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Abstract

The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the
data produced by the thousands of microarray studies published annually are confounded by ‘‘batch effects,’’ the
systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by
careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. A number of
programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of
these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes
method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize
expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in
microarray data that can inflate the correlation among replicates and unrelated samples.

Citation: Chen C, Grennan K, Badner J, Zhang D, Gershon E, et al. (2011) Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six
Batch Adjustment Methods. PLoS ONE 6(2): e17238. doi:10.1371/journal.pone.0017238

Editor: Daniel Kliebenstein, University of California, Davis, United States of America

Received August 26, 2010; Accepted January 24, 2011; Published February 28, 2011

Copyright: � 2011 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by National Institute of Mental Health R01MH080425, R33MH083521, Brain Research Foundation (to CYL), and the China
Scholarship Council (to CC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: cliu@yoda.bsd.uchicago.edu

Introduction

Gene expression microarray technology [1,2,3,4] measures the

expression of thousands of genes in a single assay, using multiple

probes to assay each transcript. It is a revolutionary tool for

identifying genes or pathways whose expression changes in response

to specific perturbations. Promising as it is, there are concerns

regarding the reliability, and hence the utility, of DNA microarray

technology in the study of physiological processes and diseases [5,6].

Gene expression microarray results can be affected by

minuscule differences in any number of non-biological vari-

ables[7], so reagents from different lots, different technicians or

even changing atmospheric ozone levels[8] can impact the data.

Here, the term ‘‘batch’’ refers to microarrays processed at one site

over a short period of time using the same platform. The

cumulative error introduced by these time and place-dependent

experimental variations is referred to as ‘‘batch effects."

Batch effects are almost inevitable; largely because most of the

available microarray platforms can assay fewer than 24 samples at

a time (the latest technology may process 96 samples in each

batch). Since hundreds or thousands of samples may be needed for

population studies, samples for high-throughput microarray

studies must often be processed at different times and/or sites.

However, of the thousands of DNA microarray papers published

every year, few address the problem. Of the 219 papers using

microarray data published from January 1 to July 1, 2010, less

than ten percent addressed this issue (NCBI GEO database,

studies with more than 30 samples)[9].

A number of approaches have been used or developed for

identifying and removing batch effects from microarray data[10],

of which we have chosen six for evaluation. Distance-weighted

discrimination (DWD)[11], based on the Support Vector Ma-

chines (SVM) algorithm, is a two-class discrimination analysis

for high-dimension low sample size data. Mean-centering

(PAMR)[12] is a gene-wise one-way analysis of variance

(ANOVA). Surrogate variable analysis (SVA)[13], combines

singular value decomposition (SVD) and a linear model analysis

to estimate the eigenvalues from a residual expression matrix from

which biological variation has already been removed. Geometric

ratio-based method (Ratio_G) scales sample measurements by the

geometric mean of a group of reference measurements [14]. An

Empirical Bayes method, called Combating Batch Effects When

Combining Batches of Gene Expression Microarray Data

(ComBat)[15], estimates parameters for location and scale

adjustment of each batch for each gene independently[16];

ComBat includes two methods, a parametric prior method

(ComBat_p) and a non-parametric method (ComBat_n), based

on the prior distributions of the estimated parameters. We

excluded the following algorithms either because they have

already been shown by previous studies to be inferior to one or

more of the methods we are analyzing, or because they are minor

variations of those methods[13,14,15]: singular value decomposi-

tion (SVD)[17], standardization (Location/Scale adjustment

model)[16], a ratio-based method with arithmetic mean (Ra-

tio_A)[14]. Sources for the programs we evaluated, plus some of

their computational features, are provided in Table S1.
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Ideally, all these batch adjustment methods would produce

comparable results; however, since they are based on different

statistical models, their accuracy, precision and overall effective-

ness vary. In this paper, we sought to identify the algorithm that

removes batch effects most effectively, including striking the

optimal balance between precision and accuracy. Simulated data

were used for each initial assessment, so the true values would be

known a priori, and experimental data were used for verification.

We created two simulation data sets. The first was the Variation

Assessment Simulated (VAS) data set, comprising 100 samples, 65

of which were assigned to Profile 1 and 35 of which were assigned

to Profile 2, where profile was a generic random variable.

