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ABSTRACT  Goal: The purpose of this study was to identify clinically relevant patterns of glaucomatous
vision loss through convex representation to predict glaucoma several years prior to disease onset. Methods:
We developed a deep archetypal analysis to identify patterns of glaucomatous vision loss, and then projected
visual fields over the identified patterns. Projections provided a representation that was more accurate in
detecting glaucomatous vision loss, thus, more appropriate for recognizing preclinical signs of glaucoma prior
to disease development. To overcome the class imbalance in prediction, we implemented a class-balanced
bagging with neural networks. Results: Using original visual field as features of the class-balanced bagging
classification provided an area under the receiver-operating characteristic curve (AUC) of 0.55 for predicting
glaucoma approximately four years prior to disease development. Using convex representation of the visual
fields as input features provided an AUC of 0.61 while using deep convex representation as input features
improved the AUC to 0.71. Relevance vector machine (RVM) achieved an AUC of 0.64. Conclusion: Deep
archetypal analysis representation of visual functional features with balanced bagging classification could
serve as an automated tool for predicting glaucoma. Significance: Glaucoma is the second leading cause of
worldwide blindness. Most people with glaucoma have no early symptoms or pain, delaying diagnosis in
many patients until they reach late irreversible vision loss stages. In fact, about 50% of people with glaucoma
are unaware they have the disease. Deep archetypal analysis models may impact clinical practice in effectively
identifying at-risk glaucoma patients well prior to disease development.

INDEX TERMS Glaucoma prediction, archetypal analysis, deep archetypal analysis, artificial intelligence,
machine learning.

I. INTRODUCTION
Archetypal analysis (AA) was first proposed by
Cutler et al. [1]. However, several variations of AA has been
proposed in the literature [2]-[4]. Deep AA (DAA), as a non—
linear extension of the initial AA was recently proposed to
address several limitations of the AA [S5]-[7]. Deep AA does
not rely on expert knowledge to combine relevant dimen-
sions, learns appropriate transformations when combining
features of different types and is able to incorporate additional
information into the learning process.

As a proof of concept, we will deploy a particular type
of DAA and show that it provides an appropriate frame-
work for predicting ocular conditions such as glaucoma

several years prior to the onset of the disease from visual
field data.

Glaucoma is, in fact, a heterogeneous group of eyes dis-
eases and the second leading causes of blindness world-
wide [8]. It has multiple known risk factors including older
age, African-American ethnicity, elevated intraocular pres-
sure (IOP; fluid pressure inside the eye), and thinner central
corneal thickness [9], [10]. However, subjects with these risk
factors may or may not develop glaucoma as multiple other
factors interact in a complex manner, making prediction of the
disease in advance a non-trivial task. Moreover, glaucoma is
asymptomatic and the patient is often not aware of the disease
in early stages, before vision loss becomes significant [11].
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Hence, any progress in predicting glaucoma early is clinically
important and economically impactful.

Archetypal analysis was used to identify patterns of visual
field (VF) loss of patients with glaucoma [12] and then used
to detect glaucoma progression from AA-identified patterns
of VF loss [13]. Recent advanced in data-driven models may
also aid uncovering such hidden visual functional patterns
that may lead to glaucoma and hence improve our understand-
ing of mechanisms underlying glaucoma. These hidden pat-
terns (of structural or functional defect) may also be helpful
in developing frameworks that can predict glaucoma prior to
its onset.

Currently, glaucoma-induced VF losses are mainly
assessed using well-established standard automated perime-
try (SAP)[14]. The Humphrey 30-2 testing system generates
a map of 76 local retinal sensitivities to the light. VF map
is typically used by clinicians subjectively to determine the
severity of glaucoma-induced functional loss and remain as
an important component of glaucoma assessment.

In this study, the authors propose a framework based
on DAA of VFs for predicting glaucoma several years
prior to clinical manifestation of the disease. The proposed
framework provides convex representations from VFs, which
is more specific and sensitive for predicting glaucoma in
advance. The experimental results on a real-world glaucoma
dataset signify the effectiveness of the proposed framework.

