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Neurodevelopmental disorders di�er considerably between males and

females, and fetal brain development is one of the most critical periods to

determine risk for these disorders. Transcriptomic studies comparing male

and female fetal brain have demonstrated that the highest di�erence in

gene expression occurs in sex chromosomes, but several autossomal genes

also demonstrate a slight di�erence that has not been yet explored. In

order to investigate biological pathways underlying fetal brain sex di�erences,

we applied medicine network principles using integrative methods such

as co-expression networks (CEMiTool) and regulatory networks (netZoo).

The pattern of gene expression from genes in the same pathway tend

to reflect biologically relevant phenomena. In this study, network analysis

of fetal brain expression reveals regulatory di�erences between males and

females. Integrating two di�erent bioinformatics tools, our results suggest

that biological processes such as cell cycle, cell di�erentiation, energy

metabolism and extracellular matrix organization are consistently sex-

biased. MSET analysis demonstrates that these di�erences are relevant to

neurodevelopmental disorders, including autism.

KEYWORDS

neurodevelopmental disorders, sex di�erences, fetal brain development, gene

regulatory networks, systems biology, autism spectrum disorder (ASD)

1. Introduction

Sexual dimorphism in the context of brain structure, function and chemistry has been

consistently reported. Total and regional volume, for example, differs between males

and females, including during fetal development (Ritchie et al., 2018; Galjaard et al.,

2019). Moreover, males present higher connectivity between different regions, while

females demonstrate higher connectivity within regions (Gur and Gur, 2016). Several
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human disorders affecting the central nervous system are sex-

biased in prevalence, age of onset, pathophysiology and etiology,

especially neurodevelopmental disorders (Loke et al., 2015).

Accordingly, when compared to females, males have a two to

four increased risk for neurodevelopmental disorders (NDs),

such as intellectual disability (ID), autism spectrum disorder

(ASD), attention deficit hyperactivity disorder (ADHD), and

early-onset schizophrenia (May et al., 2019). During fetal

brain development, sex differences might emerge from the

gene regulatory effects of the interplay between gonadal

hormones, sex chromosomes and sex specific responsiveness to

environmental factors, which collectively might contribute to

higher vulnerability in male pregnancies by affecting growth

and survival rate (Bale, 2016). Indeed, previous studies have

described the association between males’ lower adaptability to

gestational stress and neuropsychological development deficits

(Fink et al., 2018). These differences between males and females

are partially attributed to differences in DNA methylation

and sex chromosomes transcription factors (TFs), both being

associated with the regulation of autossomal genes related to

neurodevelopmental disorders (Maschietto et al., 2017; Tahira

et al., 2018). In fact, TFs are mediators of cell responses to

environmental stimuli and therefore are critical to proper brain

development, being associated with multiple NDs including

ASD (Santos-Terra et al., 2021).

Although sex differences in neurodevelopment and male

susceptibility to NDs have been thoroughly studied, its role in

the regulation ofmultiple collaborating developmental processes

remains unclear. The sex bias on gene expression exhibits an

overall small effect, suggesting the difference between sexes to

be subtle, especially in autosomes (Oliva et al., 2020). Genes

encoded in sex chromosomes figure prominently amongst the

most differentially expressed between males and females, with

the Y chromosome genes displaying the largest differences

(Reinius and Jazin, 2009; Kang et al., 2011; Shi et al., 2016;

Werling et al., 2016). During the fetal neurodevelopment, sex

differences in gene expression occurs mainly in the lateral

and medial prefrontal cortex and are associated with pathways

altered in some NDs, such as ASD and schizophrenia (Kang

et al., 2011; Shi et al., 2016). In addition, it has been described

that fetal differentially expressed autosomal genes are more

expressed in males and are associated with several NDs, specially

Abbreviations: NDs, neurodevelopmental disorders; ID, intellectual

disability; ASD, autism spectrum disorder; ADHD, attention deficit

hyperactivity disorder; TFs, transcription factors; PPI, protein-protein

interaction; M, module; PCW, post-conception weeks; VST, variance-

stabilizing transformation; GSEA, gene set enrichment analysis; NES,

normalized enrichment score; ORA, over-representation analysis; GO,

Gene Ontology; IQR, interquartile range; MSET, modular single-set

enrichment test; AD, Alzheimer’s disease; MDD, major depressive

disorder; ER, estrogen receptor; AR, androgen receptor; ECM,

extracellular matrix; ROS, reactive oxygen species.

ASD, and biological processes such as cell cycle and cell adhesion

(Reinius and Jazin, 2009; Shi et al., 2016). Curiously, there are

evidences suggesting that genes on interacting pathways of sex-

biased genes in fetal brains are more related to NDs risk than the

differentially expressed genes themselves (Werling et al., 2016).

The enormous quantity of data obtained from the multi-

omics technologies required researchers to analyze the complex

interactions between multiple molecules, giving rise to the

systems biology field of study (Veenstra, 2021). Complex

Network analysis is a systems biology approach to model

interactions between biological entities such as co-regulated

genes and its regulatory elements (Mähler et al., 2017). Co-

expression networks are built based on correlation between

the gene expression across samples, and the clusterization

of co-expressed genes could indicate that they have related

biological functions or participate in the same regulatory

pathways (Langfelder and Horvath, 2008). There is evidence

of differential patterns of regulation even when genes are not

differentially expressed (Gaiteri et al., 2013; Lopes-Ramos et al.,

2020).Within this framework, integrativemethods that combine

co-expression networks with other data types such as protein-

protein interactions (PPI) and regulatory mechanisms are not

only more informative (Simões et al., 2015), but they also

provide more specific results about the imputed biological data

(Michoel et al., 2009). These integrative network approaches

have been successfully applied to understand gene regulatory

differences between males and females in different scenarios

(Michoel et al., 2009; Lopes-Ramos et al., 2018, 2020).

We hypothesized that the application of systems biology

approaches to the understanding of sex differences in fetal brain

development could unravel novel interactions and biological

mechanisms underlying sex bias in neurodevelopmental

disorders. Our goal was to find differentially regulated biological

processes between males and females occurring during the mid-

gestational period of brain development, when corticogenesis is

the major histo- and neurogenic event. Moreover, we aimed to

find signaling pathways and their effectors that were pertinent to

these differences. In this context, we applied Complex Network

tools and integrated their results to investigate autosomal

gene co-expression and regulation in the brain from females

and males human fetuses. We removed the genes on the

sex chromosomes in order to increase the autosomal gene

expression signal (Glass et al., 2014). Then, we conducted a

primary analysis using the R package CEMiTool (Russo et al.,

2018), which identifies co-expression modules (CM) based on

gene expression correlation and reports an first overview of

sex differences in module activity. Later, we applied the netZoo

package to integrate PPI and motif data, creating regulatory

networks for each sex and then comparing their community

structure (Glass et al., 2013; Padi and Quackenbush, 2018). Next,

we examine how TFs and genes are clustered based on their

importance for the modularity of each created module (M),

identifying the drivers of regulatory networks sex differences.
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FIGURE 1

Workflow of the analyses that were carried out using CEMiTool and netZoo with male and female RNAseq data from fetal brain samples.

