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ABSTRACT Unlike mammals, studies on mechanisms
that regulate waterfowl ovulation have been rarely
reported. To advance our understanding of the ovula-
tion differences in Muscovy duck, we utilized the Oxford
Nanopore Technologies (ONT) to generate transcrip-
tome data from 3 groups of female duck ovaries with
ovulation differences (i.e., preovulation [PO], consecu-
tive ovulation [COJ], and inconsecutive ovulation [IO]).
In this study, the full-length transcriptome data qualita-
tive analysis showed that a total of 24,504 nonredundant
full-length transcripts were generated, 19,060 new tran-
scripts were discovered and 14,848 novel transcripts
were successfully annotated. For the quantitative analy-
sis, differentially expressed genes (DEGs) between the 3

groups were identified and functional properties were
characterized. CTNNBI1, IGF1, FOXO03, HSPA2,
PTEN and SMC4 may be potential hub genes that regu-
late ovulation. Adhesion-related pathway, mTOR path-
way, TGF-8 signaling pathway and FoxO signaling
pathway have been considered as important pathways
that affect follicular development and ovulation. These
results provide a more complete data source of full-
length transcriptome for the further study of gene
expression and genetics in Muscovy duck. The hub genes
and potential mechanisms that affect the ovulation of
Muscovy duck have been screened out to provide a scien-
tific basis for breeding work to improve the reproduction
performance of Muscovy duck.
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INTRODUCTION

Muscovy duck (Cairina moschata) is a special water-
fowl introduced from abroad to mainland China for pur-
pose of the integration of meat, medicinal and
ornamental (Baeza et al., 2002). Tt is highly suitable for
intensive breeding and plays a vital role in the modern
waterfowl industry (Aronal et al., 2002). However, female
individuals have a strong broodiness, which results in
lower reproductive performance and thus severely
restricts the development of large-scale breeding. There-
fore, improving the female Muscovy duck reproductive
performance is one of the most critical approaches to
accelerate the process for its industrial development.

The development of poultry follicles is an extremely
complex and highly coordinated physiological process
(Webb et al., 2003), which is similar to mammals, but
has its own unique developmental characteristics. The
development of poultry follicles strictly follows a certain
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level, from small to large and gradually mature until
ovulation. The rank arrangement of mature follicles is
the unique development characteristic of poultry follicles
(Onagbesan et al., 2009; Johnson, 2012). At the peak
period of ovulation, the largest follicle (F1) is selected
from the follicle pool for subsequent ovulation
(Ghanem and Johnson, 2019), but less than 1% of them
can reach maturity and ovulation. Unselected follicles
will move toward the fate of atresia, the selection of
dominant follicles and ovulation will occur at the same
time as the atresia of inferior follicles (Zhou et al., 2019).

In recent years, most transcriptome studies focused on
the development of mammalian follicles. In contrast,
researches on the follicles of waterfowl or poultry are
rare, most of them were mainly focused on chickens
( Yin et al., 2020) and geese (Li et al., 2019b; Hu et al.,
2020) by using second-generation sequencing technology
(SGS). Although SGS is a major milestone break-
through, it is clear that the short reads generated by the
second-generation sequencing platform can no longer
satisfy the need of the rapidly developing field of bioin-
formatics. Over a short period, the third-generation
sequencing technology (single-molecule sequencing) has
emerged. Full-length transcriptome sequencing based on
Oxford Nanopore Technologies (ONT) can measure the
change of ion current, according to the size of the
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current and the change of the current size, the base is
judged through the complex algorithm of "Recurrent
Neural Network". This process does not need to inter-
rupt RNA fragments, and direct reverse transcription to
obtain full-length cDNA | the ultralong read contains the
sequence information of a single complete transcript.
The transcript sequence can be directly used for further
analysis (Jain et al., 2016; Bayega et al., 2018 and
Magi et al., 2018). This platform can overcome the
shortcoming (i.e., full-length transcripts cannot be accu-
rately obtained) of second-generation sequencing
(Koren et al., 2012). It can read from the beginning
without assembly, and obtain more transcript informa-
tion, which is more conducive to comprehensive analysis.
Increasing studies utilized ONT sequencers for tran-
scriptome sequencing, such as Arabidopsis thaliana
(Cui et al, 2020) and Saccharomyces cerevisiae
(Jenjaroenpun et al., 2018).

