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Abstract

With recent developments of data technology in biomedicine, factor data such as diagnosis

codes and genomic features, which can have tens to hundreds of discrete and unorderable

categorical values, have emerged. While considered as a fundamental problem in statistical

analyses, the estimation of probability distribution for such factor variables has not studied

much because the previous studies have mainly focused on continuous variables and dis-

crete factor variables with a few categories such as sex and race. In this work, we propose a

nonparametric Bayesian procedure to estimate the probability distribution of factors with

many categories. The proposed method was demonstrated through simulation studies

under various conditions and showed significant improvements on the estimation errors

from the previous conventional methods. In addition, the method was applied to the analysis

of diagnosis data of intensive care unit patients, and generated interesting medical hypothe-

ses. The overall results indicate that the proposed method will be useful in the analysis of

biomedical factor data.

Introduction

Factor variables are a common data type in statistical analysis of biomedical data. Distinct

from continuous variables that can have infinite numbers of orderable values, a factor variable

is characterized by a finite set of values or categories that are not orderable. Factor variables

that have been considered in traditional biomedical data analyses, such as sex, race, and treat-

ment options, usually have only a few categories. The number of categorical values is often

much smaller than the size of observed samples.

Recently, with technology developments of data generation and accumulation, factor vari-

ables that can have many categorical values have emerged in the analyses of various biomedical

data. For example, a diagnosis for a patient in electronic health records is represented as a fac-

tor variable having one of the thousands of diagnosis codes. The International Classification of

Diseases version 10 (ICD-10), which is widely used for the standard diagnostic tool for health

management, provides 155,000 different diagnosis codes [1]. Electronic health records of

many clinical sites also include medical operations and prescribed drugs that can be similarly

described by factor variables with thousands of categorical values. Molecular and genomic

data are another example. A protein is a sequence of 20 distinct amino acids. The analysis of
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k-tuples of protein sequence motifs [2, 3] needs to be performed over 20k distinct combina-

tions of amino acids. In the high-throughput mRNA sequencing (RNA-Seq) data analysis [4,

5], each piece of RNA molecules is assigned to one of genomic regions. For human samples

with about 20,000 genes, mRNA-Seq data can be represented as factor variables with 20,000

distinct values. In the natural language processing of biomedical literatures [6], a word is mod-

eled as a factor variable with million choices.

Estimating the joint probability distribution of variables from observed random samples is

a fundamental task in data analysis. For traditional factor variables with a few categories, the

probability distribution can be efficiently estimated by maximum likelihood estimation

(MLE), which can be calculated by counting samples falling into each combination of catego-

ries, because the sample size is assumed to be large enough compared to the number of possi-

ble combinations in most cases. However, this task is very challenging for the newly emerging

factor variables with many categorical values because of the relative sparseness of observed

samples. For example, the combination of two medical diagnosis encoded by ICD-10 has 24

billion choices, which are more than three times of the whole human population.

For the estimation of the probability distribution from observed samples, kernel estimation

techniques have been extensively studied [7–13]. These techniques commonly employ kernel

functions that smooth probability densities by borrowing supports from the adjacent data

points to overcome the sparseness of samples. Since observed values should be orderable to

measure the adjacency between data points, kernel techniques are usually applicable to only

continuous variables [7–9] and ordinal factor variables [10, 11]. While some previous works

have proposed kernel functions that borrow supports uniformly from the whole sample space

without considering the adjacency between samples [10–13], in general, it is very difficult to

use kernel functions for factor variables with non-orderable categorical values.

Bayesian estimations are an alternative approach for the probability estimation. For exam-

ple, the probability distribution of a factor variable is often assumed to have a Dirichlet prior,

and estimated as a posterior distribution with pseudo counts [14]. Some previous studies used

hierarchical Dirichlet models to address such a problem [15, 16]. However, these studies are

limited with only a few categories for each variable, and they also have the limitation for han-

dling the marginal sparsity of sample space. On the other hand, Wong and Ma proposed a

nonparametric Bayesian estimation for multivariate data using an optional Pólya tree (OPT)

[17]. By adopting optional partitioning and stopping to a Pólya tree, which was originally pro-

posed by Ferguson [18] and investigated further by Lavine [19, 20], an OPT constructs a prior

distribution that can be applied to various joint probability distributions. The posterior distri-

bution also forms an OPT that recursively partitions the sample space into subregions where

samples are considered to be distributed uniformly. OPTs also have been utilized for the distri-

bution comparison between samples observed from two different conditions [21] and the

probability density estimation of multivariate censored data [22]. Additionally, its computa-

tional aspects have been investigated to improve the high demands of computing powers [23].

Since approaches using OPTs consider samples in a subregion together to estimate the proba-

bility density or mass, they can partially compensate the sparseness of samples and provide

robust estimations [17, 21–23].