Finally, we searched for enrichment of these modules for

biological functions, cell types, and neurodevelopmental

and psychiatric disorders. When combined, these results

show differences between sexes in fetal brain development

mechanisms and hint at some of its possible effectors.

2. Materials and methods

A workflow chart summarizing the conducted analyses in

this study can be seen in Figure 1.

2.1. Dataset and pre-processing

RNA-seq data from 120 undissected fetal brain tissues

collected from elective abortions were obtained from a public

repository (O’Brien and Bray, 2018). The libraries were

prepared from total RNA using the TruSEqStranded Total

RNA Library Prep kit (Illumina), followed by ribosomal RNA

depletion. A minimum of 100 million read pairs per sample

were sequenced on Illumina HiSeq systems. Fetal sex was

determined both by karyotyping and chromosomal sex genes

expression. The dataset consisted of gene expression data from

70 males and 50 females with age ranging from 12 to 19

post-conception weeks (PCW), which were equally distributed

for the known variables: age, RNA integrity number and read

count (Supplementary Table S1).

The following analyses were conducted using the R language

(v4.1.0). Counts for 29,875 genes were provided with between-

sample normalization using the median of ratios method and

variance-stabilizing transformation (Love et al., 2014), followed

by a filter that removed low expressed genes. Additional details

regarding the sample processing protocols and the RNA-seq pre-

processing are published in the original article (O’Brien et al.,

2018). As recommended for co-expression network construction

(Langfelder and Horvath, 2008), genes with variance smaller

than 0.1 were excluded. Hierarchical clustering based on the

Euclidean distance of gene expression abundance demonstrated

that one sample was an outlier. We removed this sample

and further analyses were performed with the remaining 119

samples. Given its contribution to data variance, batch effect

was corrected using LIMMA (v3.48.3) (Ritchie et al., 2015;

Supplementary Figure S1). Gene annotation was converted to

Gene Symbol1 with the package biomaRt (v2.48.3) (Smedley

et al., 2009), and 18,904 genes remained.

1 https://www.genenames.org
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2.2. Co-expression network modeling

The CEMiTool package (v1.16.0) (Russo et al., 2018) was

used for the construction of co-expression networks and their

clustering into co-expression modules (CMs). CEMiTool is

an automated method that creates co-expression networks by

intuitively selecting a soft-thresholding power based on the

pairwise correlation between genes. This analysis was conducted

on the full dataset, without sex stratification. Automatic filtering

of genes with low variance using a model of negative binomial

distribution to correct for mean-variance dependency and select

variable genes and VST were turned off due to previous RNA-

seq data pre-processing steps. In order to evaluate the activity

of each CM in males and females, samples were annotated

according to sex and then submitted by CEMiTool to a gene

set enrichment analysis (GSEA) (Subramanian et al., 2005).

Genes from each individual CM found by CEMiTool had their

expression normalized using z-scores, and these values were

used to rank the expression in male and females to perform

the GSEA. These z-scores are averaged and corrected by the

number of genes to calculate a normalized enrichment score

(NES). The result represents how the activity of each CM is

within a phenotype, therefore some CMs might be more active

in males or females. In order to consider a CM different between

sexes, we have established a threshold based on NES distribution

(absolute NES > 2).

Biological pathways were discovered applying over-

representation analysis (ORA) on identified CMs using the

R package clusterProfiler (v4.0.5) (Yu et al., 2012). Gene

Ontology (v7.5.1), KEGG (v7.5.1) and Reactome (v7.4) gene set

collection for enrichment were obtained from MSigDB2, and

the enrichment was considered significant if the Benjamini-

Hochberg adjusted p < 0.0005 and the gene set included at least

10 genes. An interaction network was constructed by locating

every gene in the PPI network obtained from the human dataset

on StringDB (v11.5) (Szklarczyk et al., 2018). Genes with the

highest number of interactions within a network are considered

hubs. These genes were identified both in the co-expression

network and in the PPI network by counting their number

of interactions independently, and were labeled according to

whether they were a hub in either network or in both.

2.3. Regulatory network inference

In order to build and analyze regulatory networks, three

algorithms from the netZoo toolkit were used: PANDA,

CONDOR and ALPACA. Gene regulatory networks were

estimated using the Python (v3.7) implementation of PANDA

(v0.8.1). PANDA gathers information from gene co-expression,

PPI, and a prior TF motif-genes network to infer aggregate

2 http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp

gene regulatory networks for each phenotype. Edge weights

of PANDA networks are representative of the evidence of a

regulatory interaction. PPI human dataset (v11.5) was inputted

in the PANDA algorithm after genomic annotation conversion

to Gene Symbol using clusterProfiler (Yu et al., 2012). The

prior motif network was provided by PANDA developers3 and

consisted of motif interactions of 730 TFs extracted from the

Catalog of Inferred Sequence Binding4 (Weirauch et al., 2014).

After removing the genes absent both in the motif dataset and in

the gene expression dataset, the prior motif network contained

regulatory information between 730 TFs and 15,150 genes. Only

canonical TF-gene interactions were used in the analysis as

recommended by Sonawane et al. (2017).

2.4. Regulatory network comparison

PANDA’s male and female regulatory networks were

initially submitted to the modularization algorithm CONDOR

(v0.99.49) (Platig et al., 2016). CONDOR uses positive edge

weights as evidence for the existence of an interaction between

a TF and a gene, detecting bipartite community structures

within each network using a maximum modularization

approach (Barber, 2007).

Next, we used a graph-based approach called ALtered

Partitions Across Community Architectures (ALPACA)

(v0.99.49) (Padi and Quackenbush, 2018) that compares

two networks and identifies de novo gene modules that best

distinguish the networks. As described in the original article,

ALPACA compares condition-specific networks to each other

instead of to a random graph null model. In the comparison,

one network is defined as the “baseline” network and the

other is defined as the “perturbed.” ALPACA defines a score

denominated the “differential modularity score” that compares

the density of modules in the “perturbed” network to the

expected density in the matched “baseline” network. In our case,

it allows us to contrast networks of male and female samples

and partition the nodes into optimal differential modules (Ms).

Since the ‘baseline” community structure is the null model to

which the “perturbed” network is compared, using the male

network as baseline to compare to the female network could

produce different results from the alternate comparison. For

example, if the female network is used as the baseline, ALPACA

compares the observed density of modules in the male network

to the expected density in the female network, producing

male-biased differential results. For this reason, we performed

both analyses.

