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ABSTRACT

Human cancers are heterogenous by their cell com-
position and origination site. Cancer metastasis gen-
erates the conundrum of the unknown origin of mi-
grated tumor cells. Tracing tissue of origin and tu-
mor type in primary and metastasized cancer is vi-
tal for clinical significance. DNA methylation alter-
ations play a crucial role in carcinogenesis and mark
cell fate differentiation, thus can be used to trace
tumor tissue of origin. In this study, we employed
a novel tumor-type-specific hierarchical model us-
ing genome-scale DNA methylation data to develop
a multilayer perceptron model, HiTAIC, to trace tis-
sue of origin and tumor type in 27 cancers from
23 tissue sites in data from 7735 tumors with high
resolution, accuracy, and specificity. In tracing pri-
mary cancer origin, HiTAIC accuracy was 99% in
the test set and 93% in the external validation data
set. Metastatic cancers were identified with a 96%
accuracy in the external data set. HiTAIC is a user-
friendly web-based application through https://sites.
dartmouth.edu/salaslabhitaic/. In conclusion, we de-
veloped HiTAIC, a DNA methylation-based algorithm,
to trace tumor tissue of origin in primary and metas-
tasized cancers. The high accuracy and resolution of
tumor tracing using HiTAIC holds promise for clinical
assistance in identifying cancer of unknown origin.

GRAPHICAL ABSTRACT

INTRODUCTION

Cancer is the second leading cause of death in the United
States, following heart disease (1). One thousand six hun-
dred seventy deaths are projected to be caused by can-
cer per day in 2023, aggregating to an estimated 609 820
cancer deaths in the year (1). Cancer metastasis is the
primary cause of cancer mortality, representing around
90% of cancer deaths (2). Metastatic cancer hallmarks a
significantly worse prognosis with limited treatment op-
tions and a low response rate (2,3). Cancer metastasis hap-
pens when advanced tumor cells acquire the ability to de-
tach from the primary tumor tissue, migrate through the
blood and lymphatic vessels, invade a distal tissue site, and
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proliferate at the new site (2,3). Although primary tumor
site for metastatic cancer can usually be recognized by clin-
ical procedures like imaging, immunohistochemistry (IHC)
tests and pathological analyses, cancer of unknown primary
(CUP) persists for advanced cancer with high tumor cell
heterogeneity, atypical morphological patterns, and absence
of identifiable features (4). CUP is defined as metastatic can-
cer for which the primary anatomic origin cannot be iden-
tified. CUP accounts for 2–5% of all cancers and marks
significantly worse clinical outcomes (5,6). The median sur-
vival rate is less than one year for CUP patients (5). Thera-
peutic strategies today are highly dependent on the clinical,
pathological, and molecular profiles of cancer (7,8). CUP
poses the challenge of proper and timely treatment for pa-
tients, resulting in unfavorable clinical outcomes. Although
clinical tools, e.g. IHC, pathology test, are available for iden-
tifying CUP, only 25% of CUP can be diagnosed due to the
limited sensitivity and specificity of the traditional methods
(9). Additional tools to assist CUP identification could be
clinically important.

DNA methylation is an epigenetic modification that regu-
lates gene expression and is essential to establishing and pre-
serving cellular identity (10). In recent years, DNA methy-
lation has been widely utilized as a biomarker for cell typ-
ing in blood and the tumor microenvironment (11–14).
Furthermore, cell-free DNA methylation profiling is be-
ginning to show promise for early detection and classifi-
cation of cancer (15,16). As a well-established biomarker
for cell identity, DNA methylation holds promising value
for distinguishing heterogeneous tumor subtypes, especially
for CUP. Genome-wide DNA methylation arrays provide
a standardized and cost-effective approach to measuring
DNA methylation (17). The high-dimensional methylation
data in combination with artificial intelligence (AI) tech-
nologies promises new opportunities to efficiently trace tu-
mor tissue of origin that may have clinical significance, es-
pecially for metastasized cancer and CUP.

The advance of AI in biomedical science enables transla-
tional technology from sophisticated computational tasks
and high-dimensional data to potential clinical usage (18).
AI-powered medicine provides streamlined analysis and ef-
ficient processing of complex clinical and biomedical data,
especially in pathology and laboratory medicine (19). In the
past decade, by virtue of the progress made in computa-
tional capacity and new technologies for genomic sequenc-
ing, publicly available biomedical data repertoires were es-
tablished and structured to serve the scientific community
with easily accessible data sets, e.g. The Cancer Genome At-
las (TCGA), Gene Expression Omnibus (GEO), and Array-
Express. Combined with advances in AI, researchers have
utilized the enormity of publicly available data to study ge-
nomic biology. Perhaps the most popular example of these
technologies is the AI-powered protein folding prediction
research (20). At the genomic level, studies are beginning
to show the application of machine learning modeling to
integrate multiomics information for disease diagnosis and
prognostication, which is especially relevant for studying
cancer biology (21–23).

In recent years, researchers have demonstrated high per-
formance of DNA methylation-based machine learning
models tracing the tissue origin of tumor cells (24–26).