While the Bayesian estimation with OPT priors provides a good theoretical framework for

the joint probability distributions of both continuous and discrete variables, its calculation is

not straightforward for factor variables with many categories. To partition the sample space

into subregions with uniform distributions, the OPT calculation investigates the possible parti-

tioning options, and assigns a partitioning probability to each option according to the likeli-

hood that the partitioned subregions have uniform distributions. When a region is partitioned

into two subregions, the number of possible partitions exponentially increases with the
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number of categorical values of factor variables. It significantly limits the OPT calculation for

factor variables with many categorical values.

In this paper, we propose a Bayesian estimation with OPT priors for the joint probability

distribution of multivariate factor variables with many categories, for which kernel approaches

cannot be directly applied. The proposed method shrinks the searching space for partitioning

options by suggesting suboptimal options based on local marginal populations, and makes the

OPT calculation feasible for factors with many categories. In addition, the method enables to

estimate probabilities of each combination of categorical values by extending the original OPT

to combination cells. The improvement of the method was demonstrated through intensive

simulations. Case studies with diagnosis data in intensive care units and genomic data also

showed the usefulness of the method in terms of estimating the probability distribution as well

as discovering interesting medical hypotheses.

Methods

Construction of an OPT with factor variables with many categories

An OPT is the distribution of probability distributions over a multidimensional sample space,

defined by a set of probabilities to determine the partitioning of sample spaces and the resulted

subregions [17]. To construct an OPT with given data, first, the sample space is recursively

partitioned into subregions until the partitioning is meaningless. Then, from the terminal

regions by aggregating likelihoods for the sample distributions of subregions, we calculate the

probabilities to stop partitioning and for the way of partitioning if partitioned. If samples in a

given region are likely to be uniformly distributed, the region has a high probability to stop

partitioning. Similarly, among the partitioning choices of a given region, higher probabilities

are assigned to ones that make samples in the partitioned subregions more uniformly distrib-

uted. In this way, an OPT superposes many trees with different probabilities. A randomly

picked tree from an OPT consists of leaf regions that likely have uniform distributions.

For the formal description, consider a sample space of p factor variables where Xi 2

xi
1
; xi

2
; � � � ; xi

ni

n o
for i = 1,2,. . .,p, and a region A in the whole sample space. xi

j is a categori-

cal value that Xi can have. When factor variable Xi 2 xi
Aið1Þ

; xi
Aið2Þ

; � � � ; xi
Ai mið Þ

n o
in a region

A, A is defined over
Qp

i ¼ 1
mi combinations of categorical values. Here, we denote

A ¼
Qp

i ¼ 1
xi

Aið1Þ
; xi

Aið2Þ
; � � � ; xi

Ai mið Þ

n o
. To construct an OPT, we apply binary partitioning

that divides a region into two subregions, which has been commonly used in previous

OPT approaches [17, 21–23]. Assuming that the division occurs for Xi, region A can be

partitioned in 2mi � 1 different ways. In total,
Pp

i ¼ 1
2mi � 1 partitioning options need be con-

sidered. When mi, the number of categorical values that Xi can have in A, is large, it is not

possible to investigate the all potential partitions.

To construct an OPT for factors with many categories, the proposed method shrinks the set

of partitioning options using marginal populations. If the partitioned subregions have uniform

distributions, the marginal distributions of each subregion should be also uniform. While the

inverse statement is not always guaranteed, maximizing the marginal uniformity provides a

better chance to find subregions with uniform distributions. The detail procedures of the pro-

posed method are as follows.

The estimation of probability distribution for factor variables
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(1) Finding suboptimal partitions

Let N(A) be the number of observed samples in region A ¼
Qp

i ¼ 1
xi

Aið1Þ
; xi

Aið2Þ
; � � � ; xi

Ai mið Þ

n o
.

To find the suboptimal partition for Xi 2 xi
Aið1Þ

; xi
Aið2Þ

; � � � ; xi
Ai mið Þ

n o
, the marginal populations

of Xi within A is calculated. Let MA xi
AiðjÞ

� �
be the marginal population of xi

AiðjÞ
of Xi, which is

given as MA xi
AiðjÞ

� �
¼ N xi

AiðjÞ
�
Q

k6¼i xk
Akð1Þ

; xk
Akð2Þ

; � � � ; xk
Ak mkð Þ

n o� �
. Without loss of generality,

we can sort the categorical values so that MA xi
fAið1Þg

� �
� MA xi

fAið2Þg

� �
� � � � � MA xi

fAi mið Þg

� �
,

according to the marginal populations. Here, xi
fAi jð Þg denotes the j-th ranked categorical value of

Xi in A. The proposed method partitions A over the sorted categorical values at s-th ranked cate-

gorical value, into A1
i ðsÞ ¼ xi

fAi 1ð Þg
; . . . ; xi

fAi sð Þg

n o
�
Q

k6¼i xk
Akð1Þ

; xk
Akð2Þ

; � � � ; xk
Ak mkð Þ

n o
and

A2
i ðsÞ ¼ xi

fAi sþ1ð Þg
; . . . ; xi

fAi mið Þg

n o
�
Q

k6¼i xk
Akð1Þ

; xk
Akð2Þ

; � � � ; xk
Ak mkð Þ

n o
. In order to measure the

uniformity of marginal population in this case, we introduce a metric TXiðsÞ calculated by

TXi sð Þ ¼
X

j�s
MA xi

AiðjÞ

� �
�

P
j�sMA xi

AiðjÞ

� �

s

0

@

1

A

2

þ
X

j>s
MA xi

AiðjÞ

� �
�

P
j>sMA xi

AiðjÞ

� �

AðmiÞ � s

0

@

1

A

2

The metric calculates the sum of marginal population variations within each subregion.