Expression values for 991genes were simulated, all of them

differentially expressed between the two profiles. This data set was

generated twice, with different levels of batch effects incorporated

each time, creating technical duplicates for comparison. The

second simulated set, the Accuracy Assessment Simulated (AAS)

data, consisted of 100 cases and 100 controls, with 1,200 out of

10,000 genes being differentially expressed with 12 different fold

change values ranging from 23 to 3. The data incorporated a

range of batch sizes and variable amounts of batch effects.

Both experimental brain expression data sets were produced

using the Affymetrix GeneChip Human Genome U133A Array, a

short oligonucleotide cDNA microarray. The Stanley Medical

Research Institute (SMRI) data set included three technical

replicates of 62 individuals, with each replicate processed in one

of three laboratories [18] Based on place and date of processing,

the samples were run in 23 batches, averaging eight samples with

at least one case and one control per batch. The Affymetrix

U133A spike-in set (http://www.affymetrix.com/support/

technical/sample_data/datasets.affx), comprised three technical

replicates of 14 separate hybridizations of 42 spiked transcripts at

concentrations ranging from 512 pM down to 0.125 pM. Like the

simulation data, true positives and true negatives were known for

this data set.

The VAS and SMRI data were used for variation and precision

assessment; the AAS and spike-in data were used for accuracy and

overall performance evaluation. All the batch adjustment methods

were applied after experimental data were pre-processed by robust

multiarray analysis (RMA)[19], which summarizes the probe level

expression data into a probe set level expression value; a probe set

consists of 11 to 20 probes used to assay the expression of one gene

or exon. The simulated data sets were defined as the probe set

level expression values that would be obtained from RMA

processing.

We first measured how much each program reduces the

variation caused by batch effects. In the VAS data set, the

variation came only from batch and Profile effects. To verify our

simulation result, we used SMRI data, in which nine factors are

considered possible sources of variation and batch effects were

divided into site and date effects separately. In both the simulated

data and experimental data, variation attributable to batch effects

before and after batch adjustment were identified using principal

variation component analysis (PVCA)[10,20].

To test the programs’ precision, we assessed whether the

expression values of the technical replicates correlated better

before or after batch adjustment, first between the two replicates

from the VAS data using Pearson’s correlation coefficient, then

among the three SMRI replicates as assessed by intraclass

correlation (ICC).

As a measure of accuracy, the programs’ abilities to accurately

quantify fold change in expression were assessed using the

correlation between nominal fold changes and observed fold

changes. The signal detection slope [21], i.e., the slope of the line

produced by regressing the nominal fold change against the

observed fold change, was also calculated. The Affymetrix spike-in

dataset was used to verify the result.

To assess the overall detection ability of each program, we used

a receiver operator characteristic (ROC) curve. ROC curves plot

the true positive rate (i.e., sensitivity) against the false positive rate

(i.e., 1-specificity). The actual test statistic is the area under the

curve (AUC); the program with the optimal combination of

sensitivity and specificity will have the largest area of AUC. The

ROC-AUC of the AAS data was calculated, and then the

Affymetrix spike-in data was used to validate the simulation result.

We also tested each program’s ROC-AUC result with variously

sized batches in the AAS data.

Our ultimate goal was to identify the batch adjustment method

that best prepares data from multiple batches for analysis or meta-

analysis to be integrated, as measured by batch effects reduction,

accuracy, precision and overall performance.

Results

Proportion of variation attributable to batch effects
We used principal variation component analysis (PVCA)[10,20]

to measure how much variation in the expression data was

attributable to batch effects. PVCA estimates source and

proportion of variation in two steps, principal component analysis

(PCA) and variance component analysis (VCA). The principal

components (PCs) identified in the PCA that together account for

a predetermined proportion of variation, here 60%, are retained

for the VCA. The VCA uses a linear model to match each PC to a

known source of variation, in this case batch effects, profile effects

and interaction between batch and profile effects. The variation in

each PC is weighted by its eigenvalue from PCA, and the resulting

value represents the overall variation explained by that compo-

nent.

The PVCA revealed that batch effects explained 30.4% of the

overall variation in the VAS RMA data (Figure 1A). All batch

adjustment methods reduced that variation to some degree, and

three, ComBat_p, ComBat_n and PAMR, eliminated it com-

pletely (Figure 1B). Interaction between batch and profile

explained 22.1% of the variation in the RMA data, which was

reduced to less than 5% by all batch adjustment methods and to

less than 1% by ComBat_p, ComBat_n, PAMR and SVA. This

reduction made the biological variation due to profile more

apparent, increasing it from 0.014 (RMA) to 0.171(ComBat_p),

0.170 (ComBat_n), 0.398 (PAMR), 0.250 (DWD), 0.391 (SVA)

and 0.256 (Ratio_G) after the removal of batch effects.