Intending to gain more insight into the developmental
mechanism of Muscovy duck follicles;, ONT sequencing
technology was used to obtain full-length transcriptome
of the follicles in Muscovy duck, full-length transcrip-
tome provide a more complete data source for the fur-
ther study of gene expression and genetics in Muscovy
duck. Especially, we analysis the ovaries transcriptome
with ovulation differences, revealed the key pathways
and hub genes for ovulation in Muscovy duck follicles.
These results are expected to provide new perspective
for the molecular mechanism regulating the ovarian
development of Muscovy duck even in poultry.

MATERIALS AND METHODS
Ethics Statement

This study complied with institutional and national

approved by the Institutional Animal Care and Use
Committee at the Northwest A&F University. All
efforts were made to minimize animal suffering.

Animals and Sample Collection

Muscovy duck were obtained from Shaanxi Anda
Agricultural Development Co., Ltd (Shaanxi, China).
We sampled the ovaries of a total of 9 ducks, including 3
ducks that had not ovulation (22 wk) and 6 that were at
the peak of egg production (40 wk), in which 3 were
consecutive ovulations ducks, 3 were inconsecutive
ovulations ducks (i.e., preovulation [PO], consecutive
ovulation [COJ, and inconsecutive ovulation [I0]). All
selected ducks had identical genetic background and
appearance, raised under the same feeding management
condition, and ducks in each group had a similar body
weight. The female duck ovaries with ovulation differen-
ces were pooled for 3 biological replicates, respectively.
The total RNA was extracted from each ovary sample
using TRIzol reagent (Invitrogen, Paisley, UK) accord-
ing to the manufacturer’s protocol. RNA quality was
evaluated using the Nanodrop-2000 (Thermo Fisher Sci-
entific, Waltham, MA) and Agilent Bioanalyzer 2100
(Agilent, Santa Clara, CA) by running electrophoresis
with 1% agarose gel. After RNA integrity and concen-
tration meet the sequencing requirements, we use it for
subsequent analysis.

Oxford Nanopore Technologies Long Read
Processing

The ONT processing workflow is summarized in
Figure 1. One ug total RNA was prepared for cDNA
libraries using c¢DNA-PCR Sequencing Kit (SQK-
Oxford Nanopore
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Figure 1. The flow chart illustrating the steps of nanopore-based RNA sequencing.
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Technologies (ONT). Briefly, the template switching
activity of reverse transcriptases enriches for full-length
c¢DNAs and adds defined PCR adapters directly to both
ends of the first-strand ¢cDNA; And following cDNA
PCR for 14 circles with LongAmp Tag (NEB). The
PCR products were then subjected to ONT adaptor liga-
tion using T4 DNA ligase (NEB). Agencourt XP beads
were used for DNA purification according to ONT pro-
tocol. The final cDNA libraries were added to FLO-
MIN109 flowcells and run on PromethION platform at
Biomarker Technology Company (Beijing, China). The
original fastq data were filtered through short fragments
and low-quality reads (length less than 500 bp, Qscore
less than 7), and the total clean data was obtained. The
full-length sequence was compared with the reference
genome (Anas platyrhynchos PBH1.5) using minimap2
software (Ii, 2018), and after clustering by the
comparison information, the consensus sequence was
obtained using pinfish software. Multiple copies of the
same transcript may not be concentrated in the same
consensus sequence, resulting in redundant sequences.
The consensus sequence of each sample was merged,
compared with the reference genome through minimap2,
and the comparison results were de-redundant. Sequen-
ces with identity less than 0.9 and coverage less
than 0.85 were filtered, and 24,504 nonredundant
transcript sequences were finally obtained. All raw
reads of transcriptome sequences have been submitted
to the NCBI Sequence Read Archive (SRA) with identi-
fier PO1: SRR12836353, PO2: SRR12836352, PO3:
SRR12836351, I01: SRR12836350, 102: SRR12836349,
103: SRR12836357, CO1:SRR12836356;C0O2:SRR1283
6355;C03:SRR12836354.