Differential modules were submitted to enrichment by ORA

using the clusterProfiler package (Yu et al., 2012), and cut-off

3 https://sites.google.com/a/channing.harvard.edu/kimberlyglass/

tools/resources

4 http://cisbp.ccbr.utoronto.ca
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was set to Benjamini-Hochberg adjusted p < 0.05. Represented

Gene Ontology (GO) terms were selected based on their

uniqueness and dispensability determined by REVIGO, a tool

that calculates redundancy between a list of GO terms and

identifies themost representative ones (Supek et al., 2011). Based

on the enrichment p-value of each GO term and its level of

informativeness, REVIGO selects GO terms that best describes

the clusters of similar semantic terms, generating a reduced GO

term list. For our analysis, we chose to generate small lists as a

result (REVIGO reduction parameter of 0.05). Next, we excluded

from the analysis GO terms from tissues or biological processes

not related to our samples, as well as those with other GO

terms in the same ontological tree with lower significance scores.

The whole GO module enrichments and REVIGO results are

attached at the Supplementary materials, and excluded REVIGO

terms are marked gray.

2.5. Extracting di�erential regulation
drivers

ALPACA also estimates how much a TF or a gene

contributes to the differences in module density, calculating its

“differential modularity score.” Transcription factors with the

highest score were extracted as described by Lopes-Ramos et al.

(2021). Initially, scores were transformed to a log scale. The

median and the interquartile range (IQR) for TFs and genes

were calculated separately, given the structure of the bipartite

network and number of interactions of each type of entity.

TFs were considered significant if their differential modularity

score deviated more than 1.5×IQR from the module median

they participated in, while genes were selected when their score

deviated more than 3×IQR.

2.6. Databases-specific enrichment
analysis of ALPACA modules

Genes from each differential module (M) were submitted to

a modular single-set enrichment test (MSET) (Eisinger et al.,

2013) using the whole network as background. To determine

the over-representation of genes from each differential module

in specific cell types, enrichment analysis was performed with

a mid-gestational developing fetal brain single-cell dataset, fit

to the age of our samples (Polioudakis et al., 2019). Associated

neurodevelopmental disorders and psychiatric disordersmodule

enrichment was conducted using curated gene sets for

Alzheimer’s disease (AD) (Jansen et al., 2019), ADHD (Demontis

et al., 2018), major depressive disorder (MDD) (Howard et al.,

2019), bipolar disorder (Stahl et al., 2019), ID (Ilyas et al., 2020),

syndromic and non-syndromic ASD genes from SFARI5, plus

5 https://gene.sfari.org

other independent ASD datasets (Sanders et al., 2015; Grove

et al., 2019), schizophrenia (Lam et al., 2019), macrocephaly

and microcephaly genes extracted from the testing panels by

University of Chicago6 and Online Mendelian Inheritance in

Man database7, and cross-disorders gene lists (Deciphering

Developmental Disorders Study, 2017; Lee et al., 2019).

MSET enrichment was also performed to assess the role

of gonadal hormones in the regulation of ALPACA modules.

In order to obtain sex steroid hormone target genes, gene set

collections for the TFs estrogen and androgen receptors (ER

and AR, respectively) were obtained from MSigDB (v7.5.1,

c3.tft.v7.5.1.symbols.gmt) (Liberzon et al., 2015). All 5 motifs

for themain estrogen receptors (ER_Q6, ER_Q6_01, ER_Q6_02,

TGACCTY_ERR1_Q2, ERR1_Q2) were joined, resulting in

1,534 ER target genes. Androgen receptor targets consisted

of 537 genes, obtained by joining 5 AR motifs (AR_01,

AR_02, AR_03, AR_Q2, and AR_Q6). The MSET algorithm

was employed with 10,000 permutations and the p-value was

generated based on the over-representation of the input gene

list in the dataset of interest when compared to the random

sets generated by the permutations. This empirical p-value was

adjusted using the Benjamini-Hochberg method.

3. Results

3.1. Co-expression analysis reveals
modules with sex-biased activity

Co-expression analysis with CEMiTool identified co-

expression modules (CMs) of genes expressed from PCW 12

to 19 of the fetal brain development. These modules were

also submitted to GSEA in order to determine sex activity

and functional enrichment analysis based on Reactome, GO

and KEGG.

Genes were grouped into 33 CMs based on the correlation of

their normalized expression values, and 30 genes out of 18,904

were not correlated to any CM (Supplementary Figure S2).

From all the CMs, a number of 13, 11 and 8 modules

were significantly enriched for Reactome, GO and KEGG

terms, respectively (adjusted p < 0.0005, and minimum of

10 genes) (Supplementary Table S2). Six out of 14 CMs that

were considered different between sexes (absolute NES > 2)

are significantly enriched for these databases (CM1, CM9,

CM16, CM19, CM25, and CM31) (Supplementary Figure S3).

Therefore, these following CMs will be discussed below.

Three selected modules were more active in females. CM1

is the largest module, composed of 5,306 genes. CM1 is

more active in female samples (adjusted p < 0.001, NES =

6 https://dnatesting.uchicago.edu

7 https://omim.org
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2.35) and enriched for Reactome, GO and KEGG pathways

associated with neurotransmitters, membrane receptors, ion

channels, and signal transduction proteins, that act together

in a complex molecular interaction network important to the

synapses organization (Burke and Bender, 2019). This CM is

also enriched for GO terms for cell maturation and neuron

differentiation associated with synapses specification. CM16

(253 genes) is also more active in females (adjusted p <

0.001, NES = 2.88), and its genes are enriched for the citric

acid cycle and respiratory electron transport pathways in both

Reactome and GO databases. The last CM that is more active

in females (adjusted p < 0.001, NES = 3.17), CM31 (78 genes)

demonstrates significant enrichment for activation of HOX

genes in hindbrain in the Reactome database, a term for which

the module more active in males CM9 is also enriched.

The highest difference in sex activity (adjusted p < 0.001,

NES = 3.43) was observed in CM9 (654 genes), more active

in males. Hub genes tend to play important roles in the

network. In CM9, genes like BRCA1, CCNB2, CDCA8, and

genes from the KIF family are central (Figure 2A). Moreover,

CM9 is significantly enriched for cell division processes, cell

cycle repair and senescence and stress response according to all

databases (see Figure 2B for Reactome results). Likewise, CM19

(229 genes) is more active in males (adjusted p < 0.001, NES =

2.83) and is consistently associated with ECM organization and

ECM proteoglycans.

Altogether, CEMiTool results indicate 4 modules with

sex differences in activity related to the following biological

processes: (1) neuron differentiation and synapse specification;

(2) mitochondria energy production; (3) cell proliferation and

stress response; and (4) ECM organization. The first and second

are more active in females, and the other 2 in males (Figure 2C).

3.2. Regulatory networks community
structure comparison

We modeled male and female PANDA networks integrating

gene expression, transcription motif and PPI data. These

networks indicate how strong are the evidences of regulatory

interactions between TFs and genes for each sex in the

form of bipartite networks. Then, we identified community

structures ofmale and female PANDAnetworks with CONDOR.

