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Macroscopic descriptions of populations commonly assume that encounters

between individuals are well mixed; i.e. each individual has an equal chance

of coming into contact with any other individual. Relaxing this assumption can

be challenging though, due to the difficulty of acquiring detailed knowledge

about the non-random nature of encounters. Here, we fitted a mathematical

model of dengue virus transmission to spatial time-series data from Pakistan

and compared maximum-likelihood estimates of ‘mixing parameters’ when

disaggregating data across an urban–rural gradient. We show that dynamics

across this gradient are subject not only to differing transmission intensities

but also to differing strengths of nonlinearity due to differences in mixing.

Accounting for differences in mobility by incorporating two fine-scale,

density-dependent covariate layers eliminates differences in mixing but results

in a doubling of the estimated transmission potential of the large urban district

of Lahore. We furthermore show that neglecting spatial variation in mixing can

lead to substantial underestimates of the level of effort needed to control a

pathogen with vaccines or other interventions. We complement this analysis

with estimates of the relationships between dengue transmission intensity

and other putative environmental drivers thereof.
1. Introduction
The transmission dynamics of all infectious diseases depend on a few basic but

key determinants: the availability of susceptible and infectious hosts, contacts

between them and the potential for transmission upon contact. Susceptibility

is shaped primarily by historical patterns of transmission, the natural history

of the pathogen, the host’s immune response and host demography [1]. What

constitutes an epidemiologically significant contact depends on the pathogen’s

mode of transmission [2], and structure in contact patterns can be influenced by

transportation networks and the spatial scale of transmission [3], by host het-

erogeneities such as age [4], and dynamically in response to the pathogen’s

influence on host behaviour [5]. Whether transmission actually occurs during

contact between susceptible and infectious hosts often depends heavily on

environmental conditions [6–8]. Disentangling the relative roles of these factors

in driving patterns of disease incidence and prevalence is a difficult but central
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Table 1. Reported cases by year in Lahore and all other districts.

2011 2012 2013 2014 total

Lahore 18 020 4013 11 516 1799 35 348

other 3162 500 2356 2790 8808
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pursuit in infectious disease epidemiology, and mathematical

models that capture the biology of how these mechanisms

interact represent an indispensible tool in this pursuit [9].

The time-series susceptible–infected–recovered (TSIR)

model was developed by Finkenstädt & Grenfell [10] to offer

an accurate and straightforward way to statistically connect

mechanistic models of infectious disease transmission with

time-series data. Among other features, TSIR models readily

account for inhomogeneous mixing in a phenomenological

way by allowing for rates of contact between susceptible and

infectious hosts to depend on their densities nonlinearly.

Although this is a simple feature that can be incorporated

into any model based on mass-action assumptions—indeed,

earlier applications pertained to inhomogeneous mixing in

predator–prey systems [11]—the ‘mixing parameters’ that

determine the extent of this nonlinearity have primarily been

fitted to empirical data in applications of the TSIR model

to measles, cholera, rubella and dengue [12–15]. Applied to

discrete-time models such as the TSIR, mixing parameters

also have an interpretation as corrections for approximating

a truly continuous-time process with a discrete-time model

[16,17]. In no application of the TSIR model to date has the

potential for variation in these parameters been assessed, leav-

ing the extent to which inhomogeneity of mixing varies across

space and time as an open question in the study of infectious

disease dynamics.

There are a number of reasons why mixing might vary in

time or space. Seasonal variation in mixing might arise

because of travel associated with labour [18], religious

events [19] or vacation [20], or because of the timing of

school openings in the case of influenza [21]. Spatial varia-

tion in mixing could arise because of cultural differences at

geographical scales [3,22,23], because of variation in the

density and quality of roads [24], or because of variation in

human densities and myriad-associated factors [13,25]. For

vector-borne diseases, variation in mixing is amplified even

further by variation in vector densities [26], which effectively

mediate contact between susceptible and infectious hosts.