However, previous works were limited by the number and
variation of cancer types and validation data sets consid-
ered, especially for metastasized cancers and circulating
cell-free DNA from cancer patients. Furthermore, previ-
ous models were devised based on tissue site instead of tu-
mor type, generating potential problems of indistinguish-
able tumor subtypes from the same site, e.g. esophageal
squamous cell carcinoma versus esophageal adenocarci-
noma. Although there is some work to illustrate the util-
ity and replicability of the DNA methylation-based ma-
chine learning models on tracing tissue of origin for can-
cers, these works lacked tumor-type specificity and were
not made readily accessible and user-friendly to the gen-
eral scientific community. A previous study used a hierar-
chical modeling approach to address the challenge of de-
convolving cell types that are of same lineage in the tumor
microenvironment (14). Similarly, to address the limitations
of existing methods and enhance the accuracy, utility and
accessibility of tumor tracing, we developed a novel DNA
methylation-based algorithm that employs a tumor-type-
specific hierarchical model and broadens the number of
solid tumor types that are traced. Our method, called Hier-
archical Tumor Artificial Intelligence Classifier (HiTAIC),
uses multilayer perceptron models in combination with the
discriminatory CpGs specific to tumor type in each layer
in the hierarchy, to trace tumor tissue of origin and sub-
types in 27 primary and metastasized cancers. HiTAIC’s
ability to trace tumor tissue of origin with high resolution
promises valuable application to clinical CUP identifica-
tion. HiTAIC is publicly accessible on a user-friendly web
page https://sites.dartmouth.edu/salaslabhitaic/.

MATERIALS AND METHODS

Discovery dataset and quality control

The initial discovery data sets included DNA methylation
microarray data from 7932 samples across 30 cancer types
with tagged known primary from TCGA, which is a pub-
licly available cancer data repertoire. 194 leukemia samples
were removed as we target only solid tumors. Ninety-nine
ovarian tumor samples were added to the discovery data
set from GEO data set GSE133556 due to limited ovarian
tumor sample size on TCGA. 102 samples were excluded
from the discovery data set because of the ambiguity of
the tumor subtypes. The ambiguous tumors are rare tu-
mor subtypes that do not fall into any category of the Hi-
TAIC hierarchy. Supplementary Table S1 summarized the
discovery data set based on cancer site, tumor subtype, and
exclusion criteria. In total, 7735 tumor samples from 27
cancer types were included in the discovery data set (Ta-
ble 1). The discovery data set was then randomly split into
80% training and 20% testing for model training and test-
ing. In the methylation data quality control process, we
retained CpGs that measured on both Illumina Human-
Methylation450k and HumanMethylationEPIC platforms
to accommodate cross-platform applications. The SeSAMe
(version 1.8.2) pipeline from Bioconductor was used to pre-
process the data, including data normalization and qual-
ity control (27). Cross-reactive probes, SNP-related probes,
sex chromosome probes, non-CpG probes and low-quality
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probes (pOOBHA > 0.05) were masked in the analysis.
384640 CpGs were retained after this process.

Tumor classifier hierarchy and tumor type specific CpG iden-
tification

The tumor classifier hierarchy was established based on
cancer pathophysiological differences and tissue location
by tumor type. Two layers with four categories were
established for 27 cancer types in the hierarchy (Fig-
ure 1). Layer 1 contains nine major tumor types. Layer
2A contains 16 types of adenocarcinoma. Layer 2B in-
cludes three types of squamous cell carcinoma. Layer
2C includes two types of melanoma. The sample labels
were generated by examining the primary diagnosis and
cancer-type information from TCGA following the Hi-
TAIC hierarchy. Sample labels can be found on FigShare
(DOI: 10.6084/m9.figshare.22179089). To reduce the high-
dimensionality of the DNA methylation data with 384 640
CpGs, we performed epigenome-wide association study
(EWAS) to identity differentially methylated CpGs across
the cancer types in each category of the hierarchy as in-
put for machine-learning model training using the whole
discovery dataset to maximize the power. We applied the
Meffil (version 1.1.1) package in R (28), which used limma
linear regression with empirical Bayes adjustment statistics
to reduce methylation profiles to top 100 cell-type-specific
hyper- and hypo-methylated CpGs per cancer type. Thus,
four libraries of cancer-type discriminatory CpGs were de-
veloped. T-distributed stochastic neighbor embedding (T-
SNE) was used to visualize the separation of cancers by
methylation status from the Meffil selected CpGs in the li-
braries. R version 4.2.0 was used in this study.

Machine learning model development, validation and appli-
cation

All data mining and machine learning model build-
ing were operated in Jupyter Notebook Python 3 with
the scikit-learn 1.1.1 package (29). To select the best
model, four different types of multi-class machine learn-
ing models were tested on the adenocarcinoma, squa-
mous cell carcinoma, glioblastoma, and melanoma sam-
ples splitting to 80% training and 20% testing randomly.
The support vector machine (SVM) model was estab-
lished using the sklearn.svm.SVC function with gamma
set as ‘auto’. The random forest classifier (RFC) was
built using the sklearn.ensemble.RandomForestClassifier
function with the number of trees set as 500. The
Gaussian naı̈ve Bayes (GNB) model was established us-
ing the sklearn.naive bayes.GaussianNB function. Finally,
the multilayer perceptron (MLP) model was built us-
ing the sklearn.neural network.MLPClassifier function with
the max number of iterations set at 300. The per-
formances of the models were evaluated on the test
data set using the sklearn.metrics.confusion matrix and
sklearn.metrics.classification report functions, which in-
clude stratified and overall precision, recall and F1-score.
Among four machine learning models applied, the MLP
performed the best in the test data set (Supplementary Ta-
ble S2). Thus, MLP model was selected as the final model