The rest of the paper is organized as follows: Section II
provides literature review, section III discusses AA and deep
AA, section IV explains the proposed framework, section V
and is devoted to experimentation. Results and discussion are
provided in section VI, and finally, conclusion is provided in
sections VIL

II. LITERATURE REVIEW

Most of the previous studies for identifying glaucoma have
been focused on utilizing machine learning or its subclass
deep learning to diagnose glaucoma (clinical signs are obvi-
ous) [15]-[18]. In fact, a significant majority of deep learning
models have been centered on diagnosis because of two
major reasons. First, diagnosis requires cross-sectional data,
which is easier to access. Second, models typically perform
better for diagnosis because disease signs are already present
thus easier to identify. However, predicting the future devel-
opment of the disease from baseline parameters is a chal-
lenging task because 1) access to longitudinal data prior to
disease development is more challenging and 2) identifying
disease preclinical signs (that are not obvious yet) is more
involved.

A few studies have attempted to predict glaucoma prior to
disease onset [10], [19], [20]. However, most of those studies
have only utilized statistical analysis to determine risk factors
that may lead to the disease. Sehi et al. [19] used structural
features such as optic nerve head topography and retinal
nerve fiber layer thickness and applied a cox hazard model
to predict glaucoma. Salvetat et al. [10] used multivariate cox
hazard models and identified several structural and functional
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features that can serve as risk factors for glaucoma. However,
the identified risk factors through statistical analysis were
imprecise for prediction of glaucoma in advance of disease
onset. To address this challenge, Bowd ef al. [20] devel-
oped a machine learning classification using a combination
structural and functional features to predict glaucoma prior
to onset. They utilized relevance vector machines (RVM) as
a classification model. To the best of our knowledge, that
is the only study that has developed a machine learning-
based framework for predicting glaucoma onset from base-
line parameters. However, in their study, they only used VFs,
fed the VF input features to the RVM classifier while more
clinically relevant representations could improve recogniz-
ing subtle (preclinical) signs of the disease. Moreover, the
datasets used in all the aforementioned studies are relatively
small, and generalization of results of these studies may be
incomplete.
The major highlights of our study are:

A. CLINICALLY RELEVANT UNSUPERVISED CONVEX
REPRESENTATION

Since we are analyzing VF data from eyes with normal
VF and normal appearing optic nerve (according to clinical
standards) at the baseline (when the participants entered the
study then followed for years to see when they develop
the disease), using VFs directly may not provide sufficient
information for predicting glaucoma. We hypothesize that
there are subtle hidden patterns of VF defect that are either
unknown to clinicians or challenging to detect but they may
be characteristic patterns of future glaucoma development.
To overcome this issue, deep archetypal analysis (DAA) and
simplex projection are employed to transform VFs into unsu-
pervised convex representations (see section III and IV) prior
to be used in machine learning classifiers. DAA models gen-
erate clinically relevant patterns of VF defect (Figs. 1 and 4).
These patterns have been verified by a glaucoma expert
in our team (M.G.) and further used in a machine learn-
ing approach to investigate their effectiveness objectively
(Figs. 2 and 5). The proposed unsupervised convex represen-
tations were obtained by decomposing VFs onto the DAA
patterns. We argue that VFs of eyes that progress to glaucoma
have likely particular DAA patterns of vision loss that can be
used to distinguish them from eyes that did not develop glau-
coma. We will show that unsupervised convex representation
provides clues about the forthcoming onset of the disease,
thus effective in improving glaucoma prediction.

B. CLASS-BALANCED BAGGING

To overcome the inherent class imbalance in our dataset, a
class-balanced bagging approach is proposed. This approach
utilizes dense neural networks as base classifiers, and bal-
anced class-examples is fed to each neural network in the
training step. This approach will improve the performance by
increasing the sensitivity while maintaining specificity and
avoids over-fitting due to class imbalance.