Dengue is a mosquito-borne viral disease with a strong

potential for spatial variation in mixing [27,28]. The dominant

vectors of dengue viruses (Aedes spp.) thrive in areas where

they are able to associate with humans, as humans provide not

only a preferred source of blood but also water containers that

the mosquitoes use for egg laying and for larval and pupal devel-

opment [29]. Two additional aspects of Aedes ecology—limited

dispersal distance of the mosquito [30] and daytime biting

[31]—imply that human movement should be the primary

means by which the viruses spread spatially [2]. Indeed, analyses

of dengue transmission dynamics at a variety of scales have

strongly supported this hypothesis [32–35]. To the extent that

human movement in dense urban environments is more well

mixed than elsewhere, there are likely to be differences in the

extent of inhomogeneous mixing in peri-urban and rural areas.

This is also presumably the case for directly transmitted patho-

gens, but with a potentially even stronger discrepancy for

dengue due to the urban–rural gradient in mosquito densities.

To assess the potential for spatial variation in the inhom-

ogeneity of mixing as it pertains dengue transmission, we

performed an analysis of district-level time series of dengue

transmission in the Punjab province of Pakistan using a

TSIR model with separate mixing parameters for urban and

rural districts. We likewise made estimates of the relation-

ships between density-independent transmission potential
and putative drivers thereof, such as temperature, to allow

for the relative roles of extrinsic and intrinsic factors to be

teased apart. Finally, we performed mathematical analyses

of the fitted model to assess the significance of spatial vari-

ation in mixing inhomogeneity for how time-series data are

interpreted and used to guide control efforts.
2. Material and methods
We obtained daily dengue case data aggregated at hospital level

from Punjab province provided by the Health Department

Punjab, Pakistan, between 2011 and 2014. In total, 47 156 suspected

and confirmed dengue cases were reported in 109 hospitals. All

hospitals were subsequently geo-located using ‘Google maps’

(http://www.maps.google.com) similar to methods described

here [36]. Hospitals that could not be identified were removed

from the database. The hospitals were then assigned to a district

within Punjab, Pakistan by their spatial location. A total of 21 182

cases alone were reported from the year 2011, which affected

almost the entire province. Many more cases occurred in Lahore

(35 348) compared to all other districts (8808) (table 1). A break-

down per year and each province is provided in electronic

supplementary material, table S1, and additional information

about collection can be found in the electronic supplementary

material, appendix. No information on dengue serotypes were

available. However, the predominant serotype circulating in

Punjab province, Pakistan is that of DENV-2 [37].

2.1. Covariate selection and processing
Environmental conditions are instrumental in defining the risk of

transmission of dengue [28]. Transmission is limited by the avail-

ability of a competent disease vector. Due to a lack of resources

and political instability, no comprehensive nationwide entomologi-

cal surveys have been performed in Pakistan. Therefore, we use a

probabilistic model to infer the probability of occurrence of Aedes
aegypti and Aedes albopictus in Pakistan derived from a globally com-

prehensive dataset containing more than 20 000 records for each

species (figure 1a,b). In short, a boosted regression tree model was

applied that predicts a continuous spatial surface of mosquito occur-

rence from a fitted relationship between the distribution of these

mosquitoes and their environmental drivers. A detailed description

of the occurrence database and modelling outputs are available here

[36,38,39]. Such model outputs have proved useful in identifying

areas of risk of transmission of dengue as well as malaria

[28,40,41]. Other important environmental conditions defining the

risk of transmission of dengue are temperature, water availability

and vegetation cover [42]. To account for such variation, raster

layers of daytime land surface temperature were processed from

the MOD11A2 satellite, gap-filled to remove missing values, and

then averaged to a monthly temporal resolution for all 4 years

[43]. The density of vegetation coverage has been shown to be associ-

ated with vector abundance [44]. Moreover, vegetation indices are

useful proxies for precipitation and may be used to derive the pres-

ence of standing water buckets that are habitats for the Aedes
mosquitos [45]. The same method was again applied to derive the

enhanced vegetation index (EVI) from the MOD11A2 satellite to

produce 16-day and monthly pixel-based estimates for 2011–2014

http://www.maps.google.com
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(figure 1g) [46]. Due to the inherent delay between rainfall and daily

temperature influencing mosquito population dynamics and those

mosquitoes contributing to an increase in DENV transmission, we

consider both, the influence of the current temperature, vegetation

indices and precipitation, data on current transmission as well as

the values of those covariates the time step before (figure 1f ).