for cancer classification. In each layer of the hierarchy, an
MLP model was trained using the selected cancer type dis-
criminatory CpGs. In total, four MLPs were developed for
the hierarchy. HiTAIC was established based on the four hi-
erarchical MLP models. Next, hyperparameter tuning was
conducted to select the best set of hyperparameters for the
MLP model in each layer of the hierarchy. The hidden layer
parameter iterated through [100], [200], [500], [1000], [1000,
500], [1000, 200], [1000, 100], [500, 200], [500, 100], [200,
100], [1000, 500, 200], [1000, 500, 100], [500, 200, 100]. The
optimizer iterated through ‘sgd’ and ‘adam’. The learning
rate iterated through 0.0001, 0.0005, 0.001, 0.002, 0.005,
0.01. To ensure that the MLP model is generalizable and the
performance of the model is consistency across the discov-
ery data set, we established 5-fold cross-validation, which
split the data into 80% training and 20% testing 5 times
for model evaluation, in each layer of the hierarchy. For
external validation, we identified 1175 samples with DNA
methylation data on 24 cancer subtypes from 21 publicly
available data sets on GEO and ArrayExpress (30–41) (Sup-
plementary Table S3). To further validate HiTAIC on sam-
ples with a low tumor purity, we applied HiTAIC to TCGA
adenocarcinoma samples with a tumor purity <30% based
on HITIMED DNA methylation tumor cell deconvolution
(14). Although developed to trace tumor origin, we hypoth-
esize that HiTAIC could also provide tissue of origin in-
formation on normal samples. As a result, we tested Hi-
TAIC on normal tissues, including breast, lung, kidney,
liver and colon, from TCGA with five samples per tissue
type. We also tested HiTAIC on the 102 rare tumors we ex-
cluded for training. To demonstrate the application of the
model in cancer metastasis, we identified 175 samples with
DNA methylation data on five cancer types with six differ-
ent metastatic locations from eight data sets on GEO and
ArrayExpress (42–45) (Supplementary Table S4). We fur-
ther identified 266 cfDNA samples with DNA methylation
data from cancer patients in five types of cancer on GEO
for application (46–50) (Supplementary Table S5). We ap-
plied the model to the external validation data sets com-
puting stratified and overall precision, recall and F1-score
to evaluate the performance. Next, we applied the model to
the application data sets and used stratified and overall pre-
cision, recall, and F1-score to evaluate model performance
in metastasized cancers and cfDNA from cancer patients.

Functional pathway and genomic context enrichment
analyses

To explore the potential biological pathways and func-
tions related to the CpGs distinguishing cancers, we used
the Genomic Regions Enrichment of Annotations Tool
(GREAT) to perform enrichment analysis for cancer type
specific CpGs in each layer in the hierarchy. GREAT uses
Gene Ontology (GO) database, which includes biological
process, cellular component, and molecular function cate-
gories. False discovery rate (FDR) was used to select and
rank the significantly enriched GO terms (FDR < 0.05).
Next, genomic context enrichment analyses were conducted
to investigate whether the cancer type specific CpGs are en-
riched in certain genomic locations. The relation of probes
to CpG islands and enhancers was identified from the
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Table 1. Baseline characteristics of the discovery data set

Cancer type Location N
Mean age
(SD) Male N (%) Data source

Adrenocortical adenocarcinoma Adrenal gland 80 47 (15.9) 31 (38.8) TCGA
Bladder adenocarcinoma Bladder 410 69 (10.6) 303 (73.9) TCGA
Breast adenocarcinoma Breast 761 59 (13.2) 9 (1.2) TCGA
Cervical adenocarcinoma Cervix 48 46 (12.3) 0 (0) TCGA
Cervical squamous cell carcinoma Cervix 259 49 (14.0) 0 (0) TCGA
Colorectal adenocarcinoma Colon and rectum 379 64 (12.9) 202 (52.3) TCGA
Glioma Brain 138 60 (12.8) 80 (58.0) TCGA
Kidney chromophobe adenocarcinoma Kidney 66 52 (14.3) 39 (59.1) TCGA
Kidney renal clear cell adenocarcinoma Kidney 319 61 (11.8) 205 (64.3) TCGA
Kidney renal papillary cell adenocarcinoma Kidney 275 62 (12.1) 202 (73.5) TCGA
Liver hepatocellular adenocarcinoma Liver 377 59 (13.5) 255 (67.6) TCGA
Lung adenocarcinoma Lung 458 65 (10.2) 214 (46.7) TCGA
Lung squamous cell carcinoma Lung 370 68 (8.7) 274 (74.1) TCGA
Pancreatic adenocarcinoma Pancreas 175 66 (11.0) 98 (56.0) TCGA
Prostate adenocarcinoma Prostate 498 61 (6.8) 498 (100.0) TCGA
Esophageal and head and neck squamous cell
carcinoma

