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Intervertebral disc degeneration (IVDD) is an important risk factor of low back pain. We previously found upregulated markers of
fibrosis, the late stage of chronic inflammation, in degenerated IVD with a small number of clinical specimens. Here, we aimed to
study on a larger scale the association of cyclooxygenase 2 (COX2), an inflammation and/or pain marker, with IVDD. This study
involved 107 LBP participants. The IVD degeneration level was graded on a 1–5 scale according to the Pfirrmann classification
system. Discs at grades 1-3 were further grouped as white discs with grades 4-5 as black discs. We recorded baseline
information about age, gender, body mass index (BMI), diabetes history, smoking history, and magnetic resonance imaging
(MRI). Their association with IVDD was statistically analyzed. The expression level of COX2 was investigated by
immunohistochemistry. The total integrated COX2 optical density (IOD), number of COX2-positive cells, and total cell
number of each image were counted and analyzed by Image-Pro Plus software. The IOD and number of COX2-positive cells
were divided by the total cell number to obtain COX2 expression density (IOD/cell) and COX2 positivity (cell+/cell). As a
result, among the baseline information investigated, only age was found to have a significant association with IVDD. The
IOD/cell was found to be significantly increased from grade 2 to grade 5, as well as in black discs compared to white discs. The
cell+/cell displayed the same trend that it increased in highly degenerative discs compared to their counterparts. In conclusion,
the expression of COX2 is associated with IVDD, which highlights COX2 as a biomarker for IVD degeneration and indicates
the involvement of inflammation and pain signaling in IVDD.

1. Introduction

Low back pain (LBP) imposes huge social and economic
burdens [1, 2]. It is estimated that about 80% of the world’s
population suffer from low back pain at least once in their
lifetime. In the United States, LBP is the fifth leading cause
of patient visits and the third leading cause of surgery [3].
LBP caused by internal disc disruption is defined as disco-
genic low back pain and is an important cause of LBP,
accounting for about 42% of LBP [4]. Imaging examination

shows that patients with low back pain are often accompa-
nied by intervertebral disc degeneration (IVDD) [5, 6].

The intervertebral disc (IVD) is the main joint connect-
ing two adjacent vertebral bones in the spine. It is composed
of three closely connected parts: nucleus pulposus (NP),
annulus fibrous (AF), and cartilage endplate (EP). In the
process of IVDD, the decrease in proteoglycan and collagen
in the extracellular matrix (ECM) directly reduces the hydra-
tion capacity of IVD, leading to the decrease in water
content in NP, which in turn leads to intervertebral disc
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collapse and decreased disc height [7, 8]. Pfirrmann et al. [9]
proposed the Pfirrmann classification of lumbar disc degen-
eration based on the characteristics of NP water content and
disc height reflected in magnetic resonance imaging (MRI)
T2WI images, which has been widely used in clinical prac-
tice. Studies have defined grade 4 and grade 5 discs (black
discs) in Pfirrmann’s grading system as degenerative discs,
while those with grade 3 and below are defined as nondegen-
erative discs (white discs) [5, 10]. The cause of IVDD is not
well known. In addition to age, IVDD is associated with obe-
sity [11], smoking [12], and diabetes mellitus [10]. Genetic
factors have also been shown to be associated with IVDD
[13, 14]. Exploring the mechanism of IVD degeneration is
helpful for the prevention and treatment of LBP, reducing
social and economic burden and improving life quality.

IVDD is accompanied by molecular expressional
changes which have the potential to serve as IVD degenera-
tion markers, such as the downregulation of keratin 19 and
N-cadherin [15, 16]. Increased inflammatory factors have
also been found in degenerated IVDs [17]. Previous research
reported that degenerated human IVDs are in a chronic
inflammatory state [18, 19]. Studies have found increased
expression of several proinflammatory factors in human
degenerative IVDs such as interleukin-1 beta (IL-1β) and
tumor necrosis factor alpha (TNF-α) [20]. A number of
studies have mimicked IVDD by adding proinflammatory
factors in vitro and in vivo [21, 22]. Our previous study
has found the upregulation of fibrosis markers [23, 24], the
late stage of chronic inflammation, in degenerated IVDs.
In the mouse and rabbit model, abnormal remodeling of
the collagenous reticular tissue in the NP was observed [25,
26]. Overall, these evidences suggest degenerative IVDs in
a chronic inflammatory environment.

