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Purpose: To develop and evaluate an automatic segmentation method of arterial
vessel walls and plaques, which is beneficial for facilitating the arterial morphological
quantification in magnetic resonance vessel wall imaging (MRVWI).

Methods: MRVWI images acquired from 124 patients with atherosclerotic plaques
were included. A convolutional neural network-based deep learning model, namely
VWISegNet, was used to extract the features from MRVWI images and calculate the
category of each pixel to facilitate the segmentation of vessel wall. Two-dimensional
(2D) cross-sectional slices reconstructed from all plaques and 7 main arterial segments
of 115 patients were used to build and optimize the deep learning model. The model
performance was evaluated on the remaining nine-patient test set using the Dice
similarity coefficient (DSC) and average surface distance (ASD).

Results: The proposed automatic segmentation method demonstrated satisfactory
agreement with the manual method, with DSCs of 93.8% for lumen contours and 86.0%
for outer wall contours, which were higher than those obtained from the traditional
U-Net, Attention U-Net, and Inception U-Net on the same nine-subject test set. And
all the ASD values were less than 0.198 mm. The Bland–Altman plots and scatter plots
also showed that there was a good agreement between the methods. All intraclass
correlation coefficient values between the automatic method and manual method were
greater than 0.780, and greater than that between two manual reads.

Conclusion: The proposed deep learning-based automatic segmentation method
achieved good consistency with the manual methods in the segmentation of arterial
vessel wall and plaque and is even more accurate than manual results, hence improved
the convenience of arterial morphological quantification.
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INTRODUCTION

Confirming and risk stratifying vulnerable plaques is especially
important for the clinical prevention and treatment of ischemic
stroke. Magnetic resonance vessel wall imaging (MRVWI) can
directly visualize arterial vessel walls and characterize vulnerable
plaques. It has been widely used as an emerging non-invasive
imaging modality for evaluating and identifying patients at risk
for ischemic stroke (Loewe et al., 1998; Frank, 2001; Burtea et al.,
2012; Dieleman et al., 2014).

Quantitative morphologic measurements of the arterial vessel
wall and plaques based on MRVWI have been proven to have
good reproducibility (Mandell et al., 2017; Saba et al., 2018; Zhang
et al., 2018) and suggested to be imaging markers to monitor
the progression and regression of ischemic stroke during medical
management or drug development (Adams et al., 2004; Minarro-
Gimenez et al., 2018). However, quantitative measurements are
currently of limited use in clinical practice because manual
segmentation of the vessel wall and plaque is labor intensive and
requires continuous training of personnel (Qiao et al., 2011).
It usually takes a trained expert more than 30 min to analyze
MRVWI images of one patient from the manual reconstruction
of two-dimensional (2D) slices to the manual segmentation of
the vessel wall and plaque. In addition, the main challenge
of MRVWI-based segmentation is the low contrast between
the vessel wall and the surrounding tissues, which causes the
accuracy of segmentation to depend heavily on the knowledge
and experience of experts.

Over the past years, several studies have used computer-aided
diagnosis to improve the efficiency and accuracy of segmentation
and reduce the burden on doctors for the interpretation of
medical images (Ladak et al., 1999; Sakellarios et al., 2012;
Jodas et al., 2018). However, these methods sometimes require
user intervention. With the widespread application of artificial
intelligence in the field of medical image analysis, convolutional
neural networks (CNNs) have achieved important breakthroughs
in image segmentation tasks (Anwar et al., 2018; Yamashita
et al., 2018; Maier et al., 2019; Dutta et al., 2020; Ohsaka, 2020;
Taghanaki et al., 2021). Compared with traditional automatic
segmentation methods, CNNs can automatically learn abundant
image features to achieve fast and more accurate segmentation.
Some studies have used CNN to achieve carotid arterial vessel
segmentation (Tsakanikas et al., 2020; Zhu et al., 2021). In
addition, some other studies used CNN to segment carotid
arterial vessel wall. Among them, Chen et al., 2019 developed
tractlet refinement and polar transformation for carotid artery
localization and vessel wall segmentation and achieved high
accuracy (Chen et al., 2019). Samber et al. (2020) used CNN
to the task of delineating carotid vessel walls based on 2D T2-
weighted MRVWI images. However, all these studies are aimed
at the segmentation of carotid arterial vessels or vessel walls.
There is a paucity of study on the automatic segmentation of
intracranial arterial vessel wall. Recently, Shi et al. (2019) made
a preliminary attempt to automatically segment the intracranial
arterial vessel wall using a U-Net-like fully convolutional network
based on whole-brain MRVWI images of 56 patients. As we
know, atherosclerosis is a diffuse disease that can occur in any