Esophagus and head and
neck

624 61 (11.7) 467 (75.8) TCGA

Cutaneous melanoma Skin 104 65 (13.9) 62 (59.6) TCGA
Uveal melanoma Eye 80 62 (14.0) 45 (56.2) TCGA
Esophageal and stomach adenocarcinoma Esophagus and stomach 484 66 (10.9) 336 (69.4) TCGA
Thyroid adenocarcinoma Thyroid 502 47 (15.8) 133 (26.5) TCGA
Mesothelioma Pleura 87 64 (9.8) 71 (81.6) TCGA
Pheochromocytoma and Paraganglioma Adrenal gland 179 48 (15.1) 78 (43.6) TCGA
Sarcoma Soft tissues 249 61 (14.7) 113 (45.4) TCGA
Testicular germ cell tumor Testis 150 32 (9.3) 150 (100) TCGA
Ovarian adenocarcinoma Ovary 109 49 (13.5)* 0 (0) TCGA, GSE133556
Thymoma Thymus 124 59 (13.0) 64 (51.6) TCGA
Endometrial adenocarcinoma Uterus 430 65 (11.2) 0 (0) TCGA
Total 7735

Horvath methylation age inferred using the wateRmelon package in R for GSE133556.

Figure 1. HiTAIC tumor classifier hierarchy with two layers for twenty-seven cancer types (created with BioRender.com).

HumanMethylation450K annotation file. To define the ge-
nomic regions as promoters, introns, exons, or intergenic
for each probe, the annotateWithGeneParts function from
the R-package genomation and the UCSC hg19 refGene file
were used to map the regions to all CpG loci on the Illu-
mina HumanMethylation450K array. If a probe mapped to
more than a single genomic region, the probe was assigned
preferentially with the order: promoters, exons, introns, and
intergenic. Fisher’s exact tests were conducted to calculate
odds ratios (ORs), P-values and 95% confidence intervals
for genomic context enrichment analysis. For both func-

tional pathway and genomic context enrichment analyses,
cancer discerning CpGs in each layer were tested over the
background CpGs used (n = 384 640) for EWAS.

HiTAIC web-based application development

We used Python Dash and Heroku to develop a user-
friendly web-based HiTAIC tool. Python Dash is a frame-
work developed by Plotly, which is based on Python and
used for building and deploying data apps with customized
interface. Heroku, which is a cloud platform, was next
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Figure 2. Flowchart of HiTAIC model building, validation and application.

employed to host and deploy the HITAIC web application.
The HiTAIC web application contains two major parts. The
first part is user guide. Users should follow the instructions
to finish the prediction process. An exemplary input data
csv file was available for demonstration. The second part in-
cludes data upload, model running, and output download.
After constructing the input data as instructed, users can
either click the data upload box to choose the file or drag
the file to the box from the local end to upload the input
data. Then the algorithm will automatically compute the
output and show up on the right side of the panel. Users can
also download the output result as a csv file by clicking the
export box.

RESULTS

The pipeline of this study is shown in Figure 2. In to-
tal, four libraries of cancer type discriminatory CpGs were
developed for the hierarchy. In Layer 1, 1641 CpGs were
identified to discern nine major cancer types. In Layer 2A,
3225 CpGs were identified to distinguish 18 adenocarci-
noma cancer types. In Layer 2B, 767 CpGs were identified
to discriminate four squamous cell carcinoma cancer types.
In Layer 2C, 200 CpGs were identified to discern two types
of melanoma. The heatmaps in Figure 3 demonstrated dis-
criminative methylation status for the cancer type specific
CpGs in the libraries. The libraries are relatively unique to
each other as 0 overlapped CpGs were identified across the
four libraries, one CpG appeared in three out of four li-
braries, and 80 CpGs in total overlapped in two out of four
libraries (Supplementary Figure S1)

T-SNE clustering showed separation of clusters by can-
cer type using the cancer type discriminatory CpGs. How-

ever, certain cancer types did not show clear separation.
Esophageal carcinoma was split into clusters with head and
neck squamous cell carcinoma and stomach adenocarci-
noma. Colon and rectum adenocarcinoma samples were
indistinguishable in T-SNE (Supplementary Figure S2A).
The two clusters of esophageal carcinoma can be sepa-
rated by tumor subtypes, i.e. squamous cell carcinoma ver-
sus adenocarcinoma. Esophageal squamous cell carcinoma
was clustered with head and neck squamous cell carcinoma
(Supplementary Figure S2B) while esophageal adenocarci-
noma was clustered with stomach adenocarcinoma (Sup-
plementary Figure S2C). To avoid ambiguity and ensure
the sensitivity of the model, we collapsed colon adenocarci-
noma and rectal adenocarcinoma into colorectal adenocar-
cinoma in the adenocarcinoma layer, esophageal and head
and neck squamous cell carcinoma into one group in the
squamous cell carcinoma layer, and esophageal and stom-
ach adenocarcinoma into one group in the adenocarcinoma
layer in the hierarchy for MLP model training. Indicating
differential methylation status by cancer types and feasibil-
ity for machine learning model training the T-SNE cluster-
ing showed clear separation of cancer types by using the
cancer type discriminatory CpGs following the hierarchical
cancer classification regime with minimal outliers. (Supple-
mentary Figure S3).