The method finds the suboptimal splitting point s�i that minimizes TXiðsÞ. Consequently, A is

partitioned into A1
i ðs
�
i Þ and A2

i ðs
�
i Þ if the division occurs for Xi. With such a suboptimal parti-

tioning for each factor variable, the proposed OPT calculation only needs to investigate p parti-

tioning options instead of
Pp

i ¼ 1
2mi� 1 options.

(2) Calculating subregion likelihoods

In a similar way described in previous OPT works [17, 21–23], the likelihood of sample distri-

bution in a region is calculated recursively with those of the subregions. The likelihood of

region A, F(A), is given by

F Að Þ ¼ rF0 Að Þ þ
1 � r

p

Xp

i ¼ 1

B
�
N A1

i s�i
� �� �

þ a;N A2
i s�i
� �� �

þ a
�

B a; að Þ
F A1

i s�i
� �� �

F A2

i s�i
� �� �

where A1
i s�i
� �

and A2
i s�i
� �

are the suboptimal subregions found in the previous step when parti-

tioned for Xi. The first term F0(A) is the likelihood that samples are uniformly distributed in A
when A is not partitioned further. It is calculated as F0 Að Þ ¼ m Að Þ� N Að Þ

where μ(A) is the

Lebesgue measure of region A. The second term is the likelihood when A is partitioned, which

is calculated with weighted likelihoods from binary partitioning for each factor variable. B(�) is

a beta function. If two subregions have very different numbers of samples, it is weighted more.

ρ is the weight between cases with and without further partitioning and α is a pseudo count.

They are parameters of the OPT prior distribution. While the OPT prior described by Wong

and Ma [17] has the larger set of parameters to cover general partitioning strategies and wei-

ghts among the ways of partitioning, the employed prior distribution in this work has a simpli-

fied parameter set to make the OPT calculation feasible.

The whole sample space is partitioned into the suboptimal subregions until the partitioning

is meaningless, which is that further partitioning is impossible or subregions have no sample.

The estimation of probability distribution for factor variables
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In such a terminal region, the likelihood is just given as F Aterminalð Þ ¼ F0 Aterminalð Þ. From the

terminal regions, the likelihoods of upper-level subregions are subsequently calculated.

(3) Constructing a posterior OPT distribution

As described in Wong and Ma [17], the posterior distribution is constructed using the likelihoods

calculated in the previous step. Briefly, the posterior distribution given data D is defined as an

OPT with stopping probability to determine whether a given region will be further partitioned or

not, selection probabilities for the way of partitioning, and allocated probabilities to each parti-

tioned region. The stopping probability of region A is obtained by r AjDð Þ ¼ rF0 Að Þ=F Að Þ.
The selection probability of partitioning for Xi among the investigated p partitioning choices is

given proportionally to the likelihood, that is,

Pr Splitting A for XijD½ � /
B N A1

i s�i
� �� �

þ a;N A2
i s�i
� �� �

þ a
� �

B a; að Þ
F A1

i s�i
� �� �

F A2

i s�i
� �� �

Finally, the probability mass θ1 and θ2, which are respectively allocated to the partitioned

region A1
i s�i
� �

and A2
i s�i
� �

, are drawn from a beta distribution with parameters of N A1
i s�i
� �� �

þ

a and N A2
i s�i
� �� �

þ a. The probabilities of the partitioned regions are obtained as

Pr A1
i s�i
� �
jD

� �
¼

y1

y1þy2
Pr AjD½ � and Pr A2

i s�i
� �
jD

� �
¼

y2

y1þy2
Pr AjD½ �. Starting from the whole

sample space with probability 1, the probabilities of OPT subregions can be calculated

recursively.

(4) Extending to combinatorial cells using uniform Dirichlet distributions

The OPTs described in Wong and Ma and other works [17, 21–23] commonly consist of stop-

ping probabilities r AjDð Þ, selection probabilities Pr½Splitting A for XijD�, and allocated proba-

bilities Pr Al
i s�i
� �
jD

� �
as described in the above. In addition, the proposed method extends an

OPT to unit cells made by combinations of each categorical value. If a subregion of an OPT is

not further partitioned, samples in the region are considered to be uniformly distributed.