artery. It is more important and clinically significant to estimate
the effect of a segmentation model based on MRVWI images
including more arteries (intracranial and carotid arteries) in a
larger patient population.

In this study, a fully automated method for the segmentation
of the arterial lumen and vessel wall based on intra- and
extracranial MRVWI images was developed and evaluated in a
large cohort of patients with ischemic stroke.

MATERIALS AND METHODS

Study Population
The prospective study was approved by the local institutional
review board, and all patients gave the informed consent.
From January 2019 to April 2020, 129 consecutive patients
(age range 46–78 years, mean age 58.6 ± 18.9 years)
requiring high-resolution MRVWI scans in 3 centers were
recruited for the study.

Image Acquisition
All MRVWI images were acquired using a T1-weighted 3D-
variable flip-angle fast spin-echo (FSE) sequence, namely
MATRIX (Modulated flip Angle Technique in Refocused
Imaging with extended echo train) on a 3T whole-body MR
system (uMR780, United Imaging Healthcare Co., Ltd., Shanghai,
China). The imaging parameters were as follows: sagittal imaging
orientation, repetition time (TR)/echo time (TE) = 800/13.92 ms,
field of view = 230 mm × 192 mm × 154 mm,
matrix size = 384 × 320 × 256, spatial
resolution = 0.6 mm × 0.6 mm × 0.6 mm without interpolation,
echo train length = 46, receiver bandwidth = 600 Hz/pixel,
compress sensing-based acceleration rate (uCS) = 5.2, scan
time = 4 min and 49 s. The study was approved by the local
institutional review board, and informed consent was waived for
the retrospective study.

Image Preprocessing
A dedicated plaque analysis software (uWS PlaqueTool, United
Imaging Healthcare Co., Ltd., Shanghai, China) was used for
image preprocessing. First, curved-planar reconstruction for all
intracranial and carotid arterial segments were automatically
performed using centerline extraction algorithm. Then, 2D cross-
sectional slices were reconstructed for all plaques and seven main
arterial segments: the common carotid artery (CCA), the internal
carotid artery (ICA) and bifurcation, the anterior cerebral artery
(ACA), the middle cerebral artery (MCA), the basilar artery (BA),
the vertebral artery (VA), and the posterior cerebral artery (PCA),
and manually delineated the lumen and outer wall contours
by five experienced radiologists with more than 6 years of
experience. Representative images processed with the automatic
workflow are shown in Figure 1.

Five patients were excluded from training database due to the
poor image quality with motion artifacts. A total of 13,962 2D
MRVWI slices were reconstructed from 7 arterial segments of
124 patients, of which, 9,073 slices and 3,889 slices reconstructed
from 115 patients were used as the training and validation sets to
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build and optimize the model. In total, 1,000 slices reconstructed
from the remaining 9 patients were used as the test set to
evaluate the obtained model. These slices of the nine patients
were manually delineated twice to compare the results of the
deep learning CNN-based approach with the variability of the
data between two manual reads to see if the variance between the
CNN and ground truth was within the variability of assessment
of expert readers.