Next, HiTAIC was trained using the MLP models and
cancer type discriminatory CpGs using the training data
set following the hierarchical structure. HiTAIC integrated
four MLP models for tracing tumor tissue of origin. With
the 156 sets of hyperparameters examined, the accuracy
ranged from 96–98%, 82–98%, 87–99% and 100% for Layer
1 (Supplementary Table S6), Layer 2A (Supplementary Ta-
ble S7), Layer 2B (Supplementary Table S8) and Layer 2C
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Figure 3. DNA methylation states of cancer discriminating CpGs for Panel A. Layer 1 major cancer types; Panel B. Layer 2A adenocarcinoma subtypes;
Panel C. Layer 2B squamous cell carcinoma subtypes; Panel D. Layer 2C melanoma subtypes.

(Supplementary Table S9) respectively. As a result, we se-
lected 1 hidden layer with 100 nodes, ‘adam’ optimizer,
and 0.001 learning rate as the hyperparameters for the fi-
nal model. The architecture of the HiTAIC model is shown
in Supplementary Table S10. Specifically in the testing data
set, in Layer 1, HiTAIC performed with 98% accuracy
and 98% weighted average F1-score (Table 2). In Layer
2A with adenocarcinoma, HiTAIC performed with 98%
accuracy and 98% weighted average F1-score (Table 3).
In Layer 2B with squamous cell carcinoma, HiTAIC per-
formed with 99% accuracy and 99% weighted average F1-

score (Table 4). In Layer 2C with melanoma, HiTAIC per-
formed with 100% accuracy and 100% weighted average F1-
score (Table 5). For 5-fold cross-validation, the model per-
formed consistently well in every layer of the hierarchy. In
Layer 1, the accuracy and weighted average F1-score are
all 98% (Supplementary Table S11). In Layer 2A, the ac-
curacy and weighted average F1-score ranged from 98% to
99% (Supplementary Table S12). In Layer 2B, the accu-
racy and weighted average F1-score ranged from 96% to
99% (Supplementary Table S13). In Layer 2C, the accu-
racy and weighted average F1-score ranged from 97% to
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Table 2. HiTAIC performance on the test data set for Layer 1 cancer
types

Layer 1 Precision Recall F1-score
Sample

size

Adenocarcinoma 0.99 0.99 0.99 1075
Glioma 1 1 1 27
Melanoma 0.97 0.97 0.97 37
Mesothelioma 1 0.94 0.97 17
Pheochromocytoma and
paraganglioma

1 1 1 36

Sarcoma 0.92 0.96 0.94 50
Squamous cell carcinoma 0.97 0.94 0.96 251
Testicular germ cell tumor 1 1 1 30
Thymoma 1 1 1 25
Accuracy 0.98 1548
Macro average 0.98 0.98 0.98 1548
Weighted average 0.98 0.98 0.98 1548

Table 3. HiTAIC performance on the test data set for Layer 2A (adeno-
carcinoma) cancer subtypes

Layer 2A (adenocarcinoma) Precision Recall F1-score
Sample

size

Adrenocortical 1 1 1 16
Bladder 0.96 1 0.98 82
Breast 0.99 1 1 152
Cervical 0.88 0.7 0.78 10
Colorectal 0.95 1 0.97 76
Endometrial 0.99 0.97 0.98 86
Kidney chromophobe 0.93 1 0.96 13
Kidney clear cell 0.98 0.92 0.95 64
Kidney papillary cell 0.96 0.95 0.95 55
Liver hepatocellular 1 1 1 75
Esophageal and stomach 1 1 1 97
Lung 0.99 0.98 0.98 92
Ovarian 0.96 1 0.98 22
Pancreatic 0.94 0.94 0.94 35
Prostate 1 1 1 100
Thyroid 1 1 1 100
Accuracy 0.98 1075
Macro average 0.97 0.97 0.97 1075
Weighted average 0.98 0.98 0.98 1075

100% (Supplementary Table S14). HiTIMED identified 101
TCGA adenocarcinoma samples with a tumor purity be-
low 30% (14) (Supplementary Table S15). HiTAIC achieved
97% accuracy and 98% weighted average F1-score on those
samples (Supplementary Table S16). When applied to nor-
mal tissues, HiTAIC classified them into their correspond-
ing tumor types, i.e. normal breast as breast adenocarci-
noma, normal lung as lung adenocarcinoma, normal kid-
ney as kidney adenocarcinoma, normal liver as liver adeno-
carcinoma and normal colon as colorectal adenocarcinoma
(Supplementary Table S17). When applied to the 102 rare
tumors that excluded for model training, HiTAIC achieved
81% accuracy to trace tissue of origin (Supplementary Ta-
ble S18). Although the accuracy is lower relative to its per-
formance on more common tumor subtypes, HiTAIC pro-
vides useful information that might be clinically useful for
the rare tumors. For example, two bladder squamous cell
carcinoma samples were accurately classified as squamous
cell carcinoma in the first layer of HiTAIC classification de-
spite that HiTAIC does not have a bladder squamous cell
carcinoma category.