Structure Analysis and Gene Functional
Annotation

Transcripts were validated against known reference
transcript annotations with gffcompare (gffcompare:
classify, merge, tracking and annotation of GFF files by
comparing to a reference annotation GFF.). Simple
Sequence Repeat (SSR) of the transcriptome was identi-
fied using MISA (Thiel et al., 2003). CDS were predicted
by TransDecoder (https://github.com/TransDecoder/
TransDecoder). Gene function was annotated based on
the following databases: the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanchisa et al., 2004),
nonredundant protein sequences (NR) ( Deng et al.,
2006), Gene Ontology (GO) (Ashburner et al., 2000),
Protein Family (Pfam) (McKenna et al., 2010), Eukary-
otic Orthologous Groups/Clusters of Orthologous
Groups (KOG/COG) (Tatusov et al., 2000;
Koonin et al., 2004), and reviewed protein sequence
database (Swiss-Prot) ( Rolf et al., 2004).

Transcription Factors Prediction and IncRNA
Analysis

Animal transcription factors were identified from Ani-
mal TFDB (Hu et al, 2019). Four computational

approaches include CPC (Kong et al., 2007), CNCI
(Sun et al., 2013), CPAT (Wang et al., 2013) and Pfam
(Finn et al., 2014) were combined to screen out nonpro-
tein coding RNA candidates from putative protein-cod-
ing RNAs in the transcripts. Putative protein-coding
RNAs were filtered out using a minimum length and
exon number threshold. Transcripts with lengths more
than 200 nt and more than 2 exons were selected as
IncRNA candidates and further screened using CPC/
CNCI/CPAT/Pfam that can distinguish the protein-
coding genes from the noncoding genes.

Differentially Expressed Gene Analysis

Full length clean reads were mapped to the reference
transcriptome sequence. Reads with match quality
above 5 were further used to quantitative analysis.
Expression levels were estimated by reads per gene/
transcript per 10,000 reads mapped. Differential expres-
sion analysis of 2 conditions/groups was performed using
the DESeq R package (1.18.0). DESeq provide statisti-
cal routines for determining differential expression in
digital gene expression data using a model based on the
negative binomial distribution (Anders and Huber,
2010). The resulting P-values were adjusted using the
Benjamini and Hochberg’s approach for controlling the
false discovery rate. Genes with a P-value <0.01 and
fold change >1.5 found by DESeq were assigned as dif-
ferentially expressed.

Protein-Protein Interaction (PPI)

Align the target gene with the protein in the database
to find the homologous protein, and construct an inter-
action network based on the interaction relationship of
the homologous protein (the protein-protein interaction
of which exists in the STRING (Franceschini et al.,
2013) database: http://string-db.org/) Then the PPI of
these DEGs were visualized in Cytoscape (Shannon
et al., 2003).

Quantitative Real-Time PCR (QRT-PCR)

Reactions were conducted under the following condi-
tions: predenaturation at 95°C for 5 min, followed by 40
cycles of denaturation at 95°C for 15 s and annealing/
extension at corresponding temperature of each primer
set for 30 s. The no-template controls and negative con-
trols without reverse transcriptase were also included in
all gPCR runs. All dissociation curves exhibited a single
peak, indicating that all the primers were suitable for
qRT-PCR. The qRT-PCR primers of selected genes are
listed in Supplementary Table 1. The threshold cycle
(Ct) was determined using the default settings, all data
were analyzed using the 2-22C method.
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Table 1. Information of clean reads mapped with the reference
transcriptome.