In order to identify transitions in their regulatory network

structures, ALPACA was run twice, alternating the sex network

used as baseline. Therefore, differential networks using the

female network as baseline will be referred to as female-

baseline differential network, while results achieved with the

male network as baseline will be referred to as male-baseline

differential network. In our case, it is important to have in

mind that the modularization of the female-baseline differential

network result will give us, as explained on the Methods section,

modules (Ms) that have a different density observed in the

male network than the expected from the density in the female

network. Therefore, it will give us male-biased modules and the

associated results will be addressed as male-biased. Accordingly,

using the male as baseline will give us differential network

modules addressed as female-biased. Nevertheless, both results

suggest differential patterns in gene regulation betweenmale and

female regulatory networks, but do not imply a direction in the

difference like differential expression analysis or in activity like

CEMiTool analysis. It also does not imply that a module is more

or less regulated in any sex.

ALPACA detected 7 differential modules when the female

network was used as the baseline, which were determined

male-biased modules (Supplementary Figure S4A). Each

module was submitted to GO over-representation analysis

using clusterProfiler, and 4 out of the 7 modules had

significant enrichment (adjusted p < 0.05, gene set > 5)

(Supplementary Table S3A). Next, we applied REVIGO

to eliminate redundant GO terms, identifying a total

of 118 GO terms that best described the 4 modules

(Supplementary Table S3B). Male-biased M1 was enriched

with GO terms associated with synapses (e.g. chemical synaptic

transmission, inorganic ion transmembrane transport, and

neurotransmitter transport); cell-cell adhesion, import into

cell, cholesterol transport, regulation of lipid catabolic process,

regulation of reactive oxygen species (ROS) metabolic process,

extracellular matrix organization, cytokines, and inflammatory

response; male-biased M2 with regulation of GTPase activity;

male-biased M6 with different terms associated to cell cycle

(e.g., mitotic cell cycle process, chromosome segregation,

and cell cycle checkpoint signaling); and male-biased M7

with establishment of planar polarity, mitotic cell cycle, DNA

repair, telomerase activity, mitochondrial translation, and gene

expression. To visualize the results, we selected eachmale-biased

module’s top 10 REVIGO terms with the highest enrichment

scores that best represented its category (Figure 3).

Meanwhile, male-baseline differential network ALPACA

analysis revealed 10 differential modules, considered female-

biased (Supplementary Figure S4B). Enrichment analysis

revealed significant GO terms for 3 modules (adjusted p <

0.05, gene set > 5) (Supplementary Table S3C), and REVIGO

reduced the number of terms to 84 (Supplementary Table S3D).

Female-biased M1 was enriched with GO terms associated with

cytokines production and immune system, reverse cholesterol

transport, ROS metabolic process, metabolism (e.g., regulation

of cellular ketone metabolic process, amine metabolic process,

and regulation of nitric oxide metabolic process), extracellular

modifications and tissue remodeling; female-biased M2 with

GTPase activity and synaptic signaling; and female-biased M9

with process utilizing autophagic mechanism, and different

terms associated with mitochondrial activity. The selected top

10 REVIGO terms can be seen in Figure 4.
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FIGURE 2

Normalized expression values from males and females were submitted to co-expression analysis with CEMiTool, demonstrating di�erent

patterns of expression associated with particular biological functions. (A) GSEA demonstrating each module activity for males and females.

Circle color and size represents the Normalized Enrichment Score (NES). (B) Integrated network with interaction data for M9, with hub genes

highlighted. (C) Over-representation analysis of genes from module M9 using pathways from the Reactome database.

In summary, ALPACA results point to regulatory differences

between females and males in modules associated with: 1)

synapse organization; 2) ECM modifications; 3) immune

factors; 4) cell cycle and cell senescence; 5) metabolism

and mitochondria function. It is important to note that

the majority of these processes appear both in male- and

female-biased modules, suggesting that they have differences

in modularity comparing the observed density of nodes to

the expected in both analyses. In addition, it is possible

to observe that many of these biological processes were

demonstrated to be enriched both in male- and female-

biased modules, indicating that there are sex-specific

differences in modularity involved in these differentially

regulated processes.
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FIGURE 3

GO terms enrichment of modules from female-baseline di�erential network resulted from ALPACA analysis of di�erences in network topology

from PANDA networks. GO terms were chosen according to their uniqueness, dispensability and significance based on REVIGO analysis. The

color of the circle indicates the over-representation adjusted p-value, and the size represents the number of genes corresponding to the

GO term.

3.3. Di�erential modularity core
transcription factors and genes

The contribution of each TF and gene is calculated by

ALPACA and defined as a score of “differential modularity.”

Top TFs were defined as those which scores were 1.5×IQR

higher than the module median and top genes those which

deviated 3×IQR.

The female-baseline differential network comprises 24 top

TFs and 3 top genes. These TFs and genes are associated with

the modules that have a different density in the male network

than the expected based on the female network, and thereby

are classified as male-biased (Table 1). Most of the top TFs are

from the Ets family, such as ELK1, ERF and ERG, all located

in the male-biased M7. These TFs have been implicated in

biological functions like cellular proliferation, differentiation,

tissue remodeling, and apoptosis (Sementchenko and Watson,

2000). The top TF was ETV1, a protein that is associated

with neuron cell differentiation (Flames and Hobert, 2009; Abe

et al., 2012), connection formation (Arber et al., 2000), and is

regulated by the androgen receptor (Cai et al., 2007). Some top

TFs from the male-biased M6 are from the CREB and ATF

families, which are involved in pathways of cAMP-dependent

phosphorylative activation of multiple kinases that are pertinent

to neuron proliferation, survival, maturation, differentiation,

and synaptic establishment (Alberini, 2009; Landeira et al.,

2016). Lastly, top TFs like NFYA, NFYB, NFYC, and GABPA, in

addition to the top gene SARS2 are all relevant to mitochondrial

function and lipid metabolism (Yokogawa et al., 2000; Yang

et al., 2014; Benatti et al., 2015).
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FIGURE 4

Enrichment of modules from the male-baseline di�erential network for GO terms selected by REVIGO. The intensity of the color of the circle

indicates the over-representation adjusted p-value, and the size represents the number of genes corresponding to the GO term.

The male-baseline differential network contained 50 top

TFs (Table 2) and 129 genes classified as female-biased (see

Supplementary Table S4 for genes). Highest scored TFs are

located at female-biased M9 and are essential for proper

development of brain structures, mainly GSC (Parry et al.,

2013), DMBX1 (Zhang et al., 2002), PITX3 (Verdin et al.,

2014), and OTX1 (Larsen et al., 2010). Top TFs that belong to

the female-biased M5 are from the bHLH superfamily that is

related to neuronal differentiation regulation, such as proteins

BHLHE23 and BHLHA15 (Skinner et al., 2010), oligodendrocyte

transcription factors OLIG1, OLIG2, and OLIG3 (Jakovcevski,

2005), and neurogenic factors NEUROD2, NEUROG1, and

NEUROG2 (Sun et al., 2001). Female-biased M3 contains TFs

related to the Myc/Max/Mad network, extensively known for

its role in regulating cell cycle, growth and survival (Grandori

et al., 2000), such as MYC, MYCN, MNT, MLXIP, and MXI1.