Table 4. HiTAIC performance on the test data set for Layer 2B (squa-
mous cell carcinoma) cancer subtypes

Layer 2B (squamous cell
carcinoma) Precision Recall F1-score

Sample
size

Cervical 1 0.98 0.99 52
Esophageal and head and
neck

0.99 0.99 0.99 125

Lung 0.97 0.99 0.98 74
Accuracy 0.99 251
Macro average 0.99 0.99 0.99 251
Weighted average 0.99 0.99 0.99 251

Table 5. HiTAIC performance on the test data set for Layer 2C
(melanoma) cancer subtypes

Layer 2C (melanoma) Precision Recall F1-score
Sample

size

Eye uveal 1 1 1 16
Skin cutaneous 1 1 1 21
Accuracy 1 37
Macro average 1 1 1 37
Weighted average 1 1 1 37

For external validation, we observed 93% accuracy and
93% weighted average F1-score across 25 cancer types (Ta-
ble 6). Specifically, all cancer types showed a F1-score
over 80% except for endometrial adenocarcinoma (F1-score
51%) and ovarian adenocarcinoma (F1-score 77%). Among
65 ovarian adenocarcinomas in the validation data set, 16
were misclassified. All of them were misclassified as en-
dometrial adenocarcinoma, resulting in a compromised F1-
score for endometrial adenocarcinoma and ovarian ade-
nocarcinoma. Although the F1-scores were relatively low
in endometrial adenocarcinoma and ovarian adenocarci-
noma, the misclassification were contained within the gy-
necologic cancer types, which still provides valuable infor-
mation for tracing tumor tissue of origin.

In metastasized cancer, HiTAIC demonstrated 96% accu-
racy and 98% weighted average F1-score across five cancer
types with six different metastatic locations (colon to liver,
colon to lung, lung to brain, prostate to bone, prostate to
liver, prostate to lymph node, breast to lymph node, testis
to lung, testis to lymph node) (Table 7). In cfDNA from
cancer patients, the model has low performance with 15%
accuracy and a weighted F1-score of 24% (Table 8). Taken
together, HiTAIC traces tumor tissue of origin and cancer
subtype with a high accuracy in primary and metastasized
cancer but not in cfDNA from cancer patients.

To investigate the biological pathways enriched for the
cancer-discerning CpGs, we conducted pathway enrich-
ment analysis using GREAT. We identified significantly en-
riched GO biological processes, cellular components, and
molecular functions for each layer in the hierarchy. In Layer
1, the top 10 enriched biological pathways involve substan-
tially cell differentiation and morphogenesis (Figure 4A). In
Layer 2A, which is designed for adenocarcinoma classifica-
tion, the top 10 enriched biological pathways include ma-
jorly inositol phosphate metabolism (Figure 4B). In Layer
2B, which is designed for squamous cell carcinoma classi-
fication, the top 10 enriched biological pathways contain
mostly lung cell differentiation and development (Figure
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Table 6. HiTAIC performance on the external validation data set

Cancer type Precision Recall F1-score
Sample

size

Adrenocortical
adenocarcinoma

1 0.72 0.84 18

Bladder adenocarcinoma 0.78 1 0.88 25
Breast adenocarcinoma 0.96 1 0.98 188
Cervical adenocarcinoma 1 1 1 3
Cervical squamous cell
carcinoma

1 0.67 0.8 3

Colorectal adenocarcinoma 1 0.89 0.94 54
Endometrial
adenocarcinoma

0.35 1 0.51 9

Eye uveal melanoma 1 0.78 0.88 23
Glioma 0.97 1 0.99 70
Esophageal and head and
neck squamous cell
carcinoma

0.73 1 0.84 8

Kidney clear cell carcinoma 1 1 1 17
Liver hepatocellular
carcinoma

0.99 1 0.99 66

Esophageal and stomach
adenocarcinoma

0.92 1 0.96 12

Lung adenocarcinoma 0.96 0.98 0.97 47
Lung squamous cell
carcinoma

0.98 0.86 0.92 57

Mesothelioma 1 0.85 0.92 79
Ovarian adenocarcinoma 0.79 0.75 0.77 65
Pancreatic adenocarcinoma 0.8 1 0.89 12
Pheochromocytoma and
Paraganglioma

0.85 1 0.92 22

Prostate adenocarcinoma 0.89 1 0.94 25
Sarcoma 0.99 0.91 0.94 158
Skin cutaneous melanoma 0.9 1 0.95 46
Testicular germ cell tumor 0.94 0.93 0.93 130
Thymoma 1 0.82 0.9 11
Thyroid adenocarcinoma 1 1 1 27
Accuracy 0.93 1175
Macro average 0.91 0.93 0.91 1175
weighted average 0.95 0.93 0.93 1175

Table 7. HiTAIC performance on metastasized tumors

Original cancer
type

Metastasized
location Precision Recall F1-score

Sample
size

Breast Lymph node 1 0.98 0.99 44
Colon Liver, Lung 1 0.93 0.96 29
Lung Brain 0.94 0.85 0.89 20
Prostate Bone, Liver, Lymph

node
1 0.99 0.99 76

Testicular germ
cell tumor

Lung, Lymph node 1 1 1 6

Accuracy 0.96 175
Macro average 0.99 0.95 0.97 175
Weighted average 0.99 0.96 0.98 175

