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formation, lysosome formation, and autophagosome-lys-
osome fusion,6,7 and assessing the overall process is com-
plex. One way to circumvent this difficulty has been to 
study the component steps individually, but any individual 
contribution may not accurately reflect the overall autoph-
agic state. For example, the depressed autophagy associ-
ated with aging involves both increased autophagosome 
formation and reduced autophagosome-lysosome fusion. 
Were only autophagosome formation evaluated, its height-
ened activity may lead to the erroneous conclusion that the 
aging-associated abnormal autophagic state is due to 
hyperactivity overall. However, in its aging-associated 
form, autophagy is not exacerbated, but rather attenuated 
overall, because autophagic autophagosome-lysosome 
fusion is blocked.6

We hypothesized that AF may result from abnormal 
electrical remodeling due to increased autophagy. In this 
regard, several autophagosome-formation genes are upreg-
ulated in patients with AF.2,12 However, no study has 

A trial fibrillation (AF) is a very common cardiac 
arrhythmia in Western countries,1,2 but given that 
the population with AF in Asia is poised to exceed 

that in Europe and North America,3 AF can be considered 
a global problem, particularly of aging societies. Previous 
studies have suggested that defects in autophagy may con-
tribute to AF.4 In particular, macroautophagy is an essen-
tial process that polices the intracellular environment by 
removing misfolded proteins and damaged organelles.5 
However, excessive activation of this pathway, as may 
occur in AF, is toxic.2 Conversely, insufficient autophagy 
is similarly not beneficial for cells. For example, aging 
attenuates autophagy, and impaired autophagy increases 
the amount of intracellular protein waste, thereby increas-
ing oxidative stress.6,7 In addition, retarded autophagy 
promotes hypertrophy, fibrosis, and diastolic dysfunction, 
thus leading to the development of heart failure despite 
preservation of a normal ejection fraction.8–11

Autophagy comprises 3 phases, namely autophagosome 
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Background: Autophagy may contribute to the maintenance of atrial fibrillation (AF), but no previous study has concurrently sur-
veyed all 3 phases of autophagy, namely autophagosome formation, lysosome formation, and autophagosome-lysosome fusion. 
Here we aimed to identify disorders involving various phases of autophagy during AF.

Methods and Results: We used bioinformatic techniques to analyze publicly available DNA microarray datasets from the left atrium 
(LA) and right atrium (RA) of 7 patients with AF and 6 patients with normal sinus rhythm who underwent valvular surgeries. We 
compared gene expression levels in the LA (AF-LA) and RA of patients with AF with those in the LA and RA of patients with normal 
sinus rhythm. Several differentially expressed genes in the AF-LA sample were significantly associated with the Gene Ontogeny term 
‘Autophagy’, indicating that the expression of autophagic genes was specifically altered in this dataset. In particular, the expression 
of genes known or suspected to be involved in autophagosome formation (autophagy related 5 [ATG5], autophagy related 10 
[ATG10], autophagy related 12 [ATG12], and light chain 3B [LC3B]), lysosome formation (lysosomal associated membrane protein 
1 [LAMP1] and lysosomal associated membrane protein 2 [LAMP2]), and autophagosome-lysosome fusion (synaptosome associated 
protein 29 [SNAP29], SNAP associated protein [SNAPIN], and syntaxin 17 [STX17]) was significantly upregulated in the LA-AF 
dataset.

Conclusions: Autophagy is activated excessively in, and may perpetuate, AF.
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USA) to perform heat map analyses of gene expression 
related to the 3 phases of autophagy. The color pattern set-
ting was viridis, and the scale setting was calculated auto-
matically by Prism. Normalization was used in this heat 
map analysis. Normalization is a scaling technique method 
in which data points are shifted and rescaled so that they 
end up in the range 0–1. The formula for calculating the 
normalized score (Xnew) is as follows:

Xnew = (X − Xmin) / (Xmax − Xmin)

where Xmax and Xmin are the maximum and minimum val-
ues of the feature, respectively. X is the non-normalized 
data point.