Cyclooxygenase-2 (COX2) is an “inducible” isoform of
COX enzymes. Unlike COX1, COX2 expression is usually
minimal, but when activated COX2 regulates prostaglandin
E2 (PGE2) production which is involved in neuronal, meta-
bolic, and immune system function, COX2 is involved in
inflammation and is a crucial mediator of pain conduction
[27]. COX2 has been shown to be regulated by, or regulates,
many other inflammatory factors. Studies have demon-
strated that treatment of rat serosal connective tissue mast
cells with NGF induced COX2 [28]. IL-1β [29] treatment
of human tendon cells and TNF-α treatment [30] of human
lung fibroblasts both induced COX2 expression. IL-6 treat-
ment of human NP cells induced PGE2 synthesis and
COX2 expression [31]. Stimulation of COX2 also induced
IL-8 production [32], suggesting that COX2 can further pro-
mote the inflammatory cascade. COX2 is also a critical pain
mediator, and COX2-specific inhibitors have been used
clinically for the treatment of painful conditions, including
low back pain.

COX2 has been found to be induced in in vitro disc cell
cultures by various degeneration inductors, such as TNF-α
[33] and IL-1β [34]. However, up to date, the evidence on
how COX2 expression changes in the natural process of
IVD degeneration in human is rare. In this study, we verified
the expression of COX2 in a relatively large scale of human
specimens who visit the clinics due to low back pain. Here,

we evaluated its expression by immunohistochemistry
(IHC) and assessed its association with the degeneration
grade of IVDs. We further analyzed the correlation of
COX2 expression with the baseline information of the
patients, as well as investigating the expression of COX2 in
cultured human NP cells under the treatment with IL-1β, a
well-accepted inflammatory mediator [35, 36] in IVDD.
The aim is to gain a further understanding of COX2 in dif-
ferent degrees of IVDD, which can contribute to the under-
standing of IVDD pathogenesis and potential development
of blocking strategies.

2. Materials and Methods

2.1. Participants. This study was conducted in the Orthope-
dics Department of the First Affiliated Hospital of the South
China University of Technology between August 2019 and
November 2020 with ethical approval from the Medical Eth-
ical Committee from the South China University of Tech-
nology. 107 LBP participants undergoing spinal surgery
after no response to conservative treatments for at least 6
weeks were included with informed patient consent. All
patients received transdiscoscopic discectomy or lumbar
fusion. IVD removed from these patients during surgery
were collected as approved by the institutional review board
(IRB). Among these, patients with spinal tumor and/or
tuberculosis were excluded from this study. The enrolled
patients had different degrees of low back pain. The degener-
ation grade of IVD was evaluated on a 1–5 scale according to
the Pfirrmann classification system based on MRI T2WI [9].
Data about age, gender, body mass index (BMI), diabetes
history, smoking history, and radiological imaging (MRI)
were also recorded.