4C). In Layer 2C, which is designed for melanoma clas-
sification, the top 10 enriched biological pathways involve
skeletal system development, regionalization process and
embryonic morphogenesis (Figure 4D). Multiple genomic
context enrichment analyses were conducted to investigate
whether the cancer specific CpGs are enriched in certain
genomic locations. The Layer 1 and Layer 2A CpGs were
significantly enriched for open sea, exon, intron and en-
hancer regions (Supplementary Figure S4A, Supplemen-
tary Figure S4B). The Layer 2B CpGs were significantly
over-represented in CpG island and promoter regions (Sup-
plementary Figure S4C). The Layer 2C CpGs were signifi-

Table 8. HiTAIC performance on cell-free DNA from cancer patients

Cancer type Precision Recall F1-score
Sample

size

Breast cancer 0.33 1 0.5 3
Colorectal cancer 1 0.75 0.86 4
Liver cancer 1 0.09 0.17 22
Lung cancer 0 0 0 4
Prostate cancer 1 0.13 0.23 233
Accuracy 0.15 266
Macro average 0.67 0.39 0.36 266
Weighted average 0.98 0.15 0.24 266

cantly enriched for open sea, intron, and enhancer regions
(Supplementary Figure S4D).

DISCUSSION

DNA methylation is well studied to show significant al-
teration in carcinogenesis, particularly hypermethylation
in tumor suppressor genes and hypomethylation in onco-
genes (51). Although methylation alteration is a generic
phenomenon in cancer, the across-cancer-type heterogene-
ity of genetic and epigenetic landscape enables distinguish-
able methylation patterns by tumor type (52). Further-
more, DNA methylation retains tissue and cell identities
as it marks cell fate determination, which we hypothe-
sized would enable identification of tumor tissue of origin
and tumor type (10). We developed and validated DNA
methylation-based machine learning model, HiTAIC, to
trace tissue of origin and tumor type in 27 primary tumor
types. We also demonstrated its high performance in metas-
tasized cancers.

Previous research has demonstrated the application of
machine learning models on genetic and epigenetic data to
develop clinical biomarkers for disease diagnosis and prog-
nosis, including cancer (21,53). DNA methylation-based
machine learning models have demonstrated the capability
to infer the location of unknown primary site from the site
of metastasis (24–26). However, previous models heavily fa-
vored inference of tissue site instead of tumor type, generat-
ing potential problems of indistinguishable tumor subtypes
from the same site. Tumor cells originating from the same
organ could exhibit widely varying histology and pathogen-
esis. For example, we observed that esophageal carcinoma
can be dichotomized into two clusters by DNA methyla-
tion profile, one with head and neck squamous cell carci-
noma and the other with stomach adenocarcinoma. Thus, a
single-layer classification of ‘esophagus cancer’ would con-
flate head and neck squamous cell carcinoma and stom-
ach adenocarcinoma. To address the issue, we used a multi-
layer hierarchical approach with differential DNA patterns
by tumor type to achieve high-resolution tumor tissue of
origin and subtype tracing. Our previous publication using
DNA methylation data with hierarchical modeling achieved
high-resolution deconvolution of the tumor microenviron-
ment (14). In HiTAIC, adenocarcinoma and squamous cell
carcinoma were initially distinguished, eliminating the po-
tential issue of confusing esophageal adenocarcinoma with
esophageal squamous cell carcinoma. Furthermore, previ-
ous work has limited cancer types and validation data sets,
especially for metastasized cancers and cell-free DNA from



NAR Cancer, 2023, Vol. 5, No. 2 9

Figure 4. GREAT Gene Ontology pathways enriched for CpGs discerning: Panel A: major cancer types; Panel B: adenocarcinoma subtypes; Panel C:
squamous cell carcinoma subtypes; Panel D: melanoma subtypes.

cancer patients. Noticeably, previous work did not provide
a user-friendly and accessible tool for the generic scientific
community. HiTAIC, on the other hand, included 27 cancer
types from 23 tissue sites in the discovery data sets, validated
using external data sets, and demonstrated utility in exter-
nal metastasized cancers. For easy accessibility of the algo-
rithm and accommodate users without coding experience,
a web-based app is developed and now available through
https://sites.dartmouth.edu/salaslabhitaic/. Our effort em-
phasizes the computational biology research translatability
from machine to the scientific and clinical community.

Importantly, HiTAIC traces tissue of origin and tumor
type in metastasized cancers with a high accuracy, pro-
viding insight into the identification of CUP. Previous re-
search developed a methylation-based assay for tracing
CUP, EPICUP, showed significantly better prognosis for
CUP cases that were treated with site-specific therapy based
on the assay compared to the CUP cases treated with em-
piric therapy, emphasizing the clinical significance of CUP
diagnosis and directing the future of CUP diagnosis to-
wards precision medicine (9). Although not yet clinically
deployable as EPICUP, the hierarchical modeling approach
employed by HiTAIC maximizes the power of detecting
most differentially methylated CpGs in granular tumor sub-
types and is a more research friendly bioinformatic tool that
can serve the research community and facilitate research
which involves inferring the primary tumor site of unknown
origin.