VOLUME 8, 2020



A. Thakur et al.: Convex Representations Using DAA for Predicting Glaucoma

|EEE Journal of Translational

Engineering in
Health and Medicine

FIGURE 1. Modelling properties of 128 DAA archetypes (atoms) obtained
from (left) the first layer, (middle) the third layer, and (right) the fifth layer
of the DAA framework by decomposing 76 — d VFs. Archetypes (red) and

VFs (blue) were projected onto a 2 — d space using t-SNE for visualization.

Ill. ARCHETYPAL AND DEEP ARCHETYPAL ANALYSIS
Archetypal analysis and deep archetypal analysis both per-
form matrix factorization and provide appropriate means for
dictionary-based learning.

A. ARCHETYPAL ANALYSIS
Archetypal analysis [1] is basically a matrix factorization
method where a matrix, X (R?*"), whose columns contain
d-dimensional data points, is decomposed as X = DA.
DR4*K contains k archetypes that lie on extremal or convex
hull of the data, and A (R¥*") is a convex representation
matrix. This implies that data points can be represented as a
convex combination of archetypes. Similarly, archetypes can
also be represented as a convex combination of the individual
data points, that is D = XB, where B (R"*¥) is a convex rep-
resentation matrix. Both these conditions restrict archetypes
to lie only on the convex hull. Thus, archetypes present a
convenient method to capture extremal properties of the input
data points.

Appropriate optimization frameworks could be used to
obtain archetypes D from the input data points X [21]:

argmin || X — DA||12.;
BA
= argmin || X — XBA||12;
BA

bje Ay,a; € Ay bj € Ay, a; € Ag
[6; = 0, b}, = 1], Ak £ [a: = 0, flailly = 1]
1)

Here g; and b; are columns of A(RF*™) and B (R"*%), respec-
tively. Equation 1 is non-convex as both A and B are unknown.
Hence, the block-coordinate descent method X [21] can be
employed to solve this optimization problem.

Drawback: AA effectively models the convex hull of data,
however, it is limited in modeling either the average or local
characteristics of data. To overcome these limitations, deep
archetypal analysis has been proposed by our team and others,
recently [5]-[7].

Ap

B. DEEP ARCHETYPAL ANALYSIS

Deep AA is a layered framework that performs multiple
AA based factorizations on the input matrix and its subse-
quent factors. At the first layer of DAA, the input matrix
X is decomposed into an archetypal dictionary D; and
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convex-sparse representation matrix Al using equation 1.
Al is given as input to the second layer, and is again fac-
torized using AA to obtain dictionary D, and convex-sparse
representations A;. The overall factorization is: X ~ D1A| ~
D1D>A; = DrAs, where Dy is the DAA dictionary com-
puted at the second layer of DAA framework. This process is
repeatedly performed until reaching a user-defined depth of
factorization. Hence, DAA decomposes X into L + 1 factors
where L is the number of layers: X ~ D{D>D3...DrAL.
The factorization at each layer of DAA framework can be
represented as:

X ~ DiA| = XB1A

Al ~ =A1BA)

Ay ~ = AyB3As
Ap—1 & =AL1BLAL

Ap ~ =ALBrL 1AL

Figure 1 exhibits the data modelling capabilities of archetypes
(AA atoms) and deep archetypes (DAA atoms). This
figure illustrates the 2-d t-distributed stochastic neighbor
embedding (t-SNE) [22] representation of 76-d VFs and
AA/DAA atoms. As desired, the DAA archetypes (atoms) are
modelling extremal as well as average characteristics of the
data. This characteristic of DAA atoms can be attributed to
the fact that dictionaries obtained at deeper layers (L > 1) are
different convex combinations of archetypes obtained at the
first layer. Since the combination of convex representations
is also a convex representation [5], at any L’th layer (L > 1),
anew convex representation matrix is obtained by factorizing
Ar1 using AA. Hence, atoms of these deeper dictionaries
can lie anywhere on the data-spread including the boundary.
A DAA dictionary atom lies near the boundary if an archetype
is unilaterally defining this atom in the convex combination.
Similarly, if multiple archetypes have significant contribution
in defining a deeper dictionary atom, it is bound to lie inside
the data-spread. As a result, the DAA atoms systematically
divide the data-spread into small groups, thus capturing both
local and global characteristics of data.