2.2. Immunohistochemistry. The expression of COX2 in the
collected IVDs was analyzed by IHC. Tissue samples were
fixed with 10% formalin and embedded in paraffin, cut into
5μM sections, and transferred to adhesive-treated slides.
These slides were dried for 2 hours at 60°C, dewaxed for
three times with xylene, and subjected to rehydration. After
that, the slides were placed in an antigen repair apparatus
(PT Module, Thermo Fisher Scientific) filled with antigenic
repair solution (citric acid, pH = 6:0) in a microwave oven
for antigenic repair. After heating at 100°C for 20 minutes
and natural cooling, the slides were washed with PBS (pH
7.4) on a decolorization shaker for 3 times, 5min each. 3%
hydrogen peroxide was incubated for 25min at room tem-
perature (RT) to block the endogenous peroxidase activity.
Then, the slides were blocked in 3% BSA for 30min at RT.
Afterwards, the sections were incubated overnight at 4°C
with a primary rabbit antibody against COX2 (Abcam,
ab15191) diluted in an antibody diluent (Servicebio,
G2025) at the concentrations of 1 : 150 and 1 : 300, respec-
tively. Then, the slides were incubated with a mouse anti-
rabbit secondary antibody (Servicebio, GB23303) at the
concentration of 1 : 200 at RT for 50 minutes and developed
with diaminobenzidine (DAB) (Solarbio, DA1010), counter-
stained with hematoxylin (Servicebio, G1004), dehydrated in
graded ethanol, and sealed with neutral balsam (Solarbio,
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96949-21-2). Diagnostic scanners (3DHISTECH, Pannora-
mic MIDI) were used to randomly pick five microscopic
images for each sample. The number of COX2-positive cells
was manually counted, and the integrated optical density
(IOD) and total cell number of each image were counted
by using Image-Pro Plus (IPP6) software.

2.3. Degeneration Grading of the Clinical Samples. Two expe-
rienced trained staff independently graded the degeneration
status of the patient IVDs based on sagittal MRI images (T2-
weighted image (T2WI)) of the patient’s spine according to
the Pfirrmann grading system [9]. Images with conflicted
judgments were evaluated again by working together until
consensus was achieved for all patients.

2.4. Culture of Human Nucleus Pulposus Cells. The human
nucleus pulposus cells used in this experiment were pur-
chased from ScienCell. After defrosting, cells were inocu-
lated into tissue culture dishes and cultured in DMEM
complete medium supplemented with 1% penicillin-strepta-
vidin, 1% L-glutamine, and 10% fetal calf serum in a 37°C
humidified incubator. The cells were subcultured at a dilu-
tion of 1 : 3 when they reached 90% confluency. To test the
induction of COX2 by IL-1β, cells at P3 were subjected to
the addition of IL1β at the final concentration of 0, 5, 10,
and 15ng/ml for 24hr. After 24 hr, the cells were harvested.
RNA was isolated by using Trizol and assessed by using a
Nanodrop bioanalyzer (Thermo Scientific, US). Reverse
transcription of RNA to cDNA was done with an RNA to
cDNA kit (Tsingke, PRC). Quantitative real-time PCR
(qRT-PCR) of the expression of COX2 was performed on a
StepOnePlus system (Applied Biosystems, Life technologies,
US) using SYBR green real-time PCR master mixes
(Tsingke, PRC). GAPDH was tested as an endogenous con-
trol. The relative quantification was achieved by the compar-
ative CT method.

2.5. Statistical Evaluation. The normality of variables was
assessed. For a comparison between two sets of data, data
of normal distribution was expressed as mean ± standard
deviation and the differences were evaluated by the t-test.
Data with nonnormal distributions are represented by
median (25th-75th percentile), and the differences were
evaluated by the Mann–Whitney U test. For comparison
among multiple groups of data, an ordinary one-way
ANOVA test was used for comparison following normal dis-
tribution; the Kruskal-Wallis test was used for those who did
not follow the normal distribution. The Spearman coefficient
was used to assess the correlation between COX2 expression
and the baseline information in the IVDD samples. Signifi-
cance was set at P < 0:05. All statistical analyses were per-
formed with SPSS 23.0 software (IBM, Chicago, USA).