Sample Total reads Mapped reads Mapped rates %
CO1 4,842,304 3,940,400 81.37%
CcO2 3,630,592 2,942,843 81.06%
CO3 5,254,548 4,166,762 79.30%
101 6,477,736 5,693,539 87.89%
102 4,237,737 3,459,506 81.64%
103 4,842,807 3,903,137 80.60%
PO1 4,743,008 3,843,865 81.04%
PO2 5,432,493 4,462,321 82.14%
PO3 4,599,417 3,761,808 81.79%

Abbreviations: CO, consecutive ovulation; IO, inconsecutive ovulation;
PO, preovulation.

Statistical Analysis

The data were analyzed with one-way ANOVA using
the GraphPad Prism 8.0 software. The data were pre-
sented as mean + SEMA value of P < 0.05 was consid-
ered statistically significant.

RESULTS
Overview the Full-Length Sequences

In this study, samples were sequenced for full-length
transcriptome. The clean data reached 6.02 GB. The
number of full-length sequences obtained for each sam-
ple ranges from 4,839,392 to 7,213,668 (Supplementary
Table 2). The consensus isoform is compared to the ref-
erence genome by the software minimap2 and then
removed redundancy. Finally, 24,504 nonredundant
transcript sequences were obtained. The deredundancy
of all samples was compared with the known annota-
tions of the reference genome, and 19,060 novel tran-
scripts were found.

Structure Analysis and Functional
Annotation of Novel Transcript

All the obtained novel transcript sequences are
aligned with 7 databases: NR, Pfam, KOG, COG, Swiss-
Prot, KEGG and GO. In total, 14,796 isoforms were
annotated; there were 12,177 isoforms annotated in the
GO database and 10,256 isoforms annotated in the
KEGG database. The NR database had the highest
number of isoform annotations (14,796 isoforms),
whereas the COG database (3,671 isoforms) had the
lowest isoform number (Table 2).

Table 2. Information of function annotation.

Annotated databases New isoform number

CcOoG 3,671
GO 12,177
KEGG 10,256
KOG 10,718
Pfam 10,386
Swiss-Prot 9,085
eggNOG 14,044
nr 14,796
All 14,848

Table 3. Type and number of SSRs identified.

Searching item Numbers

Total number of sequences examined 20,540
Total size of examined sequences (bp) 31,469,080
Total number of identified SSRs 8,040
Number of SSR containing sequences 5,797
Number of sequences containing more than 1 SSR 1,613
Number of SSRs present in compound formation 701
Mono nucleotide 5,588
Di nucleotide 749
Tri nucleotide 1,554
Tetra nucleotide 85
Penta nucleotide 51
Hexa nucleotide 13

SSR and TF Analysis

A total number of 20,540 sequences with a total size of
31,469,080 bp were subjected to SSR. prediction. As a
result, the total number of identified SSRs is 8,040, and
the number of SSRs containing sequences is 5,797
(Table 3). Seven types of SSRs were identified: Mononu-
cleotide, dinucleotide, Tri-nucleotide, Tetra-nucleotide,
Penta-nucleotide, Hexa-nucleotide, and compound SSR
(Figure 2). SSR was analyzed using MISA software. Ani-
mal transcription factor identification predicts a total of
3,235 transcription factors from the new transcripts
obtained (Figure 3A).

CDS and IncRNA Prediction

A total of 15,810 ORFs were predicted, including
7,903 complete ORFs. The predicted CDS results are
shown in Figure 3B. A total of 1,815 IncRNA tran-
scripts were predicted by CPC/CNCI/CPAT /Pfam
analysis. The noncoding transcripts identified by the
4 methods were intersected with the results of
IncRNAs for subgroup analysis. All detected IncRNAs
were subdivided into the following 4 types: lincRNAs
(long intergenic noncoding RNAs, 1,353, 74.5%),
antisense-IncRNAs (186, 10.2%), intronic-lncRNAs
(179, 9.9%), and sense-IncRNAs (97, 5.3%)
(Figures 3C and D).