We used population count estimates on a 100 m resolution that

were subsequently aggregated up to match all other raster layers to a

5 � 5 km resolution for the year 2015 (http://www.worldpop.org)

(figure 1e). In a follow-up analysis to our primary investigation

into the climatological drivers of dengue transmission, we included

several density-based covariates. We derived a weighted accessibil-

ity metric that includes both, population density and urban

accessibility, a metric commonly used to derive relative movement

patterns [24,47]. This map shows a friction surface, i.e. the time

needed to travel through a specific pixel (figure 1d). We also used

an urban, peri-urban and rural classification scheme to quantify pat-

terns of urbanicity based on a globally available grid [48] (figure 1c).

All covariates and case data were aggregated and averaged (where

appropriate) to a district level.

2.2. Model
Following Finkenstädt & Grenfell [10], we assume a general

transmission model of

It,i ¼ bt,i �
Iai
t�1,i

Ni
� St�1,i � et,i, ð2:1Þ
where It,i is the number of infected and infectious individuals

and St,i the number of susceptible individuals, at time t in district

i, Ni is the population of district i, and bt,i is the covariate driven

contact rate. We assume each individual to be susceptible as the

2011 epidemic is the first large dengue outbreak. The mixing

parameter for the ith district is given by ai; when ai is equal to

1, the population has homogeneous mixing where values less

than one can either indicate inhomogeneous mixing or a need

to correct for the discretization of the continuous-time process.

bt,i was fitted using covariates shown in figure 1. Finally, the

error terms et,i are assumed to be independent and identically

log-normally distributed random variables.
2.3. Model selection
The term bt,i is fit using generalized additive model regression

[49–51]. The time-varying climatological covariates are all fit as

a smooth spline, while all other covariates enter bt,i linearly.

For example, if covariate X1 and X2 are time varying and X3

and X4 are temporally constant, then we fit b as

E½bðtÞ� ¼ s½X1ðtÞ� þ s½X2ðtÞ� þ X3 þ X4, ð2:2Þ

where s are smooths.

Additionally, unexplained seasonal variation is accounted for

using a 12-month periodic smooth spline.

Model selection was performed using backwards selection.

Two base models were investigated. First, a climate-only model

http://www.worldpop.org
http://www.worldpop.org
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was created using only the climatological and environmental

suitability covariates. Second, a ‘full’ model using the density-

dependent covariates as well as the climatological covariates

were combined into a single model which was then subjected

to backwards selection. For both models, the mixing coefficient

was initially set equal for each district and once a final model

was arrived upon, the mixing coefficient for Lahore was allowed

to vary separately from the other coefficients. All model fitting

was conducted using R [52] and the ‘mgcv’ package [51].

Models are fit by maximizing the restricted maximum likelihood

[53] to reduce bias and over-fitting of the smooth splines. The

model source code and processing of covariates will be made

available in line with previous projects [54].

2.4. Model analysis
To explore the potential significance of spatial variation in

mixing parameters, we conducted an analysis to probe the

inherent mathematical trade-off between the mixing parameter

a and the density-independent transmission coefficient b.

Specifically, to answer the question, what difference in local

transmission would be necessary to account for a difference in

mixing while achieving identical transmission dynamics. To

explore this, we used equation (2.1) to establish:

b1

I1,t
a1

N1
¼ b2

I2,t
a2

N2
, ð2:3Þ

from which we obtained

b1

b2

¼ Ia2�a1 : ð2:4Þ

We then examined how variation in l and a2 2 a1 affected

the left-hand side of equation (2.4) and likewise the critical pro-

portion of the population to control in order to effect pathogen

elimination, which, under our model, is pc ¼ 1 2 (1/b).
3. Results
3.1. Description of case distribution
The majority of cases were clustered in Lahore, the capital of

Punjab province. Ongoing transmission appeared to be focal

in three (Vehari, Rawalpindi and Lahore) districts and to

have spread through infective ‘sparks’ to smaller more rural

provinces.