We obtained similar results from the experimental SMRI data

set (Figure 2). This time, we considered nine possible sources of

variation, as provided by SMRI: date effects, site effects, disease

profile, brain pH, post-mortem interval (PMI), age, suicide status,

smoking status at time of death and presence of psychotic features.

The first seven PCs met our 60% threshold of variation. In the

unadjusted data, PVCA showed that batch effects were responsible

for almost half of the overall variation detected by the first seven

PCs, including 42% attributable to site effects and 7% to date

effects (Figure 2A). The next largest effect came from PMI,

which accounted for only 9% of the variation.

After applying ComBat_p or ComBat_n, only 1% of the total

variation was still attributable to batch effects: this represents a

98% reduction in batch effects and a 48% reduction in total

variation. PAMR was almost as effective, reducing batch effects by

98%. SVA, DWD and Ratio_G were less so, at 94%, 73% and

57%, respectively.

An Evaluation of Six Batch Adjustment Methods
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Precision
Precision refers to the closeness of the set of values obtained

from multiple testing of identical samples. The precision of

expression measures can be assessed by testing correlation among

replicates, which we did between the VAS duplicates using

Pearson’s correlation coefficient and among the 62 SMRI

triplicates using intraclass correlation coefficient (ICC) [22]; ICC

is appropriate for assessing correlation among groups, while

Pearson’s is intended to measure correlation between pairs.

First, however, due to the sizeable probe effect in microarray

data, which can inflate the correlations between sample pairs

regardless of whether the sample pairs are replicates[23], we

standardized each probe set value to a mean expression value of 0

and a standard deviation (s.d.) of 1. Prior to standardization, the

Figure 1. PVCA results in VAS data. The contribution of each factor to the overall variation was estimated by PVCA. All the effects, including
batch effects, Profile effects, interaction between batch and Profile effects, and residuals, were estimated for their contribution to the overall
variation. A. Data without batch adjustment. B. Data processed by ComBat_p as batch adjustment tool/model. C. Data processed by ComBat_n. D.
Data processed by PAMR. E. Data processed by DWD. F. Data processed by Ratio_G. G. Data processed by SVA.
doi:10.1371/journal.pone.0017238.g001

An Evaluation of Six Batch Adjustment Methods
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correlations between both replicate and non-replicate samples

were all .0.9; afterwards, the median correlation among non-

replicates was zero (Figure S1).

After this standardization, we calculated Pearson’s correlation

coefficient of the replicates in VAS data, before and after batch

adjustment. To compare the difference of the correlation

coefficients, we transformed the correlation r to approximately

normally distributed z-scores (Figure S2). All batch removal

methods increased the replicates’ correlation: the improvements of

the probes’ correlation distribution were all significant with

p,0.0001. ComBat and DWD showed the largest median

differences (Table S3, Row 6).

In the SMRI experimental data, ICC was calculated for each

probe set among the three replicate groups. The median z-score of

Figure 2. PVCA results in SMRI data. The contribution of each factor to the overall variation was estimated by PVCA, A. Data without batch
adjustment. B. Data preprocessed by RMA with ComBat_n as batch adjustment tool/model. C. Data preprocessed by RMA with ComBat_p. D. Data
preprocessed by RMA with PAMR. E. Data preprocessed by RMA with DWD. F. Data preprocessed by RMA with Ratio_G. G. Data preprocessed by RMA
with SVA.
doi:10.1371/journal.pone.0017238.g002

An Evaluation of Six Batch Adjustment Methods
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the raw data was 0.188; after batch correction, the median z-scores

were 0.305 for ComBat_p, 0.304 for ComBat_n, 0.298 for PAMR,

0.319 for DWD and 0.268 for Ratio_G. The increases in median

ICC z-scores were all significant (p-values,0.0001). The differ-

ences among ComBat_n, ComBat_p, PAMR and DWD were not

significant, but they were all significantly better than Ratio_G

(p,0.0001). Only SVA failed to increase the median z-score

significantly (0.209, p = 0.407) (Figure 3; Table S3, Row 7).