In addition, female-biased M3 top TFs NPAS2 and BHLHE40

are associated with the CLOCK gene pathway (Reick et al., 2001;

Nakashima et al., 2008).

Interestingly, 13 TFs have a high score of differential

modularity in both female- and male-baseline differential

networks (Supplementary Table S5). Aforementioned top TFs

from the Ets family are important to the female-biased M8 in

a similar fashion to male-biased M7. Likewise, TFs from the

CREB and ATF families are clustered in the male-biased M7,

repeating their pattern in the female-biased M6. Integrating

these results with CEMiTool co-expression modules, we observe

that some of the shared top TFs are allocated in modules with
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TABLE 1 Male-biased TFs and genes with the highest contribution to di�erential modularity.

IDs Score Type Membership logScore

ETV1 0.111032711911787 TF 7 –2.19793041917789

ETV3 0.105102133884857 TF 7 –2.25282269792897

ENSG00000235187 0.101989495776801 TF 7 –2.28288545358132

ELK1 0.100036227836841 TF 7 –2.3022228802326

ERF 0.0942194013630829 TF 7 –2.36212915933812

GABPA 0.0921935111193238 TF 7 –2.38386552921162

ERG 0.084327581715349 TF 7 –2.47304628225229

ELK4 0.0820083882832545 TF 7 –2.50093374081253

ELF4 0.0719844617675763 TF 7 –2.63130499203981

ETV2 0.0623491141159714 TF 7 –2.77500581520127

ETV6 0.0460089254404356 TF 7 –3.07891987000087

NFYB 0.0454872742240467 TF 6 –3.09032267952863

NFYC 0.0448559588330572 TF 6 –3.10429883791896

CREB3 0.0444155913215513 TF 6 –3.11416471529396

PBX3 0.0439291433374868 TF 6 –3.12517732181088

CEBPZ 0.0411715669742121 TF 6 –3.19000738285559

FOXI1 0.0411560241502577 TF 6 –3.19038496767076

ATF7 0.0407077302738889 TF 6 –3.2013372715492

NFYA 0.040400432360089 TF 6 –3.2089147920899

CREM 0.04007506050778 TF 6 –3.21700107062415

CREB1 0.0397179861278367 TF 6 –3.22595114280664

ATF1 0.039205356293987 TF 6 –3.23894190136741

CREB5 0.0384335142390451 TF 6 –3.25882543338601

ATF2 0.0375351526625051 TF 6 –3.28247738076136

SARS2 0.00667974832348833 Gene 6 –5.00867496826785

SCNM1 0.00610836004776335 Gene 7 –5.09809694644698

SF3A1 0.00580643130286095 Gene 7 –5.1487891304238

sex differences in activity (Supplementary Table S5). The top TF

ERF belongs to the CM9, which is more active in males and

related to cell cycle control, in consonance with the female-

biased M7 functional enrichment. In addition, top TFs ATF1,

ATF2, and ETV1 are co-expressed in CM2, more active in males,

while ATF7 and CREB5 are co-expressed in CM1 and more

active in females.

3.4. ALPACA’s di�erential modules
enrichment for databases of interest

Using MSET, each ALPACA’s differential module was

tested for enrichment to genes expressed in mid-gestational

cell types (Figure 5 and Supplementary Table S6A). Since our

dataset consists of non-dissected bulk RNA-seq, these results

indicate that biological processes that are characteristic of

certain cell types could be differentially regulated in ALPACA’s

differential modules.

Genes from female-biased M1 are enriched for endothelial

(fold enrichment (FE) = 1.38; adjusted p < 0.001), microglial

(FE = 1.35; adjusted p = 0.001), pericyte (FE = 1.24; adjusted

p = 0.007), outer radial glial (FE = 1.24; adjusted p =

0.002), and ventricular radial glial (FE = 1.31; adjusted p

= 0.002) cells. This ALPACA module was associated with

cytokine production, endothelial cell apoptotic process and

tissue remodeling biological processes.

Female-biased M2 and male-biased M3 are both enriched

for genes expressed in differentiated or maturing excitatory

neurons, which are generated during neurogenesis (Taverna

et al., 2014). Female-biased M2 is also enriched for GO terms

such as synaptic signaling and cell part morphogenesis, which

are representative of neuronal activity in differentiated neurons

and of dendritic and axonal growth in maturing neurons.

Another shared cell type enrichment pattern occurs in

male-biased M7 and female-biased M9 for cycling progenitors

(S phase) (FE = 1.8; adjusted p = 0.003, and FE = 1.58;

adjusted p = 0.012, respectively) and intermediate progenitor

(FE = 2.08; adjusted p < 0.001, and FE = 3.14; adjusted p <
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TABLE 2 Female-biased TFs with the highest scores of di�erential modularity.