3.2. Model selection
To disentangle the different aspects of dengue dynamics and

their drivers, we used a model containing only the climatolo-

gical covariates and performed backwards model selection

until each covariate in the model was significant at a 5%

level. This resulted in a model that explained 76.9% of the

deviance and that had an adjusted R2 of 0.746. Among the

yearly averaged covariates, EVI and precipitation remained

in the model, as well as the derived A. albopictus range map

( p ¼ 8.21 � 1024, 0.01, and 3.9 � 1025, respectively). Interest-

ingly, when we substituted the derived A. aegypti map for the

A. albopictus map, the deviance explained changed very little

to 76.8%. For climatological covariates that were fit as smooth

splines, temperature, lagged temperature and EVI remained

in the model (figure 2, p-value of 0.010, 0.030 and 0.030

with effective degrees of freedom 7.55, 5.47 and 1.83, respect-

ively). There was a significant amount of periodic variation

unexplained by the climatological covariates alone, as the

‘seasonality’ covariate was retained by the model selection
algorithm (figure 2, p¼ 0.0034). The estimated median values

for R0 per district were clustered around 2 (mean¼ 2.1),

and their geographical distribution indicated a clear trend

towards districts with larger populations (figure 3). Finally, the

mixing coefficient was significantly lower than 1 (a¼ 0.69,

95% CI¼ (0.614, 0.771), p¼ 1.6 � 10214).

To understand these differences, the final model was then

compared to a nested model in which the coefficient for

Lahore was allowed to vary independently of all other dis-

tricts. Deviance explained increased to 77% and adjusted R2

increased to 0.753. Further, the mixing coefficient for Lahore

(a ¼ 0.74) was significantly larger than the mixing coefficient

for the other districts (a ¼ 0.59, p ¼ 0.0068) (electronic sup-

plementary material, figure S1). The median R0 for Lahore

was estimated at 3.28, the highest among all districts.

To assess the extent to which the variation in mixing coef-

ficients could be explained by other covariates, we considered

the possibility that movement accounted for the differences in

the mixing coefficients between Lahore and the other dis-

tricts. The density-dependent covariates (described earlier)

were then added to the full model and backwards selection

was performed again. The resulting model explained 78.6%

of the deviance, had an adjusted R2 of 0.763 and was superior

to the final climatological model based on AIC (699.23 versus

714.83). Yearly averaged EVI, normalized difference veg-

etation index and precipitation were all significant ( p ¼
8.7 � 1025, 0.00024 and 0.00028, respectively). Again, the

derived A. albopictus map was significant ( p ¼ 0.00816). For

climatological covariates fit as smooth splines, only tempera-

ture and lagged temperature were found to be significant

(figure 2b, p ¼ 4.0 � 1025 and 0.0013, and effective degrees

of freedom 7.61 and 4.81, respectively), and there was still a

significant ‘seasonality’ effect (figure 2b, p ¼ 4.0 � 1027,

effective degrees of freedom 4.48). The best-fit mixing coeffi-

cient was a ¼ 0.58, barely lower than the mixing coefficient

for non-Lahore districts in the climatological model. The esti-

mated median R0 again clustered around 2 (mean ¼ 1.8), and

again the R0 for Lahore was largest, but in this model it was

considerably larger than in the climatological model (Lahore

R0 ¼ 7.82, figure 2b). Full details of the best-fit model par-

ameters are shown in electronic supplementary material,

table S2–S5.

Two of the density-dependent covariates remained in the

model: the urban map ( p ¼ 0.01) and the weighted access

map ( p ¼ 3� 1025). When the nested model that allowed

Lahore’s mixing coefficient to vary was fitted, there was no sig-

nificant difference between the two mixing coefficients ( p � 1).
3.3. Model analysis
Given a difference in estimates of the mixing parameters

between Lahore and elsewhere of 0.15, we analysed equation

(2.3) to assess the bias in estimates of the transmission coeffi-

cient that would result from ignoring this extent of variation

in the inhomogeneity of mixing displayed between two areas.

For the purpose of ceteris paribus comparisons, we assumed

equal force of infection but varied it across several orders of

magnitude. Depending on the order of magnitude, estimates

of transmission coefficients made if overestimating the

mixing parameter by 0.15 could easily result in a two- to

threefold underestimate in the transmission coefficient

(figure 4). For realistic ranges of the transmission coefficient

for dengue, and equivalently for the basic reproductive
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number R0 under the present model, this extent of underesti-

mation of R0 could lead to underestimating the critical

proportion of the population to which vaccines or other

interventions must be applied by 20–30% (figure 5).
4. Discussion
Our results point to considerable spatial heterogeneity in the

inhomogeneity of mixing and the strength of an associated
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nonlinearity in transmission along an urban–rural gradient.