C. VISUAL FIELD REPRESENTATION USING ARCHETYPAL
AND DEEP ARCHETYPAL ANALYSIS

AA/DAA is appropriate for VF data analysis because of two
major reasons: 1) most of the clinically known glaucomatous
patterns of VF loss lie on or near the boundary of the cloud
of VF data in the initial 76 — d space. The convex hull
modelling properties of AA/DAA can identify these patterns,
and hence, provides a representation that is consistent with
clinical knowledge, 2) unlike many other data-dependent
dictionary learning methods, AA/DAA does not project the
data to any latent space. Therefore, convex representations
obtained by AA/DAA are interpretable and could be clini-
cally explained (Fig. 4).

3800107



|EEE Journal of Translational

Engineering in
Health and Medicine

A. Thakur et al.: Convex Representations Using DAA for Predicting Glaucoma

IV. PROPOSED FRAMEWORK

In this section, the proposed framework for early or baseline
prediction of glaucoma is described. This framework con-
sists of two modules: feature extraction and classification as
follows:

A. FEATURE EXTRACTION USING ARCHETYPAL

AND DEEP ARCHETYPAL ANALYSIS

This study explores how convex representation of VFs is used
to provide a reliable glaucoma prediction system. The fea-
tures used in the proposed framework were raw VFs, convex
representation of VFs through AA, and convex representation
of VFs through DAA. Deep AA is applied on training VFs
to obtain the DAA dictionary (Dy;), where L; represents the
dictionary obtained at ith layer of the DAA framework. Each
atom of this dictionary is considered as a vertex of a high-
dimensional simplex, and the remaining training and test VFs
are projected on this simplex to obtain convex representations
as:

. 2
y = argmin|lx — Dyl
yeAg

such that Ay £ [a; > 0, [la;ll; = 1]. Here x represents an

input VF, y represents its corresponding convex represen-
tation and k is the number of atoms in Dy;. These convex
representations are inherently sparse. We will show that the
convex representations highlight the early or slight vision loss
(typically due to glaucoma) in a VF that may not be captured
by summary parameters of VF such as mean deviation (MD)
or pattern standard deviation (PSD) that are generated by
clinical instruments and widely used by clinicians.

Since no class-specific information is used to obtain
DAA dictionary (unlike other AA based classification frame-
works), the convex representations obtained by simplex pro-
jection is an unsupervised procedure.

B. CLASS-BALANCED BAGGING FOR CLASSIFICATION
Like most of the datasets in real-world healthcare settings,
our dataset was imbalanced as the number of subjects (who
developed glaucoma at the end of the study) were signifi-
cantly lower than the number of subjects who did not develop
the disease. Most of the strong classifiers such as support
vector machines and neural networks could be highly affected
by class imbalance leading to biased towards the class with
higher number of samples with a high missed detection
rates. To overcome this issue, we developed a bagging-based
approach where each individual classifier, a feed-forward
neural network, was fed with class-balanced training exam-
ples, as illustrated in Figure 2.

In the training step, the framework divides the samples
in the class with larger number of samples (those who did
not develop glaucoma; called negative group) into smaller
non-overlapping subsets such that the number of samples in
each subset were almost equal to the number of positive class
(those who eventually developed glaucoma). Each subset of
negative and all the positive examples were fed to a neural
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FIGURE 2. Class-balanced bagging approach used for training the
proposed framework.

network (multi-layer perceptron with similar parameters) to
learn the discrimination between two classes. Therefore, each
neural network was trained on the (same) positive examples
but different subsets of negative examples. It is worth not-
ing that this framework is different from traditional bagging
approach where each example has similar likelihood of being
selected for training in any of the eight classifiers. During
testing, each neural network was considered as an indepen-
dent classifier, and a majority voting rule was applied on
individual predictions to obtain the final prediction.