IDs Score Type Membership logScore

GSC 0.15269444991972 TF 9 –1.87931641371986

DMBX1 0.143896164185085 TF 9 –1.93866332155886

PITX3 0.139609591555273 TF 9 –1.96890538359812

GSC2 0.136565488213182 TF 9 –1.99095101227904

PITX1 0.129696540209988 TF 9 –2.0425578633433

CRX 0.125931486465048 TF 9 –2.07201727813467

ATF7 0.123740411331103 TF 7 –2.0895693647285

CREB3 0.120790690784687 TF 7 –2.1136960594916

DPRX 0.120072842470422 TF 9 –2.11965669977571

CREB1 0.114068478575226 TF 7 –2.17095632167285

ATF2 0.111667400013813 TF 7 –2.19223046855887

CREB5 0.110148933472246 TF 7 –2.2059218882841

BHLHE23 0.108192582807058 TF 5 –2.22384246568603

BHLHA15 0.107423375532402 TF 5 –2.23097747131205

OLIG1 0.103916814738681 TF 5 –2.26416455817999

OLIG2 0.100935892899876 TF 5 –2.29326968742689

OLIG3 0.0992507778721316 TF 5 –2.31010552194296

CREM 0.0973928687453972 TF 7 –2.32900228718044

ATF1 0.0965080136608328 TF 7 –2.33812923096765

E4F1 0.0948727792385772 TF 7 –2.35521845077532

NEUROD2 0.0901541681065749 TF 5 –2.40623409516508

BHLHE22 0.0877130213855779 TF 5 –2.43368491416513

NEUROG1 0.0863604773712158 TF 5 –2.44922514566188

NEUROG2 0.0858153611956347 TF 5 –2.4555572535989

BATF3 0.0752807014700203 TF 7 –2.58653146560257

ETV1 0.0736046279099473 TF 8 –2.60904737601288

ETV3 0.0732706608698659 TF 8 –2.61359501119943

ENSG00000235187 0.0728467393263581 TF 8 –2.61939750607484

ELK1 0.0726022269170718 TF 8 –2.62275968383295

TCF23 0.0677728510262973 TF 5 –2.69159359156897

ERF 0.0659989002319932 TF 8 –2.71811720024616

GABPA 0.0653488923062923 TF 8 –2.72801478922706

TWIST2 0.06246467706455 TF 5 –2.77315404897403

ERG 0.0577576316972216 TF 8 –2.85149978771012

ELK4 0.0572357326313101 TF 8 –2.86057687928635

MNT 0.0557028778394643 TF 3 –2.88772346660684

JUN 0.0555297227080979 TF 7 –2.89083685729236

MLXIP 0.0541104351118061 TF 3 –2.9167282261141

ELF4 0.0533629664474969 TF 8 –2.93063828582599

ID2 0.0516803037243714 TF 3 –2.96267854250549

OTX1 0.0515334369812805 TF 9 –2.96552442021925

NPAS2 0.0510333269816641 TF 3 –2.9752763894478

MXI1 0.0479890121591645 TF 3 –3.03678320762965

MYCL1 0.0457721650316248 TF 3 –3.08407912301834

MYCN 0.0446185170191288 TF 3 –3.10960632631831

ETV2 0.0398554499721332 TF 8 –3.22249612093557

(Continued)
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TABLE 2 Continued

IDs Score Type Membership logScore

ELF1 0.0391257977816137 TF 8 –3.24097323974533

MYC 0.0381768714055192 TF 3 –3.26552540732339

HEY1 0.0381381103891828 TF 3 –3.26654122410688

BHLHE40 0.037927235388315 TF 3 –3.27208581314271

0.001, respectively). These modules are associated with energy

production and cell cycle regulation.

The cell cycle related male-biased M6 is enriched for genes

expressed in outer radial glia (FE= 1.72; adjusted p= 0.008) and

ventricular radial glia (FE = 2.37; adjusted p < 0.001), which

are proliferative cells, as well as with cycling progenitors from

G2/M (FE = 3.51; adjusted p < 0.001) and S phase (FE = 3.06;

adjusted p < 0.001) and intermediate progenitors (FE = 2.22;

adjusted p = 0.003). This enrichment pattern does not repeat

in any female-biased module. Overall, cell type gene expression

enrichment correlates with biological processes enriched within

the same ALPACA module.

We also aimed to discover whether genes grouped

in differential modules with significant enrichment

for biological processes pertained to gene lists

associated with neuropsychiatric disorders (Figure 6 and

Supplementary Table S6B). MSET analysis results show that

female-biased M2 is enriched for intellectual disability (FE =

1.31; adjusted p = 0.001), macrocephaly (FE = 2.63; adjusted

p = 0.004), non-syndromic ASD genes from SFARI (FE = 1.5;

adjusted p < 0.001), non-syndromic ASD genes with scores

1 or 2 (high confiability) (FE = 1.61; adjusted p < 0.001),

and syndromic ASD genes (FE = 1.64; adjusted p = 0.017).

Moreover, male-biased M6 is enriched for ASD genes (FE =

5.94; adjusted p < 0.001), genes in the cross-disorder database

(FE = 3.47; adjusted p = 0.016), and syndromic ASD genes (FE

= 2.26; adjusted p= 0.03).

Lastly, we analyzed our ALPACA differential modules for

enrichment of gene targets of sex steroid hormone receptors

(Supplementary Table S6C). Male-biased modules M1 and M6

were enriched for estrogen receptor (ER) targets (FE = 1.27;

adjusted p < 0.001, and FE = 1.46; adjusted p = 0.01,

respectively). For female-biased modules, only M2 was enriched

for ER targets (FE = 1.29; adjusted p < 0.001). Curiously, none

of the modules were enriched for androgen receptors.

4. Discussion

Our study used integrative approaches that account for

biological complexity and takes advantage of its interacting

entities to better understand sex differences in brain autosomal

gene expression regulation. In this context, we applied network

tools that take advantage of community information, since

methods that identify changes in groups of nodes rather than

individual edges or nodes have been demonstrated to find

more robust differences between distinct phenotypes (Padi and

Quackenbush, 2018). CEMiTool clusters genes based on the

correlation of their expression, and could identify co-expression

modules differentially activated in two conditions. Co-expressed

genes often have related biological functions or participate

in the same regulatory pathways (Langfelder and Horvath,

2008). Co-expression networks are built as a consequence

of gene expression regulation, however they do not convey

direct information about regulatory interactions. Therefore, we

combined co-expression networks with regulatory networks

inferred by the netZoo tools in order to extract this information.

These complementary analyses also increase the reliability of

our results that are achieved by the two independent tools, and

thereby we expect similar biological processes to be pointed

out as differentially co-expressed and regulated between sexes

in both analyzes. Moreover, we observe that these differences

in the regulation of biological processes are a consequence

of the sex differences in modularity, and the addition of the

CEMiTool results shows in which sex this biological process is

more active.

In a recent review, Kostović et al. (2019) divided the

fetal and perinatal developmental stages characterized by the

occurrence and intensity of major histo- and neurogenetic

events, originating transient patterns of microstructural features

that will later differentiate into the multiple areas of the

brain. The early fetal period (8–12.5 PCW) is characterized by

three histo- and neurogenetic events: proliferation, migration

and molecular specification, culminating in the establishment

of the cortical plate. From 13 to 15 PCW, these events

continue while cells begin to change aggregation patterns

and migrate tangentially, causing the dispersion of cortical

plate cells, reducing its density, and ultimately forming

the cortical subplate. Through the midfetal period (15–23

PCW) four events are dominant: neuronal aggregation and

cytoarchitecture changes, axonal outgrowth and ingrowth,

dendritic differentiation, and molecular specification. Neuronal

proliferation continues in the ventricular zones, and new

postmitotic neurons migrate through the intermediate zone

and the subplate, defining transitory patterns of lamination

and of microstructural organization of subcortical areas.
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FIGURE 5

MSET analysis of all genes from di�erential modules for enrichment of mid-gestational cell types identified by fetal brain single-cell RNA-seq. (A)

MSET analysis of genes from di�erential modules using the female network as the baseline. Circle size indicates module gene fold enrichment

of the cell type dataset and significant enrichment (adjusted p < 0.05) is represented by the red scaled colors. (B) Cell type results using the male

di�erential network.

Moreover, neuronal differentiation, dendritic development,

astroglia differentiation, gliogenesis and synaptic activity are also

observed during the midfetal period.

In this context, this study contributes to the understanding

of sex bias in brain development by capturing differences

in pathways and biological processes in accordance
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FIGURE 6

Enrichment analysis using MSET to identify di�erential modules with genes associated with neuropsychiatric disorders lists from multiple

databases (see Methods). (A) Disorders to which female-baseline di�erential modules are significantly enriched are represented by red scaled

circles (adjusted p < 0.05). Circle size is relative to the fold enrichment. (B) Enrichment of male-baseline di�erential modules to disorders

databases.

with the brain development events that have been

described for the fetal period of our samples, which range

from 12 to 19 PCW of age. Collectively, CEMiTools,

and netZoo results showed sex differences mainly

in processes associated with progenitor proliferation

and survival as well as cell fate decisions pertinent
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to cell delamination and differentiation, cell migration

and sinaptogenesis.