Accuracy
Accuracy refers to the closeness of a single measurement to its

true value. We assessed accuracy by calculated how much each

program increased the correlation between nominal fold changes

and the observed fold changes in the AAS data after the fold

changes were transformed to log 2 scale. Except for SVA

(Spearman’s correlation, r2 = 0.95), all programs increased the

correlation between nominal log 2 fold change value and observed

fold change value (p,0.0001), ComBat_p (r2 = 0.98), ComBat_n

(r2 = 0.98), PAMR (r2 = 0.97), DWD (r2 = 0.97), Ratio_G

(r2 = 0.96), compared to the unadjusted RMA result (r2 = 0.95)

(Figure 4). Although small, the differences in correlation

coefficient between ComBat (both ComBat_n and ComBat_p)

and the next best program, DWD, were also significant

(p,0.0001).

We also calculated each program’s signal detection slope[21], which

is the slope of the line produced by regressing nominal fold change

against observed fold change; a slope of 1 indicates that nominal

fold changes and observed fold changes are identical. The signal

detection slope of the 1,200 nominally differentially-expressed

genes in our unadjusted simulated data set was 1.01. There was no

room for improvement, and none of the methods improve upon

the RMA result; SVA, Ratio_G and DWD actually significantly

decreased the accuracy, with Ratio_G decidedly the worst with the

significantly lower slope of 0.90 (p,0.0001) (Table S3, Row 10).

To verify these results, we measured each program’s correlation

and slope in the Affymetrix experimental spike-in data set. SVA

had the worst correlation again (r‘2 = 0.56 vs. r‘2 = 0.90, RMA

data, p,0.0001), and decreased the slope from 0.68 to 0.51

(p,0.0001) (Figure S3).

Overall performance
We used ROC curves to determine which program best

optimized both sensitivity and specificity, i.e., maximized true

positives (TP) while minimizing false positives (FP). To create an

ROC curve, TP rate is plotted against FP rate; the actual test

statistic is the area under the curve (AUC) [24] (Figure 5). The

larger AUC, the better the program’s performance. The AUC for

the unadjusted data was 0.854. ComBat_p and ComBat_n

increased the AUC (0.937, p = 4.51e230, p = 1.42e229, respec-

tively), followed by DWD (0.917, p = 5.88e215), PAMR (0.913,

p = 2.25e213), and Ratio_G (0.895, p = 1.20e206). SVA did not

increase the AUC significantly (0.858, p = 0.27) (Table S3, Row
15). The results were similar in the Affymetrix spike-in data,

except that SVA actually decreased the AUC value, from 0.93 to

0.76 (p,0.0001) (Figure S4).

To compare the methods’ performances over a range of batch

sizes, we re-set batch sizes at 20, 40 and 100 samples, re-generated

the AAS data and recalculated the AUCs. The difference in AUC

between ComBat and the other methods increased as the batch

size decreased, suggesting that this Empirical Bayes approach is

particularly appropriate for studies with fewer samples per batch

(Figure S5).

Discussion

In order to achieve adequate statistical power for population-

based studies, sample sizes are considerably larger than the

capacity of an individual microarray. Samples are unavoidably run

in multiple batches due to technical and time constraints, making

batch effects a source of non-biological variation that can increase

error [25,26]. When microarray technology was new, some

researchers held that a well-designed experiment, using the same

technician, lab and platform, could eliminate batch effects

completely; as a result, many published reports of microarray

data ignored batch effects in their analyses and even in their

discussions. However, we now know that the causes of batch

effects include variables simply not under the control of the

researcher. Batch effects have been definitively demonstrated in

microarray studies[7,27], hence the development of algorithms

designed to reduce them. In the SMRI brain expression

microarray data set, batch effects accounted for nearly 50% of

the observed variation in expression, to which site effects

contributed 42% and date effects 7.3%.

We compared six methods for reducing or completely removing

batch effects, using experimental and simulated microarray

expression data. Although each method was effective according

to one or more measures, ComBat outperformed other methods

overall. Its parametric and non-parametric algorithms both

worked well in both kinds of data sets, controlling the variation

attributable to batch effects, increasing the correlation among

replicates, and producing the largest AUC in our assessment of

overall performance. We also confirmed another advantage of

ComBat: it can robustly manage high-dimensional data when

sample sizes are small, which is important for experiments with

limited sample size, meta-analyses and clinical diagnostics.