V. EXPERIMENTATION

A. DATASETS

The ocular hypertension treatment study (OHTS) was a
prospective, multi-center (across 22 centers in the US) inves-
tigation that sought to prevent or delay the onset of VF loss in
patients at moderate risk of developing glaucoma [9].Unlike
most of other datasets that collected glaucoma risk factors
retrospectively, in the OHTS, risk factors were measured
at the baseline prior to the onset of disease and afterwards
routinely. Hence, the OHTS dataset allows the development
and testing of a robust glaucoma prediction framework such
as the framework that we developed.

A total of 1,618 subjects with elevated IOP but normal
appearing optic disc (structure) and normal VF (function)
were followed for about six years. The demographic parame-
ters, clinical information and VFs were collected every six
month. After about 72 months, 125 participants developed
glaucoma (187 eyes) while 1,493 did not develop the dis-
ease based on VF assessments (Fig. 3). For each partici-
pant, at least two or three reliable VF tests (<33% false
positives and false negative, and <33% fixation loss errors,
according to initial OHTS study criteria) were collected
by Humphrey (Carl Zeiss Meditec, Dublin, California) full
threshold using the SITA Standard 30-2 procedure (covering
central 30 degree of VF) at the baseline (start date of each
participant in the clinical trial). Two OHTS certified readers
carefully examined follow up VFs and when they identified
VF abnormality, they recalled subject for re-testing to con-
firm the abnormality. Glaucoma onset was further confirmed
by an independent endpoint committee (see [9] for more
details).

In this paper, 7,248 VF tests collected only at the baseline
were included for the downstream analysis (Fig. 3). We used
full threshold values at each VF test location. We analyzed
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1,618 participants in the
ocular hypertensive treatment study
(OHTS)

: 6,544 VFs (from 1,618 OHTS participants)
15,820 VFs of eyes that did not develop glaucoma
724 VFs of eyes that developed glaucoma

72 months of follow up 72 months of follow up

125 .
1,493 subjects subjects 1,493 subjects 1?5 st:bjec}
did not develop gl developed did not develop gl: -
glaucoma
glaucoma

FIGURE 3. Subjects and collected visual fields (VFs) in the ocular
hypertension treatment study (OHTS). Left: Participants who were
selected for the study and proportion who eventually developed
glaucoma. Right: VFs of participants at the baseline (start of the study).
Question was that whether we can recognize hidden pattern of visual
functional loss from baseline VFs that may distinguish eyes that will
eventually develop glaucoma from those that will not develop the
disease.

only VFs that were identified as normal by OHTS certified
VF readers. We then hypothesized that there maybe subtle
VF defect patterns in the VFs of those eyes that developed
glaucoma several years later that either were missed by clin-
icians or were unknown to clinicians. Our aim was thus
to identify those subtle VF defect patterns and show their
effectiveness in predicting glaucoma well ahead of time.

B. TRAINING AND TESTING CLASSIFIERS

AND COMPARISON

10-fold stratified cross-validation was utilized for computing
the accuracy in terms of the area under the receiver operating
characteristics (AUC) for neural networks applied on raw
VFs, convex representation through AA, convex represen-
tation through DAA, and relevance vector machine (RVM)
applied on raw VFs. As discussed in Section II, the only
machine learning based method for glaucoma prediction,
known to the authors, was RVM [20], which was compared
against the proposed frameworks. Since the dataset used in
this method is publicly unavailable and part of the features
utilized in this method are unavailable for all the subjects
in OHTS dataset, the authors have only used their pro-
posed classification method (RVM classifier) to provide a fair
comparison.