Therefore, the posterior probabilities assigned to cells in the region are allocated from a uni-

form Dirichlet distribution.

Formally, for a region A ¼
Qp

i ¼ 1
xi

Aið1Þ
; xi

Aið2Þ
; � � � ; xi

Ai mið Þ

n o
with CðAÞ ¼

Qp
i ¼ 1

mi

cells and N(A) samples, a vector of probability masses y1; y2; . . . ; yCðAÞ

h i
for cells is

drawn from a Dirichlet distribution with a parameter set
N Að Þ
C Að Þ þ b; . . . ;

N Að Þ
C Að Þ þ b

h i
. Then,

the posterior probability of the j-th cell
Qp

i ¼ 1
xi

Ai kið Þ

n o
in the region is calculated by

Pr
Qp

i ¼ 1
xi

Ai kið Þ

n o
jD

h i
¼

yjPCðAÞ

c ¼ 1
yc

Pr AjD½ �. Here, β is another OPT prior parameter for fac-

tor variables.

Inference of the probability distribution from an OPT

Given a posterior OPT distribution over a whole sample space, a tree with fixed terminal parti-

tions and probabilities of combinatorial cells can be randomly chosen according to the stop-

ping probabilities, selection probabilities, and the assigned probabilities of regions and cells.

Since each random tree has its own probability to be chosen, the expected probability of any

combination of categorical values can be properly calculated. Alternatively, the probability

The estimation of probability distribution for factor variables
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distribution can be estimated from the mode of the posterior OPT distribution as suggested by

Wong and Ma [17].

Approximating OPT calculations

It is well-known that constructing an OPT requires heavy computational resources for its

recursive partitioning and likelihood calculations [23]. It is mainly because the exact calcula-

tion requires partitioning a sample space to the end until further partitioning is not possible or

meaningless. While the proposed method provides the feasible computations for factor vari-

ables with many categorical values, the exact calculation of the proposed method still requires

a long computation time and a large memory size because of the complex nature of OPT calcu-

lations as well as the additional tasks to determine the suboptimal partitioning options and the

extension to combination cells.

To improve the computational efficiency of the proposed method, we applied approxi-

mated calculations with limited-lookahead OPT (LL-OPT) [23] for the numerical studies of

this work. Briefly, the LL-OPT calculates F(A) with h-level further partitioning instead of par-

titioning to the end, and chooses a tree with the maximum posterior probability among ones

growing q-level further (q� h). The LL-OPT calculation is recursively applied to each leaf

region within the chosen tree. Such a process is repeated until further partitioning is impossi-

ble or meaningless. While q is often fixed to be 1 [23], h is a tuning parameter for the trade-off

between the precision and computation time.

Availability of software and simulation data

The software package of the proposed method and simulation data used in this paper are freely

available at http://cdal.korea.ac.kr/DEFMC. We provide source codes of the implementation

as well. For the case studies, we used two public data sets, which are MIMIC-II Clinical Data-

base and TCGA data sets [24, 25]. The MIMIC-II Clinical Database is available at https://

physionet.org/physiobank/database/mimic2cdb-ps/, and TCGA data sets are available at

https://portal.gdc.cancer.gov/.

Results and discussion

Simulation study

We evaluated the proposed method through simulation studies with random samples gener-

ated from pre-assumed joint probability density distributions. The discrepancy of the esti-

mated distribution from random samples to the true distribution was measured by the root

sum square error (RSSE). The RSSEs of the proposed method were compared with those of the

conventional combination-wise estimation that estimates the probability of a category combi-

nation by simply counting samples falling into the combination. The simulation studies were

performed with three-dimensional factor data under nine different joint distributions with

various numbers of categories and population sizes. We commonly employed lookahead

parameter h = 3 to reduce computation times.

First, the proposed method was evaluated with the joint uniform distributions (Fig 1,

Figure B in S1 File, and simulation setting (1) and (2) in S1 File). The sample space is com-

posed of three factor variables Xi 2 xi
1
; xi

2
; � � � ; xi

mi

n o
for i = 1,2,3. The fine categories of

each variable are assumed to be uniformly distributed from two hidden super categories,

which means that for Xi 2 Xi
ð1Þ
;Xi
ð2Þ

n o
with Xi

ð1Þ
¼ xi

1
; � � � ; xi

mi=2

n o
and Xi

ð2Þ
¼

xi
mi=2þ1

; � � � ; xi
mi

n o
; Pr xi

j

h i
¼ 2pi=mi for xi

j 2 Xi
ð1Þ

and Pr xi
j

h i
¼ 2ð1 � piÞ=mi for xi

j 2 Xi
ð2Þ

,
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while the association to the super categories are not provided in the data. In the simulation

setting (1), pi = 0.7 for all three variables and the factor variables are perfectly dependent. In

other words, the probability of a fine combination x1
j � x2

k � x3
l is given as 0:7=

Q
imi=2

� �
for

x1
j � x2

k � x3
l 2

Q
ifx

i
1
; . . . ; xi

mi=2
g; 0:3=

Q
imi=2

� �
for x1

j � x2
k � x3

l 2
Q

ifx
i
mi=2þ1

; . . . ; xi
mi
g, and

0 otherwise. Likewise, p1 = 0.7, p2 = 0.8, and p3 = 0.9 in the simulation setting (2), and three

factor variables are assumed to be perfectly independent to each other. For example,