Moreover, ComBat not only worked well on data generated on

Figure 3. Distribution of SMRI ICCs after transformation.
Boxplots of the distribution of z-scores transformed from intraclass
correlation coefficients of probe set expression levels between three
SMRI technical replicates. The methods are listed along the X axis. The Y
axis is the distributions of all probe sets’ ICC z-scores. The top of the box
represents the top of the third quartile, the bottom of the box
represents the bottom of the first quartile, the middle bar is the median
value, box whiskers extend to 1.5 times the interquartile range from the
box and circles are possible outliers. Dmedian indicates the median
difference of z-score distributions between RMA data and data that has
been processed with both RMA and the batch-adjustment method.
Except for SVA, all batch adjustment methods significantly increased z-
scores (p,0.0001).
doi:10.1371/journal.pone.0017238.g003
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the Affymetrix platform, but has also been reported to work well

with Illumina BeadChips data [28].

The other commonly-used methods we evaluated were PAMR,

DWD, Ratio_G and SVA. DWD did not perform well in our

analyses when batch sizes were small. In addition, it can only

analyze two batches at a time. Three or more batches may still be

adjusted with DWD, using a stepwise approach[11], but this

would not be convenient for large studies. Moreover, the

standardization or normalization in DWD can change the scale

between cases and controls, which is why the correlation between

nominal and observed fold change was high after DWD

processing, but the signal detection slope was very low. An

addition re-scaling step would be required to allow results from

different studies to be compared. SVA is based on SVD. It is

effective, but has several limitations. First, it is not necessarily a

simple matter to identify the batch effect eigenvector. Batch effects

may actually contribute substantially to several of the top

eigenvectors, so SVD may not identify and remove all the batch

effects, and may remove other effects not related to batch. Second,

a basic assumption of SVD is that the eigenvectors have Gaussian

distributions. Batch effects, however, may be due to changes in

technician, reagents, environmental conditions, scanner effects

Figure 4. Correlation between the nominal fold changes and observed fold changes in AAS data. Correlation between the nominal fold
changes and observed fold changes in RMA data and data after batch adjustment programs. We simulated 1200 genes out of 10000 genes as
differentially expressed, with log 2 fold change range 21.58, 21.32, 21, 20.58, 20.26, 20.14 and 0.14, 0.26, 0.58, 1, 1.32, 1.58, responding to fold
changes that range 23, 22.5, 22, 21.5, 21.2, 21.1 and 1.1,1.2,1.5,2,2.5,3 to reflect the approximate number of differentially expressed genes in the
real data. The regression slopes were shown in colors by different program. Correlation coefficients (r2) were shown in legend, separately.
doi:10.1371/journal.pone.0017238.g004
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and/or other variables; this complicated situation may result in

batch effects not being distributed in a Gaussian manner. Finally,

SVD is not robust to outliers when compared with an Empirical

Bayes method.

Ratio_G scales values by the geometric mean of a group of

controls or reference samples, while PAMR shifts values by

batches’ arithmetic mean. Luo and colleagues [14] demonstrated

that Ratio_G outperforms other methods in adjusting data for use

in a predictive model, and reasoned that it is because non-ratio-

based methods can confound batch and biological effects when

one batch has a reverse negative/positive ratio compared to

another batch. To test this, in our AAS data design, we simulated

batches with very different case/control ratios, i.e., 10 cases and 30

controls in one batch and 30 cases and 10 controls in another.

However, accuracy and ROC-AUC results indicated that

Ratio_G performed worse than ComBat_p and ComBat_n. Also,

Ratio_G performed worst in removing batch effects from the

SMRI data.

PAMR sets the mean of each probe set within a given batch to

zero. It did very well in our measures of accuracy because of this

simple transformation. Again, though, batch effects are compli-

cated, and do not affect all samples equally. PAMR does treat all

samples equally, so it can over- or under-correct particular samples

and came in second to ComBat in our measures of precision.

ComBat treats batch effects as additive and multiplicative

effects. So it is basically a mixture of a mean-centering algorithm

like PAMR, and a scale-based algorithm similar to Ratio G. This

dual approach probably explains ComBat’s superior overall

performance.

Note, however, that even the most effective batch effect removal

program cannot correct for poor experimental design. If cases and

controls are run in separate batches, genuine biological variation

can be entirely confounded by batch effects. Indeed, this is what

we found when we re-configured our simulation data to run cases

and controls separately, and re-analyzed it. No method was able to

reduce the batch effects sufficiently without also removing the

variation caused by case-control differences (Table S2).