Identification and Functional Profiles of
Differentially Expressed Genes

We identified genes with a Fold Change>1.5 and P-
value <0.01 in a comparison as significant DEGs. The
number of DEGs in the I0-CO group comparison was
179, including 53 up-regulated genes and 126 down-reg-
ulated genes, while a total of 3,046 DEGs (1,046 up-reg-
ulated and 2,000 down-regulated) were identified in the
PO compared with the CO group (Table 4). Volcano
Plot can be used to more intuitively view the differences
in the expression levels of DEGs in different groups and
the statistical significance of the differences (Figures 4A
and B). As shown in Figure 4C, there were 135 DEGs
present between pairwise comparisons. Six DEGs were
randomly selected to verify using qRT-PCR (Supple-
mentary Figure 1). Regardless of the fold change, the
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expression of almost all of these selected mRNAs deter-
mined by qRT-PCR showed a similar trend to the
results of RNA-seq, indicating the true reliability of our
ONT sequencing methods.

Gene Ontology (GO) Analysis

The GO database describes the functional properties
of genes and gene products in an organism. The
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Table 4. Number of different expressed genes in three groups.

DEG set DEG numbers Upregulated Downregulated
I01_102_103_vs CO1_CO2_CO3 179 53 126
POI_PO2 PO3 vs COl1_CO2 CO3 3,046 1,046 2,000
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Figure 4. Identification and functional analysis of differentially expressed genes. (A, B) Volcano plots showing significantly up and down regu-
lated genes between PO vs. CO and IO vs. CO, respectively. (C) Venn diagram indicating the number of DEGs between three groups. (D, E) Anno-
tation of Gene Ontology (GO) functional between PO vs. CO and IO vs. CO, respectively. Red represents BP, green represents CC and blue

represents MF.

(Figure 4D). The DEGs most significantly enriched in
the CC category in PO-CO group were cell, followed by
cell part and organelle, while the MF of the GO category
encompassed binding, catalytic activity, molecular
transducer activity, signal transducer activity, trans-
porter activity, nucleic acid binding transcription factor
activity. Cellular process, single-organism process, bio-
logical regulation, metabolic process, and response to
stimulus category were enriched among the top 5 GO
terms in the BP. Further, there were 68 DEGs signifi-
cantly enriched in GO terms between 10-CO groups
(Figure 4E), the biological process (48 genes) was the
most significantly enriched, followed by cell composition
(47 genes) and molecular function (41 genes).

KEGG Pathway Enrichment Analysis

To further identify the major biochemical, metabolic,
and signal transduction pathways of the DEGs, we per-
formed a KEGG pathway enrichment analysis. Compar-
ison of PO and CO, there were 1,466 DEGs were
mapped to the reference pathways recorded in the
KEGG database, yielded a total of 57 DEGs mapped to
known KEGG pathways between 10-CO group. The
top 20 pathways with the lowest Q values were shown in
Figures 5A and B. DEGs from PO-CO group were

mainly distributed in the Ribosome, Focal adhesion,
Regulation of actin cytoskeleton, Oxidative phosphory-
lation and ECM-receptor interaction pathways, while
I0-CO group focus on Focal adhesion, ECM-receptor
interaction and Phagosome pathways.

DEG Protein-Protein Interaction Analysis
and Hub Gene Identification

To further explore the interactions among DEGs, a
novel interaction network was constructed using Cyto-
scape software. Network Analysis can quickly and intui-
tively understand the complex gene regulatory network
of follicle development. DEGs were selected in reproduc-
tion related-GO term were selected (Supplementary
Table 3), then the Protein-Protein Interaction network
was constructed. Among them, nodes with the greatest
number of neighbors were considered as hub genes,
CTNNBI1, IGF1, FOXO03, HSPA2, PTEN, and SMC4
being the most significant node genes (Figure 6).