Sex differences in cell proliferation is a consistent result

along the conducted analyses. ALPACA’s male-biased M6 is

associated with cell cycle regulation while no female-biased

module is, indicating that the regulatory patterns of this

function in females are organized differently in males. This

same module is enriched for multiple proliferative cell types

as demonstrated by MSET analysis using mid-gestational brain

gene sets, corroborating that these regulatory interactions are

relevant to the neural progenitor activity and contribute to sex

differences. Complementarily, CEMiTool demonstrates that cell

cycle associated genes present the highest difference in activity

between sexes, with higher mean expression inmales. It has been

demonstrated that prenatal brain growth in males is greater than

in females from very early periods, and fetal head circumference

measures are consistent with this concept (Gutiérrez-Adán et al.,

2006; Broere-Brown et al., 2016). This higher proliferative profile

has been well observed in cancer, resulting in higher incidence

and mortality in males (Rubin et al., 2020). Abnormal neuronal

proliferation has also been associated with NDs more common

in males, such as ASD and ID (Ernst, 2016; Marchetto et al.,

2016). Accordingly, male-biased M6 genes are enriched for two

ASD gene sets, suggesting that this differential regulation in cell

proliferation could be related to the male-bias in ASD.

We have also observed cohesive sex differences in the

regulation of metabolism. Our discoveries show that genes

related to the citric acid cycle, oxidative phosphorylation, and

ATP synthesis are differentially regulated, while also more active

in females. Metabolic processes are intrinsically involved in

brain development because they regulate energy homeostasis,

mediating nutrient availability, stress response and hormonal

stimuli, and cell growth and division (Fritz and Fajas, 2010).

The proliferative state of cells during neurogenesis is correlated

with a decreased oxidative phosphorylation metabolism and an

increase in the glycolytic activity, which is less efficient but

produces ATP faster allowing for the augmented biosynthesis

of macromolecules (Ježek et al., 2010). The glycolytic pathway

includes the oxidation of fatty acids, which is a signal to induce

cell stemness (Knobloch, 2017). It has been demonstrated that

in normal conditions males favor the glycolytic pathway to

generate ATP quickly, increasing their glucose and pyruvate

uptake and producing more lactate, while females favor the

pentose phosphate pathway (Rubin et al., 2020). Previous

findings demonstrated that given an abundance of nutrients,

normal proliferating cells can use glucose and glutamine as

substrates to produce ATP and maximize their growth via

PI3K/mTOR signaling pathways (Ray et al., 1995; Heiden

et al., 2009). Research with murine hearts demonstrate that the

PI3K/mTOR pathways are sexually dimorphic (Gürgen et al.,

2013). TP53 gene regulation is more active in males according

to our results. It is intricately associated with our top TFs in

protein-protein interaction networks, and together with the top

TFs from the MYC family it plays an important role in the

glycolytic pathway (Whan Kim et al., 2004). MYC genes are

known to stimulate glucose uptake, NADPH biosynthesis for

redox homeostasis and glycolysis (Dang, 2010). In fact, the motif

for MYC-associated zinc finger protein has been shown to be

extremely differentially targeted between sexes across multiple

tissues even when there are no differences in targeted gene

expression (Lopes-Ramos et al., 2020). Therefore, we provide

additional evidence to the theory that males naturally present a

more proliferative metabolic profile, which seems to be partially

defined by the activity of TFs from the MYC family.

Our results also point to a sex biased regulation of lipid

catabolic processes, reverse cholesterol transport and amine and

steroid metabolism. These lipid metabolic processes are essential

for neural progenitor survival, proliferation and differentiation,

in addition to ROS homeostasis, and mitochondrial biogenesis

and function (Fame and Lehtinen, 2021). Cholesterol, for

instance, is one of the most abundant lipids in neuron

membranes and in the myelin sheaths, being essential for proper

synaptogenesis, brain development and all sex steroid hormones

biosynthesis (Orth and Bellosta, 2012). Consequently, the loss

of the capacity to produce cholesterol in murine neural stem

cells induces apoptosis, halting proliferation (Saito et al., 2009).

Neural stem cells metabolism is primarily glycolytic, shifting

to oxidative as they mature, and higher lipogenesis activity is

essential to neuronal differentiation since lipids are necessary for

the constitution of the membrane of neurons, their projections

and vesicles (Knobloch, 2017). Lipogenesis and nucleotide

synthesis are increased with the redirection of the glucose

carbon flux to anabolic pathways caused by aerobic glycolysis,

a process regulated by one of the top TFs we encountered,

MLXIP (Fritz and Fajas, 2010). Indeed, females prioritize lipidic

pathways, synthesizing and consuming more lipids (Ockner

et al., 1979). These sex differences in cell metabolic profiles could

be related to the higher proliferation of neural stem cells in

males, while females shift earlier to an oxidative profile that

differentiates progenitor cells into mature neurons. It is also

notable that sex steroid hormones are intricatedly involved in

metabolic differences through cAMP signaling pathways (Mayes

and Watson, 2004), and their role in neuronal proliferation and

differentiation has been extensively described (Karaismailoglu

and Erdem, 2013; Miranda and Sousa, 2018).

In addition to the aforementioned metabolic functions of

mitochondria in energy metabolism, apoptosis regulation and

steroid hormone production, ALPACA also indicates regulatory

differences in terms related to mitochondrial overall activity

(mitochondrial gene expression, mRNA metabolic process,

and mitochondrial translation) represented mainly in female-

biased ALPACA module M9. Indeed, females have higher

mitochondrial activity than males in blood and muscle cells

(Cardinale et al., 2018; Silaidos et al., 2018), and CEMiTool

reveals that related genes are more active in female fetal

brain samples as well. Studies demonstrated that mitochondria
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from females produce more antioxidant proteins, therefore

accumulating less ROS (Borrás et al., 2003). In consonance,

glucocorticoid mediated ROS increase during gestational stress

is higher in males, and sex-specific placental adaptation makes

male fetuses keep growing even in adverse situations (Stark et al.,

2011). ROS can have multiple sources in cells, including the

activity of endothelial nitric oxide synthase, xanthine oxidase,

membrane bound NADPH-oxidase and from the electron

transport chain (Nayernia et al., 2014), which appeared in

our results as differentially regulated. Mitochondrial functions

have been associated with the coordination of cell proliferation,

differentiation, migration and maturation in corticogenesis

(Fame and Lehtinen, 2021), and ROS dynamics are essential to

regulate cell fate (Inoue et al., 2016). Indeed, altered metabolic

activities of ROS during neurogenesis are associated with

neurodevelopmental disorders such as schizophrenia (Paulsen

et al., 2012).