A previous attempt to assess the extent of batch effects and the

effectiveness of batch adjustment methods was made by the

MAQC-II project [29]. This project’s primary goal was to use

existing data to create a model to predict class labels for future

samples, where the classes, or endpoints, included treatment

response, overall survival or likelihood of a specific disease. This

predictive model is designed for use in both clinical settings and in

research seeking to develop new gene expression signatures and

biomarkers. Luo and colleagues investigated the effect of batch

effect removal on the performance of this predictive model[14], as

measured by Matthew Correlation Coefficient (MCC), using five

different removal methods on six batches of MAQC microarray

data, where sources of batch variation included different

hybridization dates, different generations of chips, different

channels, different platforms and different tissues.

They tested mean-centering, ratio-based, standardization and

Empirical Bayes methods, and found them all to perform better than

no batch adjustment 75% to 89% of the time, with the geometric

ratio-based (Ratio_G) method performing the best. DWD and SVD/

SVA were not evaluated, because Luo and colleagues wanted to

develop their predictive model based on the existing data, referred to

as the training data, which would not be affected when the model was

applied to future samples. They used MCC because it is informative

with very different class sizes, straightforward to calculate, and

applicable for all 30,000+ of their models.

We, on the other hand, assessed how batch adjustment methods

improve the integration of data processed at different sites or times

when used as a standard quality control step post-RMA and pre-

integration. This meant not only that we had a different aim than

Luo and colleagues, but that we had fewer constraints. For example,

we were able to assess widely-used algorithms, such as DWD and

SVD/SVA, which they did not since would alter the training data.

Also, although when we calculated MCC for our data (Table S3,
Row 9) the results mirrored our accuracy and ROC-AUC results,

the precision results elucidated differences among the programs not

revealed by MCC, our accuracy measures or the ROC curves. For

example, by testing multiple aspects of performance, rather than

relying on a single measure, we demonstrated that while SVA

substantially reduced the proportion of variation attributable to

batch effects, as well performing with precision, it actually decreased

accuracy relative to the unadjusted data. We also showed that

PAMR performed very accurately, but slightly less precisely. We

performed each test on both simulation data and experimental data;

the simulation data let us control the variables and know the true

values a priori, and then we were able to validate the simulation

results in real data. Because we were not creating a prediction

model, which is a combination analysis with batch correction,

feature selection, classification and model selection, we were able to

assess data before and after batch adjustment directly: this

eliminates the potential for variation being introduced by those

additional procedures. Finally, we took only date and site effects into

consideration, since platform-, channel- or tissue-dependent

variations are avoidable with careful experimental design.

These differences in research design can explain why Luo and

colleagues rated Ratio_G the highest, while we found ComBat to

be superior. For example, Ratio G performed particularly well

only in one MAQC data set, a data set for which the stated source

of batch effect was cross-tissue. However, cross-tissue effects would

be expected to be due to biological variation between tissues as

well as technical variation, presumably related to tissue collection

and extraction. So, it is not clear whether all the variation removed

was technical or whether all the technical variation was removed.

Moreover, in the predicted model summary, this data set was used

in 32 of 120 models, while other data sets were only used in 8 or 16

Figure 5. ROC curves in AAS data. ROC curves are graphical
representations of both specificity and sensitivity that take into account
both differentially and non-differentially expressed genes. ComBat_p
and ComBat_n performed almost identically, so their curves overlap
each other almost completely.
doi:10.1371/journal.pone.0017238.g005

An Evaluation of Six Batch Adjustment Methods
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models, leading to Ratio_G’s superior performance in the MAQC

analysis. If we examine separately the MAQC-II data sets in which

hybridization date is the only source of batch effects, ComBat

appears to increase MCC at least as well as Ratio_G does [14].

We detected a strong probe level effect after applying RMA to the

SMRI data and finding that the probe set expression values among

replicates correlated no better than among non-replicates. We

observed that the array level variation (ch) was well-controlled, but

the probe set level variation (cQ) was not alleviated by RMA (Figure
S6), which is consistent with a previous study[23]. As the correlation

between each individual array is ch
�
(chzcQzce)

where ce

represents the variation of measurement error, a high cQ will result

in an artificially high correlation between different arrays. To solve

this, we standardized the probe set variation by standardizing means

and variances across replicate groups, which keeps the variability

between pairs but lowers the overall variation. After standardiza-

tion, correlation among non-replicates fell to zero (Figure S1).