DISCUSSION

Egg production is one of the most important indica-
tors that affect the economic benefits of the poultry
industry. High-yielding Muscovy duck will ovulate
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Figure 6. Protein-Protein Interaction analysis. The network shows genes up-regulated (yellow) and down-regulated (blue).

continuously every day during the peak period of egg
production to achieve higher egg production. In this
study, we conducted ONT technology to obtain com-
plete transcriptome of Muscovy duck ovary. Finally,
24,504 transcript sequences were obtained, of which
19,060 new transcripts were discovered. A total of 8,040
SSRs were obtained after SSR prediction. Analysis of
the sequence structure of the newly discovered tran-
scripts, a total of 7,903 complete ORF sequences and
1,815 IncRNAs were predicted, and 14,848 new tran-
scripts were functionally annotated. Transcription fac-
tor prediction was performed on all transcripts, and a
total of 3,235 transcription factors were predicted. The
linkage relationship between microsatellite DNA and

trait genes can be used to improve certain economic
traits. In the breeding process, low-heritability quantita-
tive traits can be targeted to improve according to geno-
types (Bakhtiarizadeh et al., 2012). In the future, we
will use the transcriptome of the Muscovy duck; highly
polymorphic SSRs were screened to provide theoretical
basis for genetic diversity research, germplasm resource
protection and genetic selection, and breeding of Mus-
covy duck. The current research on IncRNAs related to
animal reproduction shows that their mechanism of reg-
ulation of important economic traits such as livestock
reproduction is involved in the process of animal oogene-
sis (Ryu and Macdonald 2015), embryonic development
(Keniry et al., 2012), and even gonadal development
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(Kaneko et al., 2013). The predicted IncRNA from the
transcriptome can be helpful for future research on the
reproduction mechanism of Muscovy ducks.

Based on the quantitative analysis, we obtain the
DEGs in the 3 groups with differential ovulation, and
screened the key genes and pathways through KEGG
and GO enriched functional annotations. For the
KEGG pathway analysis, 5 adhesion-related pathways:
Focal adhesion (ko04510), Extracellular matrix (ECM)
(ko04512), cell adhesion molecules (CAMs) (ko04514),
tight junctions (TJ) (ko04530), and adhesion junctions
(AJ) (ko04520) are significant enrichment and make
them stand out of the first 20 upregulated pathways
(Supplementary Table 4). Focal adhesion is the second-
highest enrichment pathway, the ECM receptor path-
way acts upstream of the focal adhesion pathway, while
the CAMs can achieve intercellular interactions as well
as cell-ECM interactions through a variety of mecha-
nisms. Extracellular matrix mainly composed of fibro-
nectin, laminin and collagen (Rodgers and Irving-
Rodgers, 2003), and is a highly dynamic structure that
will be continuously refactored (Smith et al., 2002), this
periodic remodeling is closely related to the development
of the ovary, including the formation of follicles, the
selection of dominant follicles and the final ovulation
(Wang et al., 2019). Previous studies have shown that
the outer layer of granular cell (GC) is always above the
basement membrane formed by collagen and laminin,
and is protected by the follicular basement membrane
from the primordial follicle stage to the dominant follicle
selection stage of the final ovulation. The presence of
laminin in the basement membrane may promote the
growth and ovulation of the dominant follicle in