Results
Paired samples of LA and RA were obtained from 13 
patients with either persistent AF (n=7) or sinus rhythm 
(n=6) who underwent valvular surgery. Four groups of 

assessed gene expression in all 3 phases of autophagy con-
currently in AF patients. To this end, in the present study 
we used bioinformatics to concurrently compare the 
expression of genes associated with autophagosome for-
mation, lysosome formation, and autophagosome-lyso-
some fusion between patients with AF and those with 
normal sinus rhythm.

Methods
DNA Microarrays
Using human DNA microarray data, we compared gene 
expression levels in heart tissue between patients with per-
sistent AF and those with normal sinus rhythm. Specifically, 
we downloaded the gene expression dataset GSE79768 as 
CEL files from the Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/geo/), which was derived 
from the platform HG-U133_Plus_2, genome version hg19 
(Homo sapiens). To generate this dataset, paired samples 
of the appendages of the left and right atrium were 
obtained from 13 patients with either persistent AF (n=7; 
3 men [42.9%]) or normal sinus rhythm (n=6; 2 men [33.3%]) 
who underwent valvular surgery for disease of the mitral 
valve or coronary artery;13 that previous study did not address 
autophagy, which is the focus of the present study. The 
mean (±SD) age of the 7 patients with AF was 48.3±11.9 
years, whereas that of the 6 with normal sinus rhythm was 
63.7±16.7 years. We compared 4 groups of data: the LA 
and RA of patients with AF (AF-LA and AF-RA, respec-
tively) and the LA and RA of patients with normal sinus 
rhythm (Sinus-LA and Sinus-RA, respectively).

Statistical Analysis of Differentially Expressed Genes
We used Transcriptome Analysis Console (TAC) 4.0.2 
(Affymetrix, Santa Clara, CA, USA) in the present study. 
TAC performs statistical analyses to produce a list of sig-
nificantly differentially expressed genes (DEGs) and gener-
ates a graphic representation of gene expression patterns. 
Most algorithms provided in TAC 4.0.2 were implemented 
through the R or Bioconductor packages (R Foundation 
for Statistical Computing, Vienna, Austria). According to 
published data,14 we defined P<0.05 as the cut-off value; 
however, after the initial round of TAC filtering (fold 
changes of <−2 or >2), we incorporated genes with fold 
changes of <−1 or >1 to obtain additional candidates. 
Specifically, the initial volcano plot, bar graph, Venn dia-
gram, and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis involved genes with P<0.05 and 
fold changes of <−2 or >2. The follow-up volcano plot and 
WikiPathways analysis assessed genes with P<0.05 and 
fold changes of <−1 or >1. For functional annotation, we 
used the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) 6.8.15

Visualization of Gene Expression Patterns
We used KEGG16–18 and WikiPathways19–22 to visualize gene 
expression patterns. The KEGG-based figures were custom-
ized by using DAVID; the images for WikiPathways were 
obtained by using TAC. The KEGG and WikiPathways 
analyses assessed genes with P<0.05 and a false discovery 
rate (FDR) P<0.2. The FDR was applied at a rate of 0.2, 
as in previous studies.23,24

Heat Map
We used Prism 9.5.0 (GraphPad Software, San Diego, CA, 

Figure 1.  (A) We detected differentially expressed genes 
(DEGs) in the left atrium of patients with atrial fibrillation (AF-
LA) compared with patients with sinus rhythm (Sinus-LA). The 
filter criteria were fold changes >2 or <−2 and P<0.05. In all, 
54,613 genes were evaluated, of which 433 (308 upregulated, 
125 downregulated) passed the filter criteria. (B) Volcano plot 
comparing fold change (AF-LA/Sinus-LA gene expression) 
against the P value of the difference in gene expression. Red 
dots indicate genes upregulated in the AF-LA; green dots 
indicate downregulated genes; and gray dots indicate genes 
that did not pass the filter criteria.

https://www.ncbi.nlm.nih.gov/geo/
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(Supplementary Table 3). The Table presents the top 20 
KEGG terms according to the P value-based analysis of 
the KEGG pathway analysis in the DAVID Functional 
Annotation Chart; the complete data from this analysis are 
presented in Supplementary Table 4. The most frequent 
term, ‘Phagosome’, was associated with 12 of the DEGs 
specifically associated with the AF-LA. The original data 
are provided in Supplementary Table 1. We summarized 
the genes in the Table as a KEGG pathway (Figure 3), with 
the red stars in Figure 3 indicating DEGs specific to the 
AF-LA. We also compared DEGs between “AF-LA vs. 
AF-RA” and “AF-RA vs. Sinus-RA”, but KEGG path-
way analysis did not reveal any autophagy-specific changes 
(Supplementary Table 5).