For most slices derived from normal arterial segments or
segments with slightly thickened vessel walls, an ellipse tracing
tool composed of four coordinate points is used for quick
delineation. For some slices with irregular shapes of the lumen

and vessel wall caused by large and complex plaques, a free-
shape tracing tool composed of multiple coordinate points is used
for more accurate delineation. Due to the large amount of data
to be labeled, five readers independently performed the above
delineation on different data and cross-checked the delineation
results to ensure that each slice was delineated by at least two
readers by consensus. When there is discrepancy between the
labeling and checking readers, a third senior reader was invited
for the final decision by consensus. To avoid model overfitting,
the training dataset was expanded by nearly six times from
9,073 to 54,438 slices through rotation, translation, and padding.
Then, each slice was interpolated to 0.075 mm × 0.075 mm

FIGURE 1 | The workflow for proposed centerline extraction of intracranial and carotid artery.

FIGURE 2 | The architecture of the proposed CNN-based VWISegNet.
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TABLE 1 | The segmentation results for lumen contours and vessel wall contours
of different methods.

U-Net
(mean ± SD)

VWISegNet
(mean ± SD)

Attention
U-Net

(mean ± SD)

Inception
U-Net

(mean ± SD)

DSC (%) Lumen 86.7± 16.9 93.8 ± 6.3 92.0 ± 8.5 86.8 ± 17.4

Vessel
wall

73.1± 14.6 86.0 ± 9.0 79.7 ± 9.8 74.3 ± 16.4

DSC, Dice similarity coefficient.

for reducing the morphologic measurement error and resized to
256 × 256 pixels and grayscale normalized as follows to reduce
the inconsistent characteristics of the images.

norm =
(

xi − xmin

xmax − xmin
× (xmaxv − xminv)+ xminv

)
(1)

where xi denotes the pixel value, and xminv and xmaxv
represent upper and lower bounds of normalized. Here,
xminv = 0, xmaxv = 1.

In summary, the proposed model was trained on 54,438
2D MRVWI slices, validated on 3,889 slices, and tested
on 1,000 slices.

Vessel Wall Segmentation
A U-Net-like (Ronneberger et al., 2015) multiclass deep learning
architecture was proposed to segment the vessel wall and lumen,
named VWISegNet. The main architecture of the network is
shown in Figure 2. It consists of an encoder path and an
asymmetric decoder path followed by a pixelwise classifier
that enables precise pixel classification. The two branches were
connected by a skip connection. A filter with a size of 5 × 5
and stride of 1 was applied to all the convolutional layers to
extract fine features from the resized images. Compared with the
traditional U-Net network, the VWISegNet has more residual
units, and these residual units can better propagate information
between the low and high levels, alleviating vanishing gradient
problem and allowing the network to obtain better results.

A convolutional layer with a K = 2 kernel and stride of 2 is
used for downsampling as a substitute for the pooling layer in
the encoder path. Instead of directly downsampling, each layer
adds a residual unit that achieves fast convergence and better
network performance. Utilizing a 1 × 1 kernel size with a stride
of 1 subsequently performed beyond the last stage to generate
outputs of the same size as the input images. In the process of
training, convolution kernel size was decided by considering the
influence of the perception field and computational efficiency.
The 5 × 5 convolution kernel can obtain a larger perception
field and can extract image features better. The 20 epochs
are run at a learning rate of 3e−5 with a batch size of 32.

FIGURE 3 | A representative comparison between the proposed VWISegNet and the traditional U-Net, Attention U-Net, and Inception U-Net on the segmentation of
vessel wall.
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With 20 epochs of training, our network model was sufficiently
converged and very stable. The Dice loss function is selected for
calculating the loss of the lumen and the outer wall. Adaptive
moment estimation (Adam) is used to optimize the model with a
momentum of 0.9. The parametric rectified linear units (PReLU)
function is used as the activation function. PReLU avoids the
“dead features” problem caused by zero gradient. In this article,
the filter size of 2 × 2 is the common size in the upsampling
and downsampling.

Since traditional U-Net is some sort of standard for medical
image segmentation, the proposed VWISegNet was compared
with respect to the performance to this benchmark and recently
published Attention U-Net, and Inception U-Net on the same test
data. In addition, the VWISegNet was compared with champion

group results of the Carotid Artery Vessel Wall Segmentation
Challenge1 held MICCAI 2021 and SMRA 2021 on their dataset.