There is evidence that aerobic glycolysis reduces ROS

levels, and that their interplay is related to cell fate decision

with the participation of MYC proteins (Rodic and Vincent,

2017). These intricate interactions are signaling factors for

proliferation, differentiation, apoptosis, and autophagy when

ROS is overabundant (Reczek and Chandel, 2017). Autophagic

mechanisms appear as differentially regulated, and associated

with female-biased modules. Male cells are normaly more

autophagic than female cells during the prenatal period

(Addis et al., 2014), and autophagy has been suggested to

be regulated by sex dimorphic pathways such as PI3K/mTOR

and MAPK (Shanware et al., 2013). At least in parts, these

differences are attributed to differential regulation of the insulin-

growth factor 1 (IGF-1), which has been demonstrated to be

regulated in sexually dimorphic fashion and increases glucose

uptake (Clifton et al., 2010). Our results suggest that this

balance is differentially regulated between sexes, as seen in

the enriched functions of female-biased M7 and male-biased

M9. These modules are also enriched for several types of

progenitor cell corroborating that their genes are relevant to

proliferative functions. Altogether, these results could indicate

that this complex metabolic conjecture is underlying higher

male susceptibility to NDs in complicated gestations.

ALPACA’s female-biased module M2 is associated with cell

part morphogenesis and synaptic signaling, which are functions

related to tissue remodeling. During the morphogenesis of the

cerebral cortex, multiple cytoarchitecture transient structures

are shaped and subsequently rearranged due to neural

progenitor cells proliferation, migration and differentiation,

culminating in tissue histogenesis (Kostović et al., 2019).

As reviewed by Sokpor et al. (2022), this process requires

delamination and depends on the dismantling of adherens

junctions, modification of cell polarity, cytoskeleton remodeling,

and reposition of organelles and signaling molecules after

mitosis. Therefore, changes in ECM dynamics are indispensable

to the regulation of neurogenesis, and improper control of

these events affect brain development (Long and Huttner, 2022).

In fact, delamination is suggested to be the most important

mechanism to allow for cell migration and differentiation in the

corticogenesis (Sokpor et al., 2022). ECM components are also

relevant to neurogenesis due to their pro-proliferative signals

through cell-cell integrins interaction (Kalebic and Huttner,

2020). Interestingly, CEMiTool module CM19 is more active in

males and associated with ECM. Male-biased gene expression

in developing human brain samples has been linked to ECM

genes, which have been implicated in the etiology of autism

(Ziats and Rennert, 2013). Both CEMiTool and ALPACA results

corroborates sex differences in functions pertinent to these

ECM related processes, such as ECM organization, regulation

of cell-cell adhesion, establishment of planar polarity and

tissue remodeling. Sex differences encountered in synaptic

signaling and immune response might reflect the relevance of

neurotransmitters and cytokines as signaling molecules that

control processes during brain development (Deverman and

Patterson, 2009; Ojeda and Ávila, 2019). These processes are

enriched in both female- and male-biased ALPACA modules

and are more active in females in the CEMiTool module

CM1. Neurotransmitters are essential for cell migration due

to its chemotropic effects on migrating neurons (Behar et al.,

1996), and there is abundant evidence that neurotransmitters

and their receptors modulate gene expression through calcium

and CREB signaling pathways impacting on neurogenesis,

neuronal differentiation and programmed cell death (Jagasia

et al., 2009; Ascenzi and Bony, 2017). Studies with animalmodels

have demonstrated neurochemical differences between males

and females, mostly due to sex hormones action (Uhl et al.,

2022), and our results corroborate the hypothesis that during

corticogenesis estrogen is a relevant signaling molecule (Denley

et al., 2018). In a similar fashion, cytokines are critical signaling

factors for the renewal of neural stem cells, regulation of

differentiation between neurons and glial cells, determination of

neuronal identity, and chemotropism, modifying cell migration

and axon guidance (Deverman and Patterson, 2009). One

of the differentially regulated cytokines between males and

females we identified, interleukin-6 is temporally and spatially

controlled in order to guarantee proper brain development,

participating in multiple pathways of neuronal survival and

differentiation (Kummer et al., 2021). For instance, this cytokine

can promote ambiguous results: activating STAT-3 pathway,

it induces gliogenesis, and through the MAPK/CREB pathway

it can stimulate neurogenesis (Erta et al., 2012). Interestingly,

women carrying female fetuses produce more IL-6, TNF-α and

IL-1β (Mitchell et al., 2017).

A previous study with the same dataset identified differences

in sex expression (O’Brien et al., 2018), and demonstrated that

genes more expressed in males are enriched in neural progenitor

cells marker genes, while genes more expressed in females are

enriched in Cajal-Retzius cells and glia. We have identified

enrichment for neural progenitors and glial cells in sex-biased
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modules, but Cajal-Retzius cells markers were not included in

the single-cell database. However, we would like to highlight that

unlike in differential expression analysis, sex-biased modules

only indicate that regulatory patterns are different and do not

convey a direction of the differences. For this reason, we can not

assume that any sex is enriched for any cell type, but we can

infer that sex differences in regulatory patterns are relevant to

cell type processes. Moreover, the differences between the two

studies could also be attributed to methodological differences

and the usage of distinct databases.

The same limitation applies to the enrichments found for

genes in disorders databases. A transcriptomic study identified

that genes that are more expressed in fetal male brains are

enriched for disorders like schizophrenia, Alzheimer’s disease

and autism (Shi et al., 2016). In our analyses, we found

sex differences in regulatory patterns of modules enriched

for intellectual disability and mainly ASD. Once again, our

methods do not imply that the enrichment is specific to

any sex. Besides, our dataset contains a larger number of

samples and a narrower and more specific time window of the

fetal period, which could explain why some enrichments were

not reproduced.

Altogether, our study provides evidence that autosomal

genes related to biological functions pertinent to

neurodevelopment are differentially regulated between

sexes. The mechanisms that are possibly responsible for these

differences are the gonadal hormones, the sex chromosomes,

and the sex-specific epigenetic events (McCarthy, 2016;

Maschietto et al., 2017; Tahira et al., 2018). Our findings

reinforce that CREB and MYC participate directly in the

pathways that differentiate males from females during

development (Auger, 2003), and that gene expression

regulation of genes involved in metabolism, proliferation,

and delamination contribute to neurodevelopmental

differences between males and females. Those processes

are associated in a complex and intricate mechanism relevant

to neurodevelopmental disorders sex bias, suggesting that

multiple factors with evidences of sex differentiation interact

and regulate development. Important limitations from

this study are the usage of bulk tissue samples and a

temporal interval, which narrow the spatial and temporal

understanding of the development dynamics, and the fact

that our results are inferences based on bioinformatics

tools and molecular biology assumptions, requiring further

exploration of these regulatory interactions with practical

experiments. Nevertheless, we believe our study lays a

path for the connection of sex differences in multiple

pathways with interactions that had not been established

yet. These findings could help to understand how these

differences in brain development impact on sex-biased

neuropsychiatric disorders and provide targets for sex-specific

terapeutic interventions.
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