Pr x1
j � x2

k � x3
l

h i
¼ 0:504=

Q
imi=2

� �
for x1

j � x2
k � x3

l 2
Q

ifx
i
1
; . . . ; xi

mi=2
g. We generated

random samples according to the true distributions, considering the fine categories in a

same super category are uniformly distributed. Since the categories of variables are observed

without orders in general, the association to the super categories is not observed as shown

in Fig 1B We examined the performance of the proposed method for various numbers of

fine categories (mi = 20, 40, 60, 80 and 100 for all three variables) and samples sizes (10,000,

20,000, 30,000, 50,000 and 100,000). We measured the errors of the estimated probabilities

to the true probabilities from the assumed distribution for combination cells, and calculated

a RSSE. The simulations were repeated 100 times for each simulation setting, and the aver-

ages and variances of RSSEs were calculated.

Fig 1. Projections of three-dimensional simulation data of setting (1) to marginal two-dimensional planes. (A) Designed data distributions of the three-dimensional

data of 20 x 20 x 20 categories from two-level uniform distribution. (B) Observed data distributions of the same data by randomly ordered categorical values.

https://doi.org/10.1371/journal.pone.0202547.g001
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In the simulation setting (1) and (2), the proposed method shows significant improvements

for the estimation of joint probabilities compared with naïve combination-wise estimations

(Fig 2). When estimated with 10,000 samples for 1003 combination cells (i.e. mi = 100) in the

simulation setting (1), the average RSSE to the true probabilities by the proposed method was

0.003 while that of the combination-wise estimation was 0.005. Similarly, for the same condi-

tion in the simulation (2), the proposed method resulted in the average RSSE of 0.006 while

the conventional method showed 0.010. Fig 2A and 2C show RSSEs of the proposed method

and conventional combination-wise estimation for various sample sizes when the number of

categorical values of variables is 100. From the baseline performance of the conventional esti-

mations, the proposed method decreased RSSEs for all tested cases, by 36.9~40.9% in the set-

ting (1) and 36.2~37.1% in the setting (2). Fig 2B and 2D show the results for various numbers

of categorical values when the sample size is fixed to 0.1 × m1 × m2 × m3. The proposed method

also shows improvements across all conditions by reducing RSSEs by 40.8~44.3% for the case

(1) and 36.8~39.1% for the case (2) from the conventional estimations. The variances of the

RSSEs are quite small for all simulation cases. For example, estimations by the proposed

method for 203 cells with 800 samples have the largest coefficient of variances among the tested

settings, which is still less than 0.01. The small variances indicate that the proposed method

robustly improves the estimation.

The proposed method also outperforms the conventional estimation for randomly gener-

ated data from joint normal distributions (Figs 3 and 4, Figure C in S1 File, and simulation set-

ting (3) and (4) in S1 File). A trivariate joint normal distribution is discretized over m1 × m2 ×
m3 uniformly partitioned cells, and random samples are generated accordingly (Fig 3A). The

partitioned cells are considered to be combinations of categorical values and random samples

are observed without an order (Fig 3B). The method was tested for random data with low and

high correlations in the simulation setting (3) and (4), respectively. Similar to the previous

cases in simulation setting (1) and (2), the estimations were performed with various numbers

of categorical values and sample sizes, and repeated by 100 times for each case. As shown in

Fig 4A and 4C, in the simulation with different numbers of samples, the proposed method

reduced the error by 26.3~37.8% for the setting (3), and 20.0~38.8% for the setting (4). In the

cases with various numbers of categorical values for the simulation setting (3), the RSSEs are

reduced by 20.0~31.8% from the baseline of the conventional combination-wise estimations

(Fig 4B). In the simulation setting (4), the proposed method results in improved estimation

errors by 9.2~21.1% for all cases except one for 203 categorical combinations with 10,000 sam-

ples (Fig 4D). Even in this case, the proposed method shows very comparable performance

with the conventional estimation. Overall, the most simulation cases show relatively small vari-

ances for the estimated errors as like the simulation setting (1) and (2), which also implies the

robust improvements by the proposed method.