Evaluation Indicators and Statistical
Analysis
The Dice similarity coefficient (DSC) and the average surface
distance (ASD) were used to quantitatively evaluate the similarity
between automatic and manual segmentation results (Bertels
et al., 2019; Eelbode et al., 2020). ASD is obtained by calculating
the average of all the distances from each point on the automatic
segmentation boundary to the corresponding point on the
ground-truth boundary. To evaluate the accuracy of the proposed

1https://vessel-wall-segmentation.grand-challenge.org/

TABLE 2 | The DSC and ASD for the lumen and the vessel wall when comparing automatic and manual method on the nine-subject test set.

Mean ± SD ACA CCA ICA MCA BA PCA VA

DSC (%) Lumen 93.8 ± 0.764 93.6 94.7 94.3 93.8 94.1 92.3 94.2

Vessel wall 86.0 ± 1.866 84.6 88.3 87.7 85.7 87.6 83.9 84.0

ASD (mm) Lumen 0.068 ± 0.016 0.063 0.064 0.098 0.056 0.060 0.057 0.080

Vessel wall 0.095 ± 0.048 0.093 0.124 0.198 0.099 0.074 0.053 0.138

DSC, Dice similarity coefficient; ASD, average surface distance; SD, standard deviation.

FIGURE 4 | Representative images and DSCs between the automatic and manual methods for the seven arterial segments. On the left, the first column represents
the original cross-sectional slices reconstructed from MR vessel wall images; in the second column, the red contours represent the automatic segmentation results
of the lumen, and the green contours represent the manual segmentation results of the lumen. In the third column, the red contour represents the automatically
segmented results of the outer vessel wall, and the green contour represents the manual segmentation results of the outer vessel wall. The DSCs of the seven
arterial segments are shown on the right using a bar plot.
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automatic segmentation method for the estimation of arterial
vessel wall morphological parameters, the lumen area, vessel wall
area, mean wall thickness, and normalized wall index calculated
using the automatic segmentation method were also compared
with those calculated using the manual segmentation method.

Statistical analyses were performed using SPSS (version
19.0, NY, United States). The Bland–Altman, scatter plot, and
intraclass correlation coefficient (ICC) were used to evaluate
the agreement between the automatic and manual methods
and between two manual reads for the lumen and vessel wall
measurement. An ICC value of less than 0.4 was considered poor
agreement, a value of 0.4–0.75 was considered good agreement,
and a value of 0.75 or greater was considered excellent agreement.

RESULTS

The VWISegNet model converged after 5,000 iterations within 3
epochs. The plots of convergence for both training and validation
data are shown in Supplementary Figures 1, 2, respectively.
The mean of DSC reached 93.8 ± 6.3% for lumen contours and

86.0 ± 9.0% for outer wall contours on the nine-subject test set.
These DSC values were higher than those obtained from the
traditional U-Net, Attention U-Net, and Inception U-Net. The
segmentation results for lumen contours and vessel wall contours
of different methods are summarized in Table 1. Representative
results of the proposed VWISegNet, the traditional U-Net,
Attention U-Net, and Inception U-Net on the segmentation of
vessel wall are shown in Figure 3. The training convergence
plot of U-Net, Attention U-Net, and Inception U-Net are shown
in Supplementary Figures 3–5, respectively. The ASD of the
proposed VWISegNet was 0.068 ± 0.016 and 0.095 ± 0.048 mm
for the lumen and the outer wall contours, respectively. The DSC
and ASD for the lumen and the vessel wall when comparing
the automatic and manual methods on the nine-subject test set
are summarized in Table 2. Compared with the Carotid Artery
Vessel Wall Segmentation Challenge, VWISegNet achieved the
better segmentation performance. The DSC and the difference
in lumen area, outer wall area, and normalized wall index
measured by VWISegNet and manual method were 78.1± 15.2%,
0.063 ± 0.134, 0.065 ± 0.106, and 0.067 ± 0.066, respectively.
However, the champion group of the challenge achieved a lower