C. PARAMETER SETTING AND PERFORMANCE METRIC

All the parameters such as number of dictionary atoms
(archetypes), the number of layers in DAA, the number
of nodes and layers in neural network were selected such
that the model provides an optimal average performance on
the cross-validation data. More specifically, these param-
eters were selected based on an extensive grid search to
provide maximum area under the ROC curve (AUC) and
least missed detection rate. The proposed framework utilized
128 dictionary atoms and seven factorization levels in DAA
framework. Each neural network consisted of a single hidden
layer with 200 neurons. The Adam optimizer with a fixed
learning rate of 0.0001 was used to train each neural network.
For class-balanced bagging, the negative class was divided
into eight subsets, and hence, the proposed framework was
an ensemble of eight different neural networks. Gaussian
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FIGURE 4. Visual field defect patterns identified by deep archetypal
analysis (DAA) of VFs collected at the baseline from the Ocular
Hypertension Treatment Study (OHTS) participants.

kernel with a width of 0.9 was used in the baseline method
for training the RVM. Similar to the proposed framework,
parameter of RVM also were selected using a grid-search on
the cross-validation data. The parameters of neural networks
in all the experiments were kept the same. The DAA, MLP
and AUC performance metrics were implemented in Python
using scikit-learn library. RVM was implemented in Matlab
because there was no implementation in Python. Statistical
analyses were performed in R.

D. VISUAL FIELD DEFECT PATTERN RECOGNITION

We applied DAA on all baseline VFs to identify hidden pat-
terns of (glaucomatous) VF loss. We first identified 128 deep
archetypes that were prevalent in the data. We then excluded
the archetypes that had significant correlation with other
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FIGURE 5. ROC curves of the using neural networks (NN) applied on
original visual fields, convex representation of visual fields obtained by
AA or DAA, and relevance vector machine (RVM).

archetypes. Figure 4 shows 18 DAA VF defect patterns that
were identified from baseline VF data of the OHTS partic-
ipants. These patterns were assessed subjectively by a glau-
coma expert to identify its clinical relevance (M.G.). Top-left
pattern was identified as a normal pattern while other patterns
were identified as patterns of (early) VF loss. To further
assess the effectiveness of the models, the DAA archetypes
were fed to an NN classifier and was compared against raw
VFs and classical AA archetypes (Fig. 5). Although glau-
coma experts had not identified any suspicious glaucomatous
patterns of VF loss in subjective evaluation of the baseline
VF data of the OHTS participants, we suggest these subtle
VF defect patterns as possible risk factors (signs) of glaucoma
development several years in advance of clinical manifesta-
tion of disease signs (Fig. 5).

VI. RESULTS AND DISCUSSION
Out of 7,248 VF tests collected at the baseline, 6,544 VFs
were labeled as both ‘‘reliable” and ‘“‘normal”, in which
724 VFs corresponded to eyes that eventually developed
glaucoma (over approximately six years of follow up) and
5,820 corresponded to eyes that did not develop glaucoma
over the course of OHTS study (Fig. 3). The mean age (stan-
dard deviation; SD) of subjects in the normal and (converted
to) glaucoma groups were 55.7 (9.6) and 58.8 (9.0) years,
respectively (p < 0.001). Approximately 42% of subjects in
the normal group were male while 56% of the subjects in the
(converted to) glaucoma group were male (p < 0.001). Mean
IOP of eyes in the normal and (converted to) glaucoma groups
were 24.8 (2.9) and 26.1 (3.3), respectively (p < 0.001).
Visual field testing through standard automated perime-
try (SAP) remains a gold standard for glaucoma assessment.
Therefore, recognition of (glaucomatous) VF defect patterns
is critical for diagnosis, severity identification, and therapy
adjustments based on the type of defect [23]. However, man-
ual classification of glaucoma through VFs requires signifi-
cant clinical training and more importantly is labor intensive
and highly subjective with limited agreement even among
glaucoma specialists [24], [25]. Thus, any approach that can
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automatically identify early patterns of VF loss can impact
glaucoma management.