The predictability of the HiTAIC model is based on four
libraries of CpGs discerning different layers of cancer sub-
types. Interestingly, the four CpG libraries are almost com-
pletely distinct from each other with very low overlap. The
biological pathways and genomic context enriched across

the libraries are also diverse, indicating differential path-
ways involved in carcinogenesis and morphogenesis for dif-
ferent organ sites. In Layer 1, top enriched pathways are as-
sociated with cell differentiation, morphogenesis, and func-
tion. We posit that the distinguishable epigenetic regulation
in cell differentiation resulted from the substantially distinc-
tive cancer types and tumor sites in Layer 1. In Layer 2A,
which is designed for adenocarcinoma classification, inosi-
tol phosphate metabolism related pathways were highly en-
riched. Inositol phosphate metabolic pathways are crucial
for regulating cell migration, proliferation, apoptosis, and
phosphatidylinositol-3-kinase (PI3K)/Akt signaling under
normal physiological conditions. Studies have shown that
dysregulation in inositol phosphate metabolism plays a key
role in carcinogenesis. Tan et al. demonstrated gene vari-
ants in the inositol phosphate metabolism pathways are as-
sociated with risk of four types of cancer, including lung,
esophageal, stomach, and kidney(54). Two studies showed
the association between inositol phosphate metabolism and
cancer aggressiveness in both human and mouse models
(55,56). The biological implications of distinguishability for
adenocarcinoma by differential epigenetic patterns regulat-
ing inositol phosphate metabolic pathways is intriguing and
promises further investigation. Top pathways enriched for
squamous cell carcinoma classification in Layer 2B involve
lung cell differentiation, emphasizing tumor originating site
specification to discern squamous cell carcinoma. To distin-
guish between cutaneous and uveal melanoma, top path-
ways were enriched for embryonic development. Differen-
tial biological pathways identified for distinguishing differ-
ent cancer subtypes promote further investigation of differ-
ential epigenetic regulation in carcinogenesis and morpho-
genesis by tumor subtype and tumor originating site.

https://sites.dartmouth.edu/salaslabhitaic/
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While our study developed a solid pipeline and user-
friendly algorithm, HiTAIC, for cancer tracing, we recog-
nize some limitations. First, esophageal carcinoma cannot
be discerned by its own category. The esophageal squa-
mous cell carcinoma was collapsed into head and neck
squamous cell carcinoma whereas the esophageal adeno-
carcinoma was collapsed into stomach adenocarcinoma.
Previous studies revealed disparities in the classification of
esophageal carcinoma with stomach adenocarcinoma and
head and neck squamous cell carcinoma (57,58). Although
esophageal cancer cannot be distinguished from stomach
or head and neck cancer, HiTAIC still provides a gen-
eral location of the tumor of interest, which is clinically
important. While previous tools treated esophageal carci-
noma as an individual cancer type, our study revealed di-
chotomized methylation patterns of esophageal carcinoma
subtypes. HiTAIC addressed the issue by employing a hi-
erarchical modeling approach. We believe this is critical to
enhance the accuracy of the model to trace esophageal car-
cinoma subtypes. Second, for external validation, kidney
papillary and chromophobe cancers were not included as
no other resources were available for those tumors other
than TCGA. However, in the test data set, HiTAIC demon-
strated high accuracy in predicting those two kidney tumor
subtypes. Third, due to the limited data source, the perfor-
mance of HiTAIC in metastasized tumor and cell free DNA
were evaluated only in five cancer types respectively. Future
analyses are necessary on more metastasized cancer type
and cell free DNA. Finally, HiTAIC does not work well in
tracing cancer in cfDNA based on the data analyzed. As
HiTAIC was developed based on differential DNA methy-
lome in solid tumor tissues, it is not optimized to work in
a noisy cfDNA environment mixed with blood DNA sig-
nals and low abundance of tumor DNA. Therefore, we em-
phasize the importance of developing environment-specific
tools, e.g. in body fluids like peripheral blood serum, men-
strual blood, human milk, cerebrospinal fluid, for tracing
tumor DNA to correct for the background noise.

HiTAIC provides a comprehensive tracing of major tu-
mor sites and types. Future studies should focus on the de-
velopment of tumor-specific subtype libraries to expand the
classification hierarchy as molecular and anatomic subtypes
of certain tumors have been showed to be differentially reg-
ulated by DNA methylation (59,60). Although HiTAIC can
provide information on tissue of origin, we do not encour-
age the use of HiTAIC to non-tumor tissues as that deviates
the purpose of HiTAIC. Future research on the develop-
ment of DNA methylation-based normal tissue classifier is
necessary.

CONCLUSION

We developed HiTAIC, a DNA methylation-based multi-
layer perceptron classifier, to trace tissue of origin and tu-
mor type in primary and metastasized tumors. The capa-
bility of the model tracing the tumor origin and subtype
with high resolution and accuracy promises potential clin-
ical use in identifying cancer of unknown origin and thus
strategizing treatment plan to achieve precision medicine.
HiTAIC can be easily deployed in a web-based application,

which transformed the computational sophistication to a
more user-friendly tool for public.
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