FIGURE 5 | Representative images and the ASDs between the automatic and manual methods for the seven arterial segments. On the left, the first column
represents the original cross-sectional slices reconstructed from MR vessel wall images, the second column represents the automatically segmented lumen contour
and outer vessel wall contour, and the third column represents the manual segmentation results of lumen and outer vessel wall contours of the seven arterial
segments. The red contour represents the lumen, and the green contour represents the outer vessel wall. The ASDs of the seven arterial segments are shown on the
right using a bar plot. The standard deviation (SD) represents the amount of dispersion of the variable and is calculated as the root square of the variance. ASD,
average surface distance.
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DSC of 77.5± 14.5%, and a larger difference in lumen area, outer
wall area, and normalized wall index, which were 0.086 ± 0.256,
0.072 ± 0.159, and 0.080 ± 0.071, respectively. The VWISegNet
achieved a Hausdorff distance of 0.321 ± 0.852, which was not

good as that of 0.246 ± 0.443 achieved by champion group
of the challenge.

Figure 4 shows the automatic segmentation DSC results of the
lumen and outer vessel wall contours on seven arterial segments

FIGURE 6 | Representative images and segmentation results from two clinical cases. Case A and Case B represent the images with anterior circulation and
posterior circulation, respectively. Case A shows three stenoses at the right CCA to ICA (arrows a, b, and c on the CE-MRA image), corresponding plaques (arrows
a, b, and c on the MR vessel wall image), original cross-sectional slices reconstructed from the plaques (a–c), the automatic and manual segmentation results for the
plaques, and the segmentation results of fusion from left to right. Case B shows three stenoses at the left VA to PCA (arrows d, e, and f on CE-MRA image),
corresponding plaques (arrows d, e, and f on MR vessel wall image), original cross-sectional slices reconstructed from the plaques (d–f), the automatic and manual
segmentation results for the plaques, and the segmentation results of fusion from left to right.
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FIGURE 7 | Bland–Altman plots and scatter plots between the automatic method and manual method for the lumen area, wall area, mean wall thickness, and
normalized wall index. In panel (A), the blue lines indicate the mean difference, and the red line represents the 95% CI (computed through average difference ±1.96
SD of the difference). CI, confidence intervals; SD, standard deviation. In panel (B), the x-axis shows the manual segmentation value. The y-axis represents the
automatic segmentation value.
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TABLE 3 | The agreement of lumen and vessel wall measurements (ICC values with 95% CI) between automatic and manual segmentation methods and between
two manual reads.

Lumen area (mm2) Vessel wall area (mm2) Mean wall thickness (mm) Normalized wall index

ICC (GT1-X) (95% CI) 0.987 (0.985–0.989) 0.936 (0.928–0.943) 0.896 (0.883–0.907) 0.782 (0.756–0.805)

ICC (GT2-X) (95% CI) 0.988 (0.986–0.989) 0.951 (0.944–0.956) 0.907 (0.896–0.918) 0.797 (0.773–0.819)

ICC (GT1-GT2) (95% CI) 0.987 (0.985–0.988) 0.926 (0.916–0.934) 0.877 (0.862–0.891) 0.704 (0.671–0.734)

ICC, intraclass correlation coefficient; CI, confidence intervals; ICC (GT1-X), ICC analysis between first manual read and automatic read; ICC (GT2-X), ICC analysis
between second manual read and automatic read; ICC (GT1–GT2), ICC analysis between two manual reads.