Several researchers, including us, have used unsuper-
vised learning to discover (glaucomatous) patterns of
VFloss [12], [13], [26]-[29]. We have extensively used Gaus-
sian mixture modeling (GMM) to discover patterns of VF loss
and to identify glaucoma progression along those GMM-
identified patterns [26]-[29]. Other teams have used classical
AA for such goals [12], [13]. However, here we introduced a
deep archetypal approach that identifies patterns of VF loss
that are clinically more relevant (subjective evaluation) and
patterns that may serve as signs of early glaucoma develop-
ment (Fig. 4). We used 128 DAA patterns as input features to
the classifier for predicting glaucoma. In fact, we investigated
other numbers of patterns and obtained the optimum accuracy
with 128 patterns. While these DAA patterns maximized
the accuracy of glaucoma prediction, overlap among these
patterns was significant when assessed visually. Therefore,
a follow up study is warrant to provide a set of mutually
exclusive DAA patterns for glaucoma assessment. To provide
a fair comparison, we used 128 classical AA patterns as was
used in DAA assessment. We used the implementation of
Chen et al. for AA [21] and used the implementations in [5],
[7] for DAA analysis.

While these patterns were not obvious to glaucoma experts
before, DAA analysis identified these patterns as (possible)
signs of future glaucoma development, which was confirmed
further by objective analysis (Fig. 5, black curve with AUC
of 0.71).

To avoid any bias due to multiple VF tests from same eyes
of subjects, we accounted for correlation between tests and
eyes of same subjects using a nested structure in generalized
estimating equation (GEE) [30]. To account for multiple VFs
from same eyes in training and testing of machine learning
models, we selected the training and testing folds based on
subjects rather than eyes or VFs.

Figure 5 illustrates the ROC curves of the proposed frame-
work compared against RVM [20], classical AA approach,
and raw VFs. The AUC of applying NN on DAA repre-
sentation of VFs was 0.71 while the AUC of applying NN
on classical AA representation of VFs and raw VFs were
0.61 and 0.55, respectively. The AUC of RVM [20] was
0.64. In fact, DAA provided a representation of VFs with
significantly higher AUC than classical AA and original VFs
in predicting the future development of glaucoma on both
cross-validation and held-out datasets (statistical p < 0.001).
This highlights that the deep convex representation, obtained
by simplical projection, is more discriminative than the input
original VFs as well AA and classical RVM.

At first, it may seem that an AUC of 0.71 is low compared
to several approaches for identifying glaucoma with higher
accuracy. While from statistical perspective this may seem a
valid argument, from clinical perspective, the story is differ-
ent. Predicting glaucoma from baseline VFs approximately
five years prior to the disease development is a very chal-
lenging task. In fact, relatively, the easiest task would be
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performing automatic diagnosis, which means clinicians
already have observed clinical signs of the disease however,
in prediction there is no clinical sign and one would need to
identify pre-clinical hidden patterns of the disease.

This study was conducted on VF tests with Humphrey
30-2 pattern. Other studies using VFs with Humphrey 24-2 or
central 10-2 patterns may shed light on the effectiveness
of DAA in predicting glaucoma. Nevertheless, VF testing
is subjective, time-consuming and presenting a significant
degree of variability. Therefore, future studies could inves-
tigate the role of structural data such as fundus photographs
or optical coherence tomography (OCT) data in predicting
glaucoma prior to disease onset.

VIi. CONCLUSION

In this paper, deep archetypal framework was developed
to effectively predict glaucoma several years prior to dis-
ease manifestation. The framework utilizes simplex projec-
tions to obtain unsupervised convex representations of VFs.
We showed that these convex representations are clinically
meaningful and more discriminative than raw VFs or other
classical VF analysis approaches. To overcome the class-
imbalance, the proposed framework utilizes a class-balanced
bagging approach. As a proof of concept, OHTS glaucoma
clinical trial dataset was used to assess the effectiveness of
approach for early glaucoma prediction.

Experimental results signified that a system of deep
archetypal representation and class-balanced bagging
improved predicting glaucoma development from baseline
measurements several years prior to disease development.
Future work with independent datasets may be required to
verify the findings of this study.
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