We then created another volcano plot to reveal DEGs in 
the AF-LA, but this time the filter criterion was P<0.05 
only (Figure 4A). We then used TAC to summarize the 
genes in WikiPathways that were found to be upregulated 
(Figure 4B) and downregulated (Figure 4C); the raw data 
for Figure 4 are shown in Supplementary Figure 3. We fur-
ther evaluated the expression levels of the DEGs in the 

data were compared: AF-LA, AF-RA, Sinus-LA, and 
Sinus-RA. We first compared AF-LA with Sinus-LA to 
obtain downregulated (Supplementary Table 1) and upreg-
ulated (Supplementary Table 2) DEGs in the AF-LA. The 
total number of genes analyzed was 54,613, of which 433 
genes (308 upregulated; 125 downregulated) passed the 
filter criteria (Figure 1A). We then generated a volcano plot 
for which the filter criteria were fold change >2 or <−2 and 
P<0.05 (Figure 1B). Using bar graphs, we then summa-
rized the DEGs for AF-LA vs. AF-RA, AF-LA vs. Sinus-
LA, AF-LA vs. Sinus-RA, AF-RA vs. Sinus-LA, AF-RA 
vs. Sinus-RA, and Sinus-LA vs. Sinus-RA (Figure 2A). To 
identify AF-specific DEGs in the LA, we organized the 
DEGs of the AF-LA vs. Sinus-LA, AF-LA vs. AF-RA, and 
Sinus-LA vs. Sinus-RA using a Venn diagram; this process 
revealed that the expression of 317 genes was uniquely 
changed in the AF-LA dataset (Figure 2B). Volcano plots 
of DEGs in AF-LA vs. AF-RA and Sinus-LA vs. Sinus-RA 
are provided in Supplementary Figures 1,2.

Next, we used DAVID to better understand the bio-
logical functions of the 317 AF-specific genes in the LA 

Figure 2.  (A) Differentially expressed genes 
(DEGs) in the left and right atria of patients 
with AF (AF-LA and AF-RA, respectively) and 
those with normal sinus rhythm (Sinus-LA 
and Sinus-RA, respectively). (B) We com-
pared “AF-LA vs. Sinus-LA”, “AF-LA vs. 
AF-RA”, and “Sinus-LA vs. Sinus-RA” to 
detect AF-LA-specific DEGs. Organizing the 
DEGs in these 3 groups using a Venn dia-
gram showed that the expression of 317 
genes was uniquely changed in the AF-LA. 
All false discovery rate-corrected P values 
<0.2.
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Table. Kyoto Encyclopedia of Genes and Genomes Pathway Analysis Using the DAVID Functional Annotation Chart

Term Number of 
genes %

P value
FDR

Uncorrected Bonferroni Benjamini

Leishmaniasis   9 3.17 0.000030 0.01 0.00 0.00

Phagosome 12 4.23 0.000031 0.01 0.00 0.00

Intestinal immune network for IgA production   7 2.46 0.000121 0.03 0.01 0.01

Asthma   5 1.76 0.001429 0.29 0.07 0.07

Antigen processing and presentation   7 2.46 0.001527 0.30 0.07 0.07

Rheumatoid arthritis   7 2.46 0.003728 0.59 0.12 0.11

Inflammatory bowel disease   6 2.11 0.003784 0.59 0.12 0.11

Staphylococcus aureus infection   7 2.46 0.004360 0.65 0.12 0.11

Hematopoietic cell lineage   7 2.46 0.005069 0.70 0.12 0.11

Epithelial cell signaling in Helicobacter pylori infection   6 2.11 0.005204 0.71 0.12 0.11