VCAN

LOC101797502

PECAMT | 0101790497

follicular selection by enhancing the proliferation of GC
(Monniaux et al., 1999; Ozegowska et al., 2019). Cadher-
ins, integrins, CAMs of the immunoglobulin superfam-
ily, and selectins are considered the foremost CAMs
classes (Senderoff, 2013), among which N-cadherin plays
an indispensable role in follicle formation, and its expres-
sion has been increasing during phase of developing fol-
licles. In addition to these 3 pathways, the AJ pathway
and TJ pathway have also been significantly enriched.
Cadherin, catenin, and a-actin are the main components
of AJ. The adhesion junction becomes a strong connec-
tion, linking the actin cytoskeleton of adjacent cells
(Dowland et al., 2016). AJ and TJ are connected to each
other, and AJ regulates TJ components (Suzuki, 2013).
TJ protein is involved in follicle and corpus luteum
development and also changes with follicle size
(Zhang et al., 2018a). In poultry, OCLN participates in
the transport of nutrients and regulates the transport of
yolk matter through the intercellular signals between
granulosa cells. The speed of yolk accumulation pro-
motes the occurrence of follicles to ovulation
(Dupont and Scaramuzzi, 2016). These 5 pathways play
an important role in ovulation, and the Focal adhesion
and ECM-receptor interactions pathways are also signif-
icantly upregulated in the I0-CO group. The signal
pathways related to cell adhesion undergo significant
changes in the follicle selection process. These pathways
are closely connected and interact with each other and
play an indispensable role in follicle ovulation and ovar-
ian development (Figure 7).

In addition, The PI3/Akt, mTOR, FoxO and TGF-8
signaling pathway are significant enrichment pathway
in the PO-CO (Figure 8). The PI3/Akt signaling

1451

NEO1
ITGB8 ITGB1

4
COL4A5
LOC1138408:

CD2 —%

CD36

CTN
1/0C101795371 RHW\// //

\%‘\GH
G/ 1\ \.

OL4A AL
CoLaas

" TNNB:

\

MYL9

ACTB
LA
7919

E

C10179
RAC1
GFR/ | Rac2
ver
/ CND1

5

N \

z PAK2

PIK3R2

Figure 7. Interaction networking of five adhesion-related KEGG pathways.



NANOPORE-BASED TRANSCRIPTOME OF OVARY 9

(e
° woo

RAPTOR

mTORCI SGKI PKC
4EBP1 S6K /
) == =
FOXO3a
L= ]
CBP A
FOXO | - ---- >

0000000000000000¢ o 0000, o

Smad2/3 | +— Smad67 —— Smadl/5/8
mm. I - B

Smad4 -
2 F ")
- P P
Smad2/3 Smad1/5/8
Smadd | Smadd
B
7 S N g/

Smad1/5/8
¥ ' smadd MG W

Figure 8. The signal pathway pattern diagram with heat map representation of differentially expressed genes (yellow, higher; blue, lower

expression).

pathway plays a key role in the regulation of follicle for-
mation and oogenesis (John et al., 2009). In mammals,
IGF-1 stimulates the PI3K/AKT pathway to promote
follicle survival, by reducing DNA fragmentation and
simultaneously stimulating granulosa cell proliferation.
In poultry, IGF-1 stimulates the release of progesterone
and affects egg production ( Tosca et al., 2008;
Kim et al., 2004). PTEN is the phosphatase of phospha-
tidylinositol (3,4,5)-trisphosphate (PIP3), which regu-
lates cell proliferation cycles and inhibits cell migration
(Leslie and Downes, 2004). The mTOR pathway
responds strongly to several growth factors and hor-
mones, so it not only regulates the maturation of
oocytes, but also plays a role in different stages of follicu-
lar development (Zhang et al., 2017). At the initial
stage, maintaining the state of primary follicles depends
on the mTOR activity of oocyte-GC communication,
while the mTOR dysregulation can lead to abnormal
activation of the primary follicle (Zhang et al., 2018b;
Makker et al., 2014). At the follicle selection stage,
mTOR, as a positive regulator of GC proliferation, regu-
lates the development of follicles (Wen et al., 2015).
p70S6K is defined as the downstream signal protein of
mTOR complex 1 (mTORC1) ( Liu et al., 2018). The
mitogenic signal