Furthermore, we examined the performance of our method for various distributions, which

are joint normal distributions with no correlation, additive exponential distributions, a combina-

tion of Clayton and uniform distributions, log-normal distributions with high and low correla-

tions, and joint uniform distributions with 5, 10 and 20 hidden super categories (simulation

setting (5) to (12) in S1 File). In addition to the conventional combination-wise estimation, the

proposed method was compared with a kernel density estimation (KDE) for categorical vari-

ables, which smooths the probability distribution across the whole sample space [10–12]. In the

KDE, the smoothness is controlled by kernel bandwidth. Here, we adapted kernel bandwidth

(0.9), according to the prior works with a few categories [13]. To evaluate the proposed partition-

ing based on marginal populations, we additionally compared with a variation of the proposed

method that randomly partitions the sample space. The random partitioning version of the pro-

posed method separates a given region into two subregions by randomly selecting categorical

The estimation of probability distribution for factor variables
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values instead of finding the suboptimal partitioning in the step (1) of the proposed procedure

described in Methods section. The following procedures are identical with the proposed method.

Fig 2. Simulation results with two-level uniform distributions. For simulation setting (1), shown are the RSSEs of the estimated joint probabilities to the true values (A)

as a function of sample sizes with a fixed number of categories, and (B) as a function of various numbers of categories with a fixed sample size. For simulation setting (2),

shown are the estimation RSSEs (C) as a function of sample sizes and (D) as a function of numbers of categorical values. The RSSEs of the proposed method are shown in

solid lines, and those of conventional combination-wise estimation are shown in dashed lines. The average RSSEs from 100 repeated simulations are shown with dots and

the standard deviation is shown with error bars.

https://doi.org/10.1371/journal.pone.0202547.g002
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In the extended simulation study, the proposed method outperforms other compared

methods for the most cases (Table 1). Our method shows the lowest RSSEs for all the simula-

tion cases. The estimation errors are improved by 2.2% ~ 40.8% from the conventional combi-

national-wise estimations, and by 23.9% ~ 93.6% from KDE methods. As observed in the

previous cases, the estimation RSSEs from repeated simulations commonly have small vari-

ances relatively to the average improvements, which presents that the proposed method can

robustly reduce the estimation error.

Since the proposed method sorts the categories by their marginal population at each parti-

tioning, it can construct OPTs more efficiently than the random partitioning process. The tree

depth of the proposed method is expected to be lower than the OPT with random partitioning,

which means advantages in the computation time and performance.

We evaluated the computation time of the methods for each simulation setting (Table A in

S1 File). The experiment result shows that the proposed method is feasible under extreme con-

ditions, such as 1003 cells with 100,000 samples, since the proposed method is computed in

under 100 seconds for all simulation settings. As expected, the computation time for proposed

method was lower than those of random OPT for all simulation settings; the computation time

was reduced by 33.6% in average.

Fig 3. Projections of three-dimensional simulation data of setting (3) to marginal two-dimensional planes. (A) Designed data distribution of the three-dimensional

data of 20 x 20 x 20 categories from normal distributions. (B) Observed data distribution of the same data by randomly ordered categorical values.

https://doi.org/10.1371/journal.pone.0202547.g003
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Fig 4. Results of the simulations with normal distributions. For simulation setting (3), shown are the RSSEs of the estimated joint probabilities to the true values (A) as a

function of sample sizes with a fixed number of categories, and (B) as a function of various numbers of categories with a fixed sample size. For simulation setting (4),

shown are the estimation RSSEs (C) as a function of sample sizes and (D) as a function of numbers of categorical values. The RSSEs of the proposed method are shown in

solid lines, and those of conventional combination-wise estimation are shown in dashed lines. The average RSSEs from 100 repeated simulations are shown with dots and

the standard deviation is shown with error bars.

https://doi.org/10.1371/journal.pone.0202547.g004
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Case study I

We applied the proposed method to the analysis of real data from MIMIC-II Clinical Database

[24]. The database is freely available on the website for MIMIC-II research (https://physionet.

org/physiobank/database/mimic2cdb-ps/). The data set includes primary and secondary diag-

nosis of 4,928 patients in intensive care units. The patient diagnosis is encoded by ICD-9 codes

Table 1. Estimation errors of the simulation study cases.

Simulation Setting Number of Samples Error (RSSE × 104)