Adherens junction   6 2.11 0.005527 0.73 0.12 0.11

Th17 cell differentiation   7 2.46 0.007704 0.84 0.14 0.13

Arrhythmogenic right ventricular cardiomyopathy   6 2.11 0.007773 0.84 0.14 0.13

Regulation of actin cytoskeleton 10 3.52 0.008338 0.86 0.14 0.13

Breast cancer   8 2.82 0.009321 0.89 0.15 0.14

Cell adhesion molecules   8 2.82 0.013083 0.96 0.19 0.18

Viral myocarditis   5 1.76 0.015500 0.98 0.21 0.20

Th1 and Th2 cell differentiation   6 2.11 0.016005 0.98 0.21 0.20

Prostate cancer   6 2.11 0.019695 0.99 0.24 0.22

Influenza A   8 2.82 0.020036 0.99 0.24 0.22

Benjamini: Benjamini-Hochberg procedure; Bonferroni, Bonferroni correction; FDR, false discovery rate; Th, T helper.

Figure 3.  Molecular pathway map prepared using the Kyoto Encyclopedia of Genes and Genomes (KEGG); red stars indicate 
genes upregulated in the left atrium of patients with atrial fibrillation (AF-LA; Table). No genes in the AF-LA showed downregulated 
expression. All false discovery rate-corrected P values <0.2. The KEGG pathway map hsa04145 is reproduced with the permission 
of “KEGG Copyright Permission 221802”.
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Figure 4.  (A) Detection of differentially expressed genes (DEGs) in the left atrium of patients with atrial fibrillation (AF-LA) 
compared with patients with sinus rhythm (Sinus-LA) using a volcano plot showing fold changes (AF-LA/Sinus-LA gene 
expression) relative to the P value of the comparison. In this figure, the filter criterion is P<0.05. All false discovery rate-corrected 
P values <0.2. Red dots indicate upregulated genes; green dots indicate downregulated genes; and gray dots indicate the 
genes that did not pass the filter criterion. (B) The Transcriptome Analysis Console was used to summarize those upregulated 
(red) and downregulated (green) genes in WikiPathways. The summary image is based on the original images for “Senescence 
and autophagy in cancer (Homo sapiens)” (B) and “Autophagy (Homo sapiens)” (C) in WikiPathways. WikiPathways content is 
covered by the Creative Commons CC0 waiver, which states that we are free to share (copy, distribute and transmit) and remix 
(adapt) the work.
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and compared DEGs between persistent AF and normal 
sinus rhythm. We focused on LA-specific changes and 
found several phagosome-related genes whose expression 
was specifically upregulated or downregulated in the 
AF-LA dataset. The marked changes in expression of the 
DEGs in the AF-LA suggest that the LA may be the main 
cardiac region affected in persistent AF (Figures 1,2). We 
then used DAVID to understand the biological relevance 
of the 317 AF-LA-specific DEGs.

The top result of the KEGG pathway analysis was the 
term ‘Leishmaniasis’ (Table). Autophagy has been sug-
gested to play a key role in the vital processes linked to 
survival of the Leishmania organism.23,24 Therefore, genes 
associated with the term ‘Leishmaniasis’ may include 
potential markers for autophagy. The second highest (and 
most frequent) result of the KEGG pathway analysis was 

AF-LA (Figure 4B,C) that are known or suspected markers 
of autophagy. As shown in Figure 5, Significantly upregu-
lated DEGs in the AF-LA were autophagy related 5 
(ATG5), autophagy related 10 (ATG10), autophagy related 
12 (ATG12), light chain 3B (LC3B), lysosomal associated 
membrane protein 1 (LAMP1), lysosomal associated 
membrane protein 2 (LAMP2), synaptosome associated 
protein 29 (SNAP29), SNAP associated protein (SNAPIN), 
and syntaxin 17 (STX17). Heat map analyses of gene 
expression related to the 3 phases of autophagy are 
summarized in Figure 6, which was produced by using the 
same data as used to produce Figures 4C,5.