3. Results

3.1. Age Is Associated with IVDD in Population Baseline
Information. According to the grading system, we graded
the disc samples collected from 107 patients. We have 7,
38, 57, and 5 cases of intervertebral discs at grades 2, 3, 4,
and 5, respectively. The MRI images of the patients classified

into Pfirrmann grades II to V are represented in Supplemen-
tary Figure 1. Apart from dividing the specimens into grades
2~5, we further adopted the grouping methods mentioned
by Teraguchi et al. [5], which grouped grade 4 and 5 discs
(black discs) as degenerative discs, while those with grade 3
and below were grouped as nondegenerative discs (white
discs). Table 1 shows the characteristics of 107 patients,
among whom 62 cases (57.9%) were degenerative (black)
discs and 45 cases (42.1%) were nondegenerative (white)
discs. The population information, including gender, age,
body mass index (BMI), diabetes mellitus (DM) history,
and smoking history, was compared between the patients
with black discs and those with white discs. Patients with
black discs were significantly older (P < 0:001) and tend to
have higher prevalence of DM (P = 0:051) than their
counterparts though not significant difference was found.
This is consistent with the previous report [10]. Other than
age and DM, the other population baseline parameters
were not statistically different in black discs compared to
white ones.

3.2. Optimization of the IHC Staining of COX2 in Human
Specimens. We tested the staining effect of the COX2 anti-
body at 1 : 150 and 1 : 300 dilution, as shown in Figure 1.
Staining at both antibody concentrations can yield similar
positive signals, while the staining at 1 : 300 dilution is
slightly clearer than that at 1 : 150 dilution. Therefore, we
adopted 1 : 300 dilution for the following experiments.

3.3. Differential Expression of COX2 in Disc NP at Different
Degeneration Grades. The staining results of COX2 in differ-
ent degrees of IVDD are illustrated in Figure 2 and Supple-
mentary Figure 2. The number of COX2-positive cells in
grade 2 discs is low, which is increased in grade 3. In grade
4, the number of COX2-positive cells is significantly
increased and the signal is enhanced. There is no visual
difference in the number of COX2-positive cells and signal
intensity between grade 5 and grade 4 NP.

3.4. Analysis of COX2 Expression in Human Discs at
Pfirrmann Grades II to V. We use IPP6 software and two
analyzing methods of IHC images to more accurately assess
the expression of the target protein in human degenerative
and nondegenerative NP tissues. The IOD/cell number rep-
resents the average COX2 signal intensity per cell, while the
cell+/cell number represents the percentage of cells positive
for COX2 expression. We conducted statistical analysis on
the samples according to levels 2, 3, 4, and 5. The results
are shown in Figure 3. COX2 positivity is highly significantly
different between grades 3 and 4 (P < 0:0001) and grades 3
and 5 (P = 0:0213), respectively. COX2 expression density
is highly significantly different between grades 3 and 4
(P < 0:01) and between grades 3 and 5 (P < 0:01), respec-
tively. In summary, the expression levels of COX2 increase
in high degenerative NP when compared to low/mild degen-
erative NP.

3.5. Analysis of COX2 Expression in Human Black and White
Discs. Next, we grouped discs at grades 2 to 3 as white
(nondegenerative) discs and discs at grades 4 to 5 as black
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(degenerative) discs and compared the expression of COX2
among them. The results are shown in Figure 4. For COX2
positivity, degenerative NP had significantly higher COX2+
cell proportion (57.9% vs. 30.8%, P < 0:001) than nondegen-
erative NP, respectively. For the cellular COX2 expression
intensity, degenerative NP exhibits significantly higher
IOD/cell number of COX2 (3460.1 vs. 1192.2, P < 0:001)
than nondegenerative ones.

3.6. Spearman Analysis of Correlation between COX2
Expression and Baseline Information. The correlation
between COX2 expression and the baseline information of
the patients was assessed by the Spearman analysis. As
shown in Table 2, the expression intensity of COX2, as rep-
resented by IOD/cell number, and the COX2 positivity, as
represented by the cell+/cell number, are both significantly
correlated with diabetes history (P = 0:031/P = 0:008). Body
weight is significantly correlated with COX2 positivity, but

not with COX2 expression intensity. Similarly, age is corre-
lated with COX2 expression intensity but not with COX2
positivity. In summary, this indicates that COX2 expression
is positively correlated with the occurrence of diabetes
(Spearman correlation > 0), while it may have a correlation
with age and weight.