OPT Conv. KDE Rand OPT

Case (1) 25,000 19.54±0.22 30.95±0.04 28.62±0.04 23.00±0.26

50,000 13.67±0.11 21.89±0.03 20.46±0.03 16.07±0.22

100,000 9.16±0.07 15.48±0.02 14.70±0.02 10.48±0.09

Case (2) 25,000 33.22±0.31 52.53±0.05 47.29±0.05 36.18±0.50

50,000 23.45±0.21 37.14±0.04 33.45±0.03 26.12±0.24

100,000 16.27±0.08 26.27±0.02 23.67±0.02 18.26±0.17

Case (3) 25,000 38.39±0.39 61.63±0.21 63.64±0.79 41.61±0.33

50,000 27.53±0.26 42.43±0.16 46.28±0.80 30.60±0.37

100,000 20.76±0.16 28.29±0.10 31.60±0.56 23.94±0.28

Case (4) 25,000 38.49±0.62 61.62±0.35 58.14±0.21 47.64±0.66

50,000 29.27±0.43 42.44±0.24 62.98±2.43 36.48±0.44

100,000 22.55±0.30 28.30±0.15 36.43±0.98 28.87±0.45

Case (5) 25,000 37.06±0.38 61.65±0.18 59.30±0.36 40.43±0.38

50,000 25.92±0.20 42.43±0.15 45.97±0.76 28.52±0.33

100,000 19.01±0.10 28.29±0.09 32.59±0.70 21.58±0.23

Case (6) 25,000 46.37±1.31 61.64±0.84 128.74±7.16 48.03±1.19

50,000 36.56±1.18 42.38±0.63 144.33±10.18 38.82±0.96

100,000 27.12±0.68 28.26±0.37 129.34±9.80 28.06±0.80

Case (7) 25,000 42.58±0.71 61.70±0.59 424.61±36.20 47.70±1.18

50,000 33.24±0.44 42.45±0.42 391.50±34.31 34.83±0.85

100,000 25.97±0.28 28.27±0.23 429.77±38.70 26.16±0.61

Case (8) 25,000 40.04±0.27 60.91±0.11 60.19±0.52 45.12±0.36

50,000 28.60±0.15 42.38±0.07 44.46±0.71 32.40±0.27

100,000 21.06±0.06 28.26±0.05 34.13±1.00 23.34±0.13

Case (9) 25,000 39.80±0.36 60.94±0.17 63.32±0.86 45.71±0.44

50,000 28.69±0.19 42.35±0.10 49.56±1.21 33.23±0.34

100,000 21.45±0.10 28.30±0.07 40.55±1.63 24.31±0.12

Case (10) 25,000 33.85±2.46 53.99±3.94 48.60±3.53 37.53±2.83

50,000 23.70±1.83 37.862.74 34.10±2.44 27.04±2.29

100,000 16.69±1.36 26.86±2.05 24.20±1.83 19.01±1.81

Case (11) 25,000 32.68±1.79 52.49±2.65 47.32±2.36 36.74±1.98

50,000 23.04±0.99 37.01±1.57 33.38±1.37 26.47±1.37

100,000 16.50±0.96 26.67±1.39 24.04±1.23 19.06±1.23

Case (12) 25,000 29.87±0.55 50.19±1.97 45.72±1.67 34.86±1.34

50,000 22.27±0.76 36.83±1.18 33.34±1.02 26.34±0.76

100,000 16.10±0.55 26.62±0.87 24.06±0.75 19.08±0.65

For the simulation setting (1) to (12), shown are the averages and standard deviations of RSSEs by the proposed method (OPT), the conventional combination-wise

estimation (Conv), kernel density estimation (KDE), and OPT with random partitioning (Rand OPT).

https://doi.org/10.1371/journal.pone.0202547.t001
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that classify diseases in a hierarchical structure. By employing the second-level diagnosis

codes, each of the primary and secondary diagnosis is presented by a factor variable with 94

categorical values. In total, the data set is presented by 942 combination cells.

To demonstrate the effectiveness of the proposed method, we estimated the joint probabili-

ties from 500 samples randomly chosen from the whole data set. The objective of this experi-

ment is to evaluate whether the method can reconstruct the original sample distribution given

the restricted number of samples. Since the whole 4,928 observations is the largest data set we

have, we tested whether the proposed method can estimate the sample distribution of the

whole data set from randomly subsampled data. In other words, the probabilities estimated

with the whole data set are considered to be true probabilities, and randomly chosen data are

the samples for the density estimation experiments. We compared the proposed method with

the conventional combination-wise estimation.

We repeated this implementation 100 times and calculated RSSEs of the estimated distribu-

tions. Since the random sample density of this experiment (500/942) is very similar to those of

the simulation cases with 50,000 samples for 1003 combinations in the previous section, we

employed the same lookahead parameter, h = 3.

In the analysis of the diagnosis data, the proposed method has a lower estimation error

than the conventional calculation (Fig 5). Compared with the conventional combination-wise

estimation, the proposed method reduced the average RSSE by 7.5%, which is a statistically sig-

nificant improvement (p-value < 10−12). Importantly, the partitioning pattern by the proposed

method can provide useful intuitions for the analysis of biomedical data. The proposed

method partitions the whole sample space into subregions within which combinations of cate-

gorical values are uniformly distributed. The conditional uniformness of categories implies

that the categorical values in the same terminal region might have certain relations that are

observed only with the given condition. For example, in the partitioning pattern of the diagno-

sis data, CEREBROVASCULAR DISEASE and OTHER DISEASES OF RESPIRATORY SYS-

TEM are commonly bound as secondary diagnosis when CEREBROVASCULAR DISEASE,

COMPLICATIONS OF SURGICAL AND MEDICAL CARE, NOT ELSEWHERE CLASSI-

FIED, and OTHER FORMS OF HEART DISEASE are given as primary diagnosis. It might

indicate that potential relatedness between CEREBROVASCULAR DISEASE and OTHER

DISEASES OF RESPIRATORY SYSTEM that occurs only in such conditions while the two

diseases are totally separated in the disease classification of ICD-9.