Discussion
This bioinformatics study evaluated DNA microarray data 

Figure 5.  Genes with significantly 
upregulated expression in the left atrium 
of patients with atrial fibrillation (AF) 
compared with sinus rhythm (Sinus). 
All false discovery rate-corrected P 
values <0.2. The columns show mean 
and what are the coloured dots indicate 
the signals of each sample. ATG5, 
autophagy related 5; ATG10, autophagy 
related 10; ATG12, autophagy related 
12; LC3B, light chain 3B; LAMP1, 
lysosomal associated membrane 
protein 1; LAMP2, lysosomal associated 
membrane protein 2; SNAP29, synap-
tosome associated protein 29; SNAPIN, 
SNAP associated protein; STX17, 
syntaxin 17.
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both influence tumor development.25 The pathway “Senes-
cence and autophagy in cancer (Homo sapiens)” included 
several autophagic genes that were AF-specific DEGs in 
the LA, namely ATG5, ATG10, ATG12, LC3B, LAMP1, 
LAMP2, SNAP29, SNAPIN, and STX17 (Figure 5).

We then categorized these 9 genes according to the 3 
phases of autophagy (i.e., autophagosome formation, lyso-
some formation, and autophagosome-lysosome fusion). 
Regarding autophagosome formation, ATG5 is necessary 
for the formation of the autophagosome membrane,26 and 
the ubiquitin-like molecules ATG12 and LC3B each trigger 
separate protein conjugation systems that are required for 
autophagosome elongation and maturation. ATG12 is 
subsequently conjugated to ATG5 via ATG10.27 With the 
assistance of ATG5–ATG12 conjugates, LC3B coats the 
outer surface of the autophagosome.28 LC3B plays a key 
role in the development of the autophagosome membrane 

the term ‘Phagosome’, a structure important in autophagy. 
Similarly, the KEGG pathway analysis returned DEGs in 
the AF-LA that were associated with the term ‘Phagosome’ 
(Figure 3). We also compared DEGs between “AF-LA vs. 
AF-RA” and “AF-RA vs. Sinus-RA”, but KEGG pathway 
analysis did not reveal any autophagy-specific differences 
(Supplementary Table 5). This outcome suggested that 
autophagy-associated changes may be specific to the AF-LA 
vs. Sinus-LA. To further highlight changes in the expres-
sion of autophagy-related genes in the AF-LA, we selected 
DEGs in the AF-LA that yielded P<0.05 compared with 
the Sinus-LA and assessed them in WikiPathways, an open 
platform maintained by the research community19–22 
(Figure 4). In this analysis, we used the WikiPathways terms 
“Autophagy (Homo sapiens)” (Figure 4C) and “Senescence 
and autophagy in cancer (Homo sapiens)” (Figure 4B). 
Senescence and autophagy have overlapping features, and 

Figure 6.  Summary of heat map 
analyses of gene expression 
related to the 3 phases of autoph-
agy. Figure 6 was produced by 
using the same data as Figure 4C 
(“Autophagy (Homo sapiens)”) 
and Figure 5, and the heat map 
was created using GraphPad 
Prism 9.5.0 (GraphPad Software, 
San Diego, CA, USA). The color 
pattern is viridis, and the scale set-
ting was set automatically by 
Prism. We normalized the heat 
map. AF-LA, the left atrium of 
patients with atrial fibrillation (AF); 
Sinus-LA, the left atrium of patients 
with normal sinus rhythm.

Figure 7.  Autophagy related 5 (ATG5), autophagy 
related 10 (ATG10), autophagy related 12 (ATG12), 
and LC3B were identified previously as autophago-
some formation-related genes. Lysosomal associ-
ated membrane protein 1 (LAMP1) and lysosomal 
associated membrane protein 2 (LAMP2) are mole-
cules in the lysosomal membrane. Synaptosome 
associated protein 29 (SNAP29), SNAP associated 
protein (SNAPIN), and syntaxin 17 (STX17) are 
speculated to be important in autophagosome-lyso-
some fusion. These results indicate that all 3 phases 
of autophagy may be upregulated in atrial fibrillation.
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