3.7. IL-1β Stimulated COX2 Expression in Cultured Human
NP Cells. IL-1β is known to induce inflammatory response
in human or animal NP in the literature and has been widely
utilized as an inflammation inducer in IVD in various stud-
ies [35, 36]. Here, we investigated whether the treatment of
IL-1βmay inflect the expression of COX2 in human NP cells
in vitro. As shown in Figure 5, COX2 expression in human
NP cells was all significantly upregulated by IL-1β at 5, 10,
and 15ng/ml within 24 hours. This result indicated that
COX2 is involved in the inflammatory cascade induced by
IL-1β in the NP.

Table 1: Population baseline between human degenerated and nondegenerated discs of the study patients.

Total Nondegeneration Degeneration P value

Patients (n) 107 [100] 45 [42.1] 62 [57.9] —

Gender (n [%]) 107 [100] 45 [100] 62 [100]

Male 70 [65.4] 34 [75.6] 36 [58.1]
0.06

Female 37 [34.6] 11 [24.4] 26 [41.9]

Age (years) 43:0 ± 14:9 35:8 ± 13:3 48:3 ± 13:9 <0.001
BMI 23:4 ± 3:4 23:1 ± 3:9 23:6 ± 3:1 0.485

Height (m) 1:66 ± 0:08 1:67 ± 0:07 1:66 ± 0:09 0.363

Weight (kg) 65 (56-70) 63 (55.8-71.5) 65 (57-70) 0.75

Diabetes (yes vs. no) 107 [100] 45 [100] 62 [100]

Yes 5 [4.7] 0 [0] 5 [8.1]
0.051

No 102 [95.3] 45 [100] 57 [91.9]

History of smoking (yes vs. no) 107 [100] 45 [100] 62 [100]

Yes 5 [4.7] 2 [4.4] 3 [4.8]
0.924

No 102 [95.3] 43 [95.6] 59 [95.2]
∗Values are expressed as mean ± standard deviation or number.

100×

400×

Negative control COX2 1:300 COX2 1:150

Figure 1: Illustration of the optimization of COX2 staining. IHC staining was performed with the COX2 antibody at 1 : 150 and 1 : 300
dilution. Negative control was obtained by omitting the primary antibody. Photos were taken at 100x and 400x magnification.
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4. Discussion

Not all IVD degeneration causes low back pain. While some
degenerated IVDs cause discogenic LBP, some others are
pain-free. A previous study has reported that none of the
morphological changes, such as disc bulges, narrowing,
Schmorl’s nodes, or protrusions, can be distinguishable
factors between asymptomatic and symptomatic patients
[37, 38]. Inflammation is an important element of IVDD
and might be the crucial factor distinguishing symptomatic
and asymptomatic IVD degeneration [18].

COX2 is indicated in the inflammatory process in vari-
ous tissues, such as Alzheimer’s disease [39], Parkinson’s
disease [40], and diabetic kidney disease [41]. Its overexpres-
sion has been implicated as a biomarker for various types of
cancers [42–44]. COX2 is also a crucial pain mediator.
COX2 regulates the synthesis of prostaglandin E2 (PGE2),
which plays an important role to induce radiculopathy. A
COX2 selective inhibitor has been successfully developed
as a commercially available drug to suppress pain. As a cru-
cial mediator of pain and participant of inflammation signal-
ing, COX2 may play an important role in IVDD and LBP

(a)

(b)

(c)

(d)

Figure 2: Immunohistochemical staining images of COX2 in human nucleus pulposus tissue. (a–d) The staining of NP at Pfirrmann grades
II (a), III (b), IV (c), and V (d).