Our evaluation makes clear that adjustment for batch effects is a

mandatory step in the analysis of microarray data when the sample

size is too large to fit in a single batch. Of the batch adjustment

methods we evaluated, we found that the empirical Bayes algorithm

implemented in ComBat was best able to reduce and remove batch

effects while increasing precision and accuracy. It outperformed the

second best program by a substantial margin on many measures and

by a small but significant margin on others. Unlike the other

programs, each of which had at least one major drawback, ComBat

performed satisfactorily on all measures. PAMR was a close second,

but its performance suffered when batch size was small; only

ComBat performed robustly when adjusting small batches. Finally,

we recommend that probe set expression values always be

standardized prior to assessing correlation among replicates, to

avoid misleadingly high correlations.

Materials and Methods

Samples
The SMRI brain samples came from two brain collections, the

SMRI Array collection and the SMRI Consortium collection[18].

The SMRI Array collection includes 70 patients and 35 controls. The

Brodmann area 46 of each sample was assayed in three groups using

the Affymetrix GeneChip Human Genome U133A platform. The

three studies had 62 samples in common after outliers were removed

using Expression Console[30], which we used as our technical

replicates. The 7643 probes that were coded as present call in 80% or

more of the samples were included in our analyses[31].

Expression microarray data simulations
We generated two simulated expression microarray data sets. In

the variation assessment simulated (VAS) data, we generated 100

samples for which 1000 probes were measured. Samples were

assigned to one of two undefined profiles, which could represent

disease status, drug treatment or similar random variable, 65 to

Profile 1 and 35 to Profile 2. The simulation was run twice: the

first replicate group was generated as if run in a single batch, while

the second replicate group generated as if run in two batches. To

address batch effects and treatment effect, we assumed the data

followed an L/S model,

Yijg~agzXbgzcigzdigeijg (1),

Where ag represents the overall gene expression, X is a design

matrix for profile conditions, and bg is the vector of regression

coefficients corresponding to X. The additive and multiplicative

batch effects of batch i for gene g are represented by cig and dig ,

respectively. Measurement error is represented by eijg , and is

normally distributed, with an expected value of zero and

variance s2
g.

Parameters ag and bg were set such that probe sets were

differentially expressed between the two profiles. Across Profile 1,

probe sets’ average expression intensities followed a normal

distribution, and across Profile 2, probe sets’ expression intensities

have a variety of fold changes relative to Profile 1, ranging from

23 to 3. Standard deviation of gene g was set to ensure that the

gene was genuinely differently expressed, rather than highly

variable: Sgv
X 1g{X 2g

1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1

z 1
n2

q , where X 1g is the mean intensity of

gene g and n1 is the sample size of Profile 1, and X 2g is the mean

intensity and n2 is the sample size of Profile 2. After significance

testing and multiple test correction, we were left with 991

differentially expressed probe sets with various fold changes for

further analysis. Batch scale parameters, cig, dig, were added to

reflect a typical range of observed values, which followed normal

distribution and inverse-gamma distribution, respectively. All the

distribution and fold change parameters were set to reflect those of

the biological data.

The second simulated data set was the accuracy assessment

simulated (AAS) data, which included probe set expression values

for 10,000 probe sets in 100 controls and 100 patients. We again

followed Equation (1), where X is a design matrix for sample

conditions. Parameters ag and bg were set such that 1200 of the

10,000 genes had mean fold changes ranging from 23 to 3 in

cases relative to controls. Approximate standard deviation was set

so that some lower fold change genes were differentially expressed,

so we could test whether small fold changes were still detectable

after batch correction.

Measuring source of variation
The PVCA approach (http://www.niehs.nih.gov/research/

resources/software/pvca/index.cfm) was used to estimate sources

of variability and compare batch effects before and after

adjustment in the VAS and SMRI microarray data sets. We first

selected the top PCs, enough to explain a proportion of overall

variation larger than a pre-defined threshold (60%–90%, 60% in

this case), and retained the corresponding eigenvalues. Each factor

was treated as random in a mixed linear model and matched to a

PC, then weighted by that PC’s corresponding eigenvector. After

we standardized the variation attributable to each factor, we

calculated the proportion of total variance each factor explained.

Including residuals, four factors’ variations were estimated in the

VAS data and ten factors’ variations were estimated in SMRI

data.

Signal detection slopes were calculated using the spkTools[21]

R package. The significances of differences between slopes were

assessed with a test for homogeneity of slope[32], which was done

with the NCStats R package[33]. The evaluation of overall

performance was performed using the ROCR[34] R package from

Bioconductor[35].