FIGURE 8 | The mean wall thickness of seven arterial segments. Boxplot shows the median with 25th and 75th percentiles. The “×” symbol points the mean and
“o” shows the outliers.

and their manual segmentations for reference. All the DSC values
were greater than 80%, especially for lumen contour detection,
and the DSC values were all greater than 83.9%. The lowest DSC
value for the lumen contour was 92.3% of the PCA, and the
highest DSC value was 94.7% of the CCA. For the outer wall
contour, the lowest and highest DSC values were 83.9% of the
PCA and 88.3% of the CCA. In general, a DSC higher than 70.0%
is a good segmentation result. Figure 5 shows the automatic
segmentation ASD results of the lumen and outer wall contours
on seven arterial segments and their manual segmentations for
reference. The lowest ASD value for the lumen contour was 0.056
of the MCA. For the outer wall contour, the lowest ASD was 0.053
for PCA. ICA had the highest values for both the lumen and
outer wall among the seven segments. The DSC and ASD results
indicated that the proposed automatic segmentation method was
able to provide a reasonable segmentation result of lumen and
outer wall contours. As shown in Figure 6, two representative
segmentation results of plaques in the anterior circulation and
posterior circulation show visually consistent delineation of the
lumen and outer wall contours.

The Bland–Altman plots (Giavarina, 2015) for the lumen
area, vessel wall area, mean wall thickness, and normalized wall
index when comparing the proposed automatic segmentation
method with the manual segmentation method are shown in
Figure 7A. Random bias scattering patterns between the mean
differences were observed. The mean differences between the two
methods were −0.002 for the lumen area, 0.246 for the vessel
wall area, 0.006 mm for the mean wall thickness, and −0.002 for

the normalized wall area, which implied that there was a good
agreement with a small bias between the two methods. Figure 7B
shows the scatter plots for the four measurements between the
automatic segmentation method and the manual segmentation
method. The R2 values of the lumen area, vessel wall area, mean
wall thickness, and normalized wall index were 0.986, 0.888,
0.625, and 0.813, respectively.

In addition, the ICC values between the automatic and manual
segmentation methods and between two manual reads for the
four measurements are summarized in Table 3. The automatic
segmentation method provided an excellent agreement with both
manual methods in the measurement of lumen area, vessel wall
area, mean wall thickness, and normalized wall index, with
all ICC values greater than 0.780. For all the measurements,
the ICC values between the automatic segmentation method
and the manual method were greater than that between two
manual reads. More specifically, the mean wall thickness of seven
arterial segments was compared using a boxplot when comparing
automatic and manual results. As shown in Figure 8, for each
of the seven arterial segments, the mean value difference was
not more than 0.100 mm between the automatic and manual
segmentation methods.

DISCUSSION

A fast and accurate detection method of vessel wall and lumen
contours is useful for clinically efficient and accurate quantitative
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assessment of plaques, which is essential for evaluating plaque
progression and treatment effects. In this study, an automatic
segmentation approach using a CNN-based deep learning
technique was proposed to segment the contour of the vessel
wall and lumen on MRVWI images and achieved good-to-
excellent agreement with the manual method. With this proposed
method, automatic segmentation of the main arterial segments of
intracranial and carotid arteries of one subject can be completed
in a few minutes. With this potential advancement, it is likely to
be used for rapid and accurate quantitative assessment of plaques
during MRI scans, thereby assisting in identifying plaques and
patients at risk of stroke.

The proposed fully automatic segmentation method achieved
DSC larger than 80.0 and 90.0% for the segmentation of outer
wall contour and lumen contour, respectively. In particular,
the DSC result of the CCA was the best, reaching more than
94.7 and 88.3% for the lumen and the outer wall contours,
respectively. The reason may be that CCA is larger than other
carotid or intracranial arterial segments—the average diameter
of the CCA lumen is 6–7 mm. Therefore, the higher signal-to-
noise ratio and contrast-to-noise ratio of the CCA vessel wall
facilitate segmentation of the lumen and vessel wall. Compared
to previous study with DSC achieved of 88.9 and 76.7% for lumen
and vessel wall, respectively (Shi et al., 2019), our automatic
segmentation method showed comparatively a better agreement
with the manual method. This could be explained by the fact that
more training and validation samples and a network structure
with more residual units were used in this study. Compared
with previous studies for carotid artery segmentation (Chen
et al., 2019; Samber et al., 2020), our results are close to but
lower than these segmentation results. In addition, the Hausdorff
distance of the VWISegNet was not good as the champion
group of the Carotid Artery Vessel Wall Segmentation Challenge.
The reason maybe that these studies were all only based on
carotid artery segmentation, whereas our study is based on the
segmentation of both intracranial and carotid arteries. The larger
size of carotid artery than intracranial artery was more conducive
to segmentation.