5Mediators of Inflammation



development. Currently, the knowledge about the involve-
ment of COX2 with IVDD is relatively low. A few studies
have investigated the association of COX2 with IVDD in
animal models and in vitro cell culture. In rat [45] and dog
[46] models with induced IVD degeneration, increased
expression of COX2 has been found in degenerated discs.
In disc cell culture, IL-1β [34, 47] and TNF-α [48] have been
found to elevate inflammatory gene expression including

COX2. However, the information about COX2 expression
in native human IVD at different degeneration grades is still
scarce.

In this study, we looked into the baseline information of
patients with different degrees of IVDD. We explored the
association of COX2 with IVD degeneration with a relatively
large scale of clinical human specimens. As a result, among
all the baseline information investigated, none but age is

Pfirrmann II group Pfirrmann III group Pfirrmann IV group Pfirrmann V group p value

COX2 (cell+/cell number) [%] 35.4(20.7-50.0) 30.5 (25.5-40.1) 54.0(34.4-66.7) 60.0 (55.3-63.6) <0.001

COX2 (IOD/cell number) 1737.1(485.7-4591.9) 1182.0 (778.1-2304.7) 3381.5(1089.4-6042.9) 7734.9 (4288.6-13199.9) <0.001
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Figure 3: The expression of COX2 between grade 2, 3, 4, and 5 discs of the patients. (a) The percent of COX2+ cells in the total cell
population in NP tissues at grades 2, 3, 4, and 5. (b) The IOD/cell number of COX2 in NP tissues at grades 2, 3, 4, and 5. ∗ represents
P < 0:05, ∗∗ represents P < 0:01, ∗∗∗ represents P < 0:001, and ∗∗∗∗ represents P < 0:0001.

Total Non-Degeneration Degeneration p-value

COX2 (IOD/cell number) 2016.8 (923.6–
5337.6) 1192.2 (659.6–2368.4) 3460.1 (1474.0–6760.0) <0.001

COX2 (cell+/cell number)
[%] 40.4 (26.7–60) 30.8 (24.6–40.3) 57.0 (36.2–66.7) <0.001
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Figure 4: The expression of COX2 between human white and black discs of the patients. (a) The percent of COX2+ cells in total cell
population between human degenerated and nondegenerated NP tissues. (b) The IOD/cell number of COX2 between human
degenerated and nondegenerated NP tissues. D: degenerative (black) discs; ND: nondegenerative (white) discs. ∗∗∗ represents P < 0:001,
and ∗∗∗∗ represents P < 0:0001.
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shown to be associated with IVDD. The expression intensity
of COX2 increased from grade 2 to grade 5, and the same
trend is detected when comparing white discs to black discs.
Consistently, cell positivity of COX2 also increases in more
degenerative NP when compared to NP at lower degenera-
tive grades. We further checked the expression of COX2 in
cell culture in vitro and found that IL-1β treatment could
upregulate COX2 expression in human NP cells, which is
consistent with other findings [34, 47]. This indicates that
COX2 is involved in the IL-1β-induced inflammatory pro-
cess. In conclusion, the expression of COX2 is positively cor-
related with the degree of IVD degeneration and confirms
the onset of inflammation in degenerated IVD. However,
this study has its limitations in that it is an observational
study to reveal the expressional changes of COX2 in differ-
ent degeneration levels of human IVD only. We have not
performed investigations of its expression in animal models
of IVDD, which will be beneficial for consolidating the asso-
ciation of COX2 with IVDD.