From the analysis of the diagnosis data with the proposed method, a disease network can be

constructed by linking disease codes that are frequently bound together in the same terminal

regions (Fig 6). The coexistence in the terminal regions with zero sample is not considered. Fig

6 shows top 20 most frequently coexisting relations in the diagnosis data. In this network,

COMPLICATIONS OF SURGICAL AND MEDICAL CARE, ISCHEMIC HEART DISEASE,

OTHER BACTERIAL DISEASES, and OTHER DISEASES OF THE DIGESTIVE SYSTEM

are shown to be related to each other. Some relations found in the network are partially sup-

ported by previous studies. For example, relationship between heart and respiratory diseases is

observed from an edge between OTHER FORMS OF HEART DISEASE and OTHER DIS-

EASES OF RESPIRATORY SYSTEM. This detection accord with some recent studies that

investigate the relation between heart and respiratory diseases. Apostolo et al. demonstrates

that lung function abnormalities are a common symptom for chronic heart failure [26]. Van

Eeden et al. argues that lung inflammation is an important factor for heart diseases [27]. The

overall analysis implies that the proposed method has a potential to provide interesting medi-

cal hypothesis that can be further investigated.

The estimation of probability distribution for factor variables
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Case study II

We applied the proposed method to estimate the probability distribution of RNA-Seq read

counts, which can be used for gene expression calculation. Since a sequencing read count

matrix consist of observations from gene-sample combinations, it can be considered as a con-

tingency table with two categorical variables. We evaluated the proposed method on the read

count matrix to reconstruct the whole sample space with restricted observations, which is a

similar setting to the experiments in the previous section.

Fig 5. Probability estimation comparison for the diagnosis data of intensive care unit patients. Estimation RSSEs to the true probabilities by the proposed method

(OPT) and the conventional combination-wise method (Conv). Estimations were repeated by 100 times with randomly selected subsets of samples.

https://doi.org/10.1371/journal.pone.0202547.g005
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In this study, TCGA-BRCA data set is used [25]. The read count matrix of TCGA-BRCA is

composed of 20,502 genes and 878 samples for breast cancer. The number of total sequencing

reads is 82.9 billion. Consequently, the whole sample space is a 20,502 × 878 matrix with 82.9

billion observations.

The objective of this experiment is to estimate the counting density of sequencing reads.

The density distribution obtained from the whole 82.9 billion reads is considered as the true

distribution. The proposed method is applied to estimate the true distribution from a random

subset of the whole data set. The estimation error is calculated by RSSE as like the previous

experiments. The experiment is conducted under two settings, which use 10−5 and 10−6 of the

whole observations. For each setting, we repeated the experiment ten times. As shown in Fig 7,

the proposed method significantly outperforms the conventional method. For example, the

RSSE is reduced to 9.57 × 10−4 in the experiment using 10−5 of the observations, which corre-

sponds to 12.7% of improvement to estimate the counting density. This result implies a possi-

bility to estimate the gene expression indices from an improved counting read density with

fewer sequencing reads.

Conclusion

In this work, we propose an estimation method for the joint probability distribution among

multiple factor variables that can have many categorical values. We demonstrate the

Fig 6. A disease network constructed from partitioning patterns of the proposed method. The top 20 most frequently coexisting categorical values in the same

terminal regions of the partitioning tree constructed by the proposed method.

https://doi.org/10.1371/journal.pone.0202547.g006
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effectiveness of the proposed method through simulation and case studies. Our method signifi-

cantly reduces the estimation errors for the all simulation cases. The robustness of the estima-

tion is implied by small variances of estimation errors from a wide range of simulated cases.

For a case study with real data, we applied the proposed method to the analysis of diagnosis

Fig 7. Probability estimation comparison for the read count matrix. The experiment is conducted under the two settings using (a) 10� 5 and (b) 10� 6 of the data set.

OPT denotes the proposed method.

https://doi.org/10.1371/journal.pone.0202547.g007
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data of patients in intensive care units. The estimation from subsampling also presented the

accuracy and robustness of the proposed method. Moreover, by detecting the conditional uni-

formness of categorical values, the partitioning pattern by the proposed method has a potential

to generate interesting hypotheses for hidden relations among categories, which can be visual-

ized as a network.

We expect that the proposed method can be applied for analyzing a large matrix of observed

counts with a little modification because a matrix can be considered as a sample space between

two factor variables. Count matrices can be from counts of DNA molecules for thousands of

genes from hundreds of patients in high-throughput sequencing [28–30], personalized pur-

chases for millions of items of thousands of users in business [31, 32] and many other areas.

The proposed method will be useful for smoothing, decomposing, and factorizing such a

matrix. We will extend this work to develop efficient algorithms for matrix analyses.

Supporting information

S1 File. Supplementary information. Detailed simulation settings are described. The Table A,
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