All the ASD values are less than 0.198 mm, which also
exhibited the good segmentation consistency of the proposed
automatic segmentation method with the manual method. And
our results are also significantly lower than the previous study
by Zhu et al. (2021), which achieved ASD values of 0.682 and
0.960 mm for lumen and vessel wall segmentation, respectively.
Generally, a larger DSC value corresponds to a smaller ASD
value. Although CCA has the largest DSC values for both the
lumen and vessel wall, in our study, the smallest ASD value was
found in MCA for the lumen and PCA for the vessel wall. It is
supposed that the large contour size of CCA may have caused
a larger error, with the MCA and PCA being relatively smaller
segments. ICA has the highest ASD value for both the lumen
and outer wall among the seven segments, possibly because ICA
has the highest probability of plaques, and the highest number
of plaques results in poor image quality. Therefore, a larger
error result in the highest ASD value of ICA. If the point on
the automatic segmentation boundary is overlapped with the
corresponding point on the ground-truth boundary, the distance

is 0. If the corresponding points on the two boundaries are
not overlapped, the distance is a multiple of the interpolation
resolution 0.075 mm. Therefore, the average of all the distances
may be less than 0.075 mm. The lower value of ASD, the
more similar between the automatic segmentation result and
the manual result.

In addition, the Bland–Altman plots and scatter plots of lumen
area, vessel wall area, mean wall thickness, and normalized wall
index also showed a good agreement between the automatic and
manual methods. However, the outliers in the Bland–Altman
plots indicated that for some small arterial segments (such as
the MCA) and some arterial segments with a low contrast-to-
noise ratio between the vessel wall and surrounding tissues, the
error between automatic segmentation and manual segmentation
was relatively larger. For the ICC analysis, ICC values between
the automatic segmentation method and each manual method
were greater than that between two manual reads. This suggested
that the proposed automatic method could not only replace
manual method to reduce the workload of the radiologist and
increase the convenience but also improved the accuracy of the
segmentation results.

Comparing with U-Net, the proposed VWISegNet
demonstrated higher DSC for both lumen and vessel
wall segmentation and hence the better segmentation
performance. This maybe benefit from the more residual
units of VWISegNet, which can better extract image features and
achieve faster convergence.

There are several potential limitations of this study. First,
the sample size of data with plaques is relatively small for
deep learning-based segmentation. However, the segmentation of
normal arterial vessel walls is the basis for plaque segmentation
and recognition. Second, although the dataset was collected
from three different centers, they were all acquired with the
same protocol. The dataset acquired from different MRI systems
is warranted to train a segmentation model in the next work
to ensure that the model can be performed on a more
diverse multicenter dataset. Third, this study is based on 2D
segmentation of what is inherently a 3D problem. The 2D slices
are needed to be reconstructed from the acquired 3D MRVW
images, and then the segmentation is performed on the 2D
slices. In addition, the proposed segmentation method is aimed
at the situation where there is only one artery in the 2D slice.
However, there may be many different arteries on the 2D slice.
It is believed that incorporating 3D context information into
the model will make it possible to distinguish different blood
vessels and improve the segmentation results. Finally, in the
future work, the computer-aided detection (CADe) system for
MRVW images is expected to do the detection and segmentation
at the same time.

CONCLUSION

In conclusion, the proposed deep learning-based high-
performing, automatic segmentation method has achieved
good consistency with manual methods in terms of arterial
morphologic measurements and is even more accurate than
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manual results, which could potentially be useful for monitoring
plaque progression and clinical treatment effects.
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