This regional variability in mixing has direct implications

for estimates of the basic reproductive number of dengue in

our study region and elsewhere. Although the potential for

such bias in estimates of the basic reproductive number has

been shown in a theoretical context [26,55], we provide quan-

titative estimates of the extent of this problem by interfacing

models with a rich spatio-temporal dataset. Our results have

implications for estimates of population-level parameters

not only for dengue but also for other infectious diseases

[13,56–60] and possibly even more broadly in ecology [11].

Our analysis revealed significant differences in the

inhomogeneity of mixing between urban and rural settings

and found that a population-weighted urban accessibility

metric was able to account for differences in mixing between

these settings. Mixing is presumably influenced directly

by human behaviour and has been shown to be highly
unpredictable, largely dependent on the local context and

the spatial and temporal scale [61]. In this study, however,

we could show that the density-dependent covariate we con-

sidered was able to capture the influence of these behavioural

effects on a district level. Once differences in the inhomogen-

eity of mixing were accounted for, estimated R0 values

indicated considerably larger differences between trans-

mission potential in Lahore and all other districts.

Synchronizing more accurate geo-referenced data would

allow for the assessment of the extent to which the relation-

ship between ‘mixing parameters’ and urban accessibility is

dependent on the spatial scale at which data are aggregated

[26,62]. In the case of dengue, this has been limited specifi-

cally by the availability of high-resolution data [63].

Complementing such an analysis with measurement of

social contact patterns could be important for exploring this

relationship in even more detail [22,64,65] and could

be informed by mathematical models that explored this

relationship previously for other diseases [13,66]. Another

encouraging result from our analysis was the finding that

large-scale mosquito suitability surfaces helped capture the

environmental determinants of dengue transmission [28].

Intervention strategies are contingent on both under-

standing key environmental drivers of transmission and the

dynamics of ongoing human-to-human transmission, par-

ticularly in outbreak situations [67]. Environmental drivers

such as seasonal fluctuations in rainfall, temperature, veg-

etation coverage or mosquito abundance will help guide

surveillance and control efforts targeted mostly towards the

mosquito vector and its ecology [68]. Once infection occurs,

an important and unresolved question for dengue is how to

best optimize the delivery of intervention strategies to

reduce disease incidence, which is largely determined by

R0. Our analysis shows that the interaction between mixing

parameters and force of infection has potentially large impli-

cations for optimizing targeted intervention, particularly in

countries where transmission is high and resources are

scarce [69]. In fact, this may be even more important in

areas of low transmission where incidence appears to be
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more focal [70]. Again, however, more attention is needed

to determine the spatial and temporal resolution of appropri-

ate intervention strategies and the effects of key covariates

and model parameters [62]. Empirical understanding of

the spatial scale that is most appropriate for carrying out

large-scale interventions remains unknown.

Once transmission has occurred in one place, understand-

ing not only spatial heterogeneity in transmission dynamics

but also their subsequent spread in mechanistic stochastic

models would help to empirically determine the propagation

of the disease [71]. Interest in spatial spread dynamics has

risen with increasing importation of dengue into heretofore

non-endemic areas due to travel and trade continentally

and internationally [72]. Exploration of the case data in

Pakistan that we analysed here suggests that the virus

spreads along major transport routes from Lahore to Karachi

and north to Rawalpindi. Using results presented here on

mixing coefficients and environmental drivers will help pin-

point areas of major risk of importation more accurately,

especially in the case of recurring epidemics. We explored

the consequences of a spatially differentiated mixing coeffi-

cient in the context of transmission potential within this

analysis. Using the fitted relationships of the environmental
drivers of transmission and R0 will enable future analyses

and comparisons between diseases and geographical regions.

In this context, it will be instrumental to integrate a variety of

movement and social network models with the evidence pre-

sented here to infer more accurately how the geographical

spread of dengue is determined.
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