linear kernel.

C Values ACC(%) TPR FPR Precision F-score auROC

1 96.651 0.961 0.029 0.965 0.963 0.966
10 96.651 0.960 0.030 0.965 0.963 0.966
100 96.608 0.960 0.029 0.965 0.962 0.966
1,000 96.608 0.960 0.029 0.965 0.962 0.966

TABLE 5 |Comparison of classification performance of hybrid features before and
after using MRMD feature selection.

Number of
feature

ACC(%) TPR FPR Precision F-score auROC

483 96.651 0.961 0.029 0.965 0.963 0.966
472 96.694 0.959 0.027 0.967 0.963 0.966

FIGURE 5 | The accuracy of hybrid features in predicting potential
druggable proteins under the Bagging-SVM classification algorithm where the
number of base models was 1–20.
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DrugHybrid_BSmodel reached 100%, which shows that the original
data does have redundancy, and it also reflects the significance of the
initial data preprocessing in this article.

3.6 Independent Test Set
The accuracy of the classification and predictionmodel in predicting
the training set cannot well reflect the future performance of the
prediction model. To effectively judge the performance of a
predictive model, we divided 80% of the dataset as the training
set and 20% as the test set. The detailed information was shown in
Figure 6. The independent test set using the DrugHybrid_BS model
can accurately predict 96.5665% of the potentially druggable protein.

The TPR value was 0.948, the FPR value was 0.02, the precision value
was 0.975, and the AUC value was 0.990.

3.7 Feature Importance Analysis
From the DrugHybrid_BS model, we obtained the following: after
combining the single feature representation methods, the hybrid
features of monoDiKGap, CC and GAAC combined with Bagging-
SVM can improve the accuracy of predicting druggable proteins.
This part further explored the features that play a key role in the
DrugHybrid_BS model, that is, the importance of these features.

First, we used the MRMD2.0 to sort the feature sets extracted by
three single feature representation methods and simultaneously
obtained the relationship between the number of features and the
accuracy of predicting potential druggable proteins (Figures 7A–C).
Figure 7A showed that when the number of features of the CC feature
extraction method was more than eight, the accuracy rate reached
more than 60% and continued to grow. Therefore, we selected the top
eight features as the key features of the CC feature representation
method. Figure 7B showed the GAAC feature representation
method. When the number of features was two, the accuracy rate
reached more than 70%, and the accuracy rate continued to increase
as the number increased. Therefore, we selected the top two features as
the key features of the GAAC feature extraction method. Figure 7C
showed the monoDiKGap feature extraction method. When the
number of features was twenty-six, the accuracy of predicting
potentially druggable proteins was significantly improved, and then
the accuracy increased steadily as the number of features increased.
Therefore, we chose the top twenty-six features as the key features of
the monoDiKGap feature extraction method. Second, we combined
the key features of the single feature extraction methods to obtain the
hybrid key features. The detailed information was shown in Table 7.

TABLE 6 | Comparison of prediction performance with other algorithms.

Method ACC(%) TPR FPR Precision F-score auROC

DrugHybrid_BS(This paper) 96.994 0.970 0.030 0.963 0.967 0.992
DrugHybrid_KNN 58.652 0.587 0.502 0.729 0.473 0.625
DrugHybrid_SVM 96.694 0.959 0.027 0.967 0.963 0.966
DrugHybrid_RF 87.763 0.834 0.087 0.888 0.860 0.949
DrugHybrid_BS(Original dataset) 100 1.000 0.000 1.000 1.000 1.000
Jamali et al. (Jamali et al., 2016) (Original dataset) 89.78 0.901 0.106 0.901 0.901 0.959
Lin et al. (Lin et al., 2019) (Original dataset) 93.78 0.928 0.056 0.942 0.936 0.978

FIGURE 6 | Details of the training set and independent test set.

FIGURE 7 | The relationship between the number of features extracted by the three methods and the accuracy of predicting potentially druggable proteins (A) CC
(B) GAAC, and (C) monoDiKGap.
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Finally, the number of basemodels suitable for the hybrid key features
was selected through the Bagging-SVM classification model.

After research, we obtained that the hybrid key features can
accurately predict 80.0343% of the potentially druggable proteins
under the bagging algorithm based on the integration of fifteen
SVMs. These hybrid key features combined with Bagging-SVM
have achieved good prediction results, which fully demonstrated
the importance of this part of the feature for the new method
DrugHybrid_BS for predicting potentially druggable proteins.

4 CONCLUSION

Research on potentially druggable proteins is of great significance in
the field of drug development and disease treatment. However,
identifying potentially druggable proteins is the first step in
research. This research focused on combining hybrid features and
Bagging-SVM to predict potentially druggable proteins. The hybrid
features included three feature extraction methods: monoDiKGap,
CC, and GAAC, which were based on sequence information,
physiochemical properties, and correlation. Through the three
single feature representation methods of monoDiKGap, CC,
GAAC, and the comparison of combined feature prediction, it was
found that the hybrid features of monoDiKGap, CC, and GAAC can
accurately predict 96.9944% of the potentially druggable proteins
under Bagging-SVM. In addition, the accuracy of the independent test
set using the new method DrugHybrid_BS reached 96.5665%.
Therefore, the DrugHybrid_BS model used in this study could be
a powerful method to study potentially druggable proteins and
provide a reference value for other studies. In the future, we will
try more deep learning techniques (Zou et al., 2019; Guo et al., 2020;
Zeng et al., 2020; Niu et al., 2021b; Zhang et al., 2021) for this problem.
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