The incidence of IVDD is high and age-dependent. A
study showed that the prevalence rates of IVDD in the whole
spine are 71% in men and 77% in women at age 50-, while
the rates are over 90% at age 50+ both in men and women
[5]. A large population-based study in South China showed
that 40% of people under 30 suffer from lumbar disc degen-

eration, but the proportion in the 60+ group is approxi-
mately 100% [49]. In recent years, a young population
showed an increased incidence rate. Makino et al. [50]
reported that 31% of people under 20 at their first MRI
examination were found to have IVDD. A recent review
has evaluated the occurrence of IVDD ranging from kinder-
garten- to middle school-aged children and shows that LBP
is rare in preschoolers and then increases until it becomes
similar to that of adults at age 18 [51]. In our study, it is
found that the age of patients in the IVDD group is signifi-
cantly higher than that in the non-IVDD group, which is
consistent with a number of previous reports. We did not
find any association of BMI or smoking with IVDD in this
study. Since the pathogenesis of the type I and type II diabe-
tes is different, we further looked into the patient informa-
tion and found that all the 5 patients involved in this study
have type II diabetes. We did not find association of type
II diabetes with IVDD in these patients. The possible reason
is that the sample sizes of patients with diabetes or smoking
history (5 each) in this study are too small to study the asso-
ciation of diabetes or smoking with IVDD. It is the same for
our study that though COX2 expression is found to be
positively correlated with diabetes through the Spearman
analysis, the scientific significance of their association is
undermined by the small sample size of diabetes patients in
this study. Body weight has a correlation with COX2 cellular
positivity, while age has an association with COX2 expression
intensity, which indicates that COX2 expression may be con-
nected with the body weight and age of the patients.

We realize that though the sample size was relatively
large, due to the difficulty in obtaining healthy IVD samples,
only degenerative IVDs at grades 2 to 5 of the Pfirrmann
grading system were obtained. To solve this, apart from
directly comparing the discs at different degeneration
grades, we also adopted the criteria by Teraguchi et al. [5]
to have the white disc group and black disc group to allow
multiple examination of their association with IVDD. Also,
this is only an observational study on COX2 expression in
IVDD. Though we showed that IL-1β can regulate COX2
expression in the NP, much detail is lacking to reveal the
upstream and downstream signaling of COX2 in IVDD.
Further investigation on their roles in IVD inflammation
and degeneration would help to understand the pathogene-
sis of IVDD in more detail and facilitate the development
of repairing strategies.

Table 2: Spearman analysis of correlation between COX2 and baseline information.

COX2 positivity (cell+/cell number) COX2 intensity (IOD/cell number)
Spearman correlation P value Spearman correlation P value

Gender (n [%]) 0.068 0.488 0.054 0.58

Age (years) 0.177 0.069 0.313 0.001

BMI 0.14 0.15 0.123 0.206

Height (m) 0.077 0.433 0.018 0.851

Weight (kg) 0.193 0.047 0.131 0.178

Diabetes history (yes or no) 0.209 0.031 0.254 0.008

Smoking history (yes or no) -0.079 0.419 0.049 0.618
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Figure 5: Expression of COX2 after treatment with IL-1β on
human nucleus pulposus cells. The expressions of COX2 in each
group were normalized to the expression of COX2 in the control
group with no IL-1β treatment. IL-1β-1: 5 ng/ml, IL-1β-2:
10 ng/ml, and IL-1β-3: 15 ng/ml. COX2: cyclooxygenase 2; IL-1β:
interleukin 1β. ∗∗∗∗ represents P < 0:0001.
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In addition, the recent identification of endogenous pro-
genitor cells with mesenchymal stem cell-like properties [52]
in the IVD [53] brings forward a question of how IVD pro-
genitor cells are involved in or respond to IVD inflamma-
tion. Further investigation on the association of IVD
progenitor cells with IVD inflammation would be desirable.

5. Conclusion

The expression of COX2 increased with the degree of IVD
degeneration, which highlights COX2 as a biomarker for
IVD degeneration. Furthermore, IL-1β regulates COX2
expression in the NP, which indicates the possible involve-
ment of inflammation and pain signaling in the process of
IVD degeneration. Further investigation into the function
of COX2 during IVDD is required to reveal its role in IVDD.
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