Supporting Information

Figure S1 Correlation before and after standardization.
Compare the replicate samples correlation between pre-standard-

ization and post-standardization. Data was downloaded from

Affymetrix U133A sample data including three replicates for 12

different tissues. Affy12, affy23, affy13 are replicates’ correlation
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groups between replicate group 1 and replicate group 2, replicate

group 2 and replicate group 3, replicate group 1 and replicate

group 3, respectively. AffyN12, affyN23, affyN13 are non-

replicates’ correlation between group 1 and 2, group 2 and 3,

group 1 and 3, respectively. http://www.affymetrix.com/support/

technical/sample_data/gene_1_0_array_data.affx.

(TIF)

Figure S2 Distribution of z scores in VAS data. Box plots

of the distribution of z scores transformed from Pearson

correlation coefficients between simulated replicates. The methods

are listed along the X axis. The Y axis is the distributions of all

probes’ z scores. The top of the box represents top of the third

quartile, the bottom of the box represents the bottom of the first

quartile, the middle bar is the median value, box whiskers extend

to 1.5 times the interquartile range from the box and circles are

possible outliers. The differences of correlation distribution are all

significant with p value less than 0.0001; differences of

distribution’s median between RAW data and data have been

processed with batch-adjustment methods are listed below the box

plots.

(TIF)

Figure S3 Slope test in Affymetrix spike-in data.
Observed versus nominal values in Affymetrix Latin square design

spike in data, for RMA data and post batch adjustment methods.

Expression values are plotted against the log (base 2) of the

reported nominal concentration. The regression slope obtained

utilizing all the data and the regression slopes obtain within each

low, medium and high average log expression (ALE) value strata

are shown. The slope of each line is reported in the legend. The

vertical lines divide the ALE strata.

(TIFF)

Figure S4 ROC curves in Affymetrix spike-in data. ROC

curves are graphical representations of both specificity and

sensitivity that take into account both differentially and non-

differentially expressed genes. Concentration pairs with fold-

changes of 2 in spike-in genes were used to determine TP.

Concentration pairs without any fold-changes were used to

determine TN. We selected top 1000 log-ratio pairs to report.

(TIFF)

Figure S5 Compare of the AUCs in AAS data. The

differences of the AUC between ComBat and the next best batch

adjusted method are different when the sample size of each batch

varies. From the left, the differences are 0.03, 0.02 and 0.01, as the

batch sizes increase from 20, 40 to 100.

(TIFF)

Figure S6 Array level and probe set level variation.
Boxplot of the RMA normalized SMRI data for (A) all the 186

arrays and (B) all 7643 probe sets. Y axis is the log2 intensity value

and x axis is the (A) arrays or (B) probe sets. After RMA, gene

intensity distributions are similar between arrays but not probe

sets, leading to artificially large correlations between non-replicate

arrays.

(TIFF)

Table S1 Detailed computational description of six
programs. Detailed computational features of each program

are provided, including software implement, file format, relative

execution time, computational burden, batch size, URL of the

available software and some program-specific notes.

(DOC)

Table S2 Batch effect completely confounded with
outcome variation. We simulated the data with all cases in

one batch and all controls in another. There are 1200 true positive

genes in this dataset. The binary classification table shows

overlapped positives genes among the true condition and with or

without batch adjustment methods: before batch correction, there

were 6518 significant results in raw data, with 62.4% (5495 out of

8800) false positive rate (FPR) and 14.8% (177 out of 1200) false

negative rate (FNR); After batch correction, ComBat_p got 7

positive results with 0% FPR and 99.0% FNR; ComBat_n got 12

positive results with 0.1% FPR and 99.8% FNR; DWD got 402

positive results with 3.2% FPR and 89.9% FNR. None of the true

positives were caught by PAMR and SVA with 0% FPR and

100% FNR. No control samples in the first batch so Ratio_G can’t

be applied for this adjustment.

(DOC)

Table S3 Assessment summary statistics table. The

second column indicates the figure to which the summary statistic

relates. Columns 3 through 9 show values for RMA, ComBat_p,

ComBat_n, PAMR, DWD, SVA and Ratio_G, separately. The

statistics are described in the text and best result is shown in bold.

Abbreviations: PVCA, principal variation component analysis;

ICC, intraclass correlation; ACC, accuracy; MCC, Matthew

Correlation Coefficient; AUC, area under the curve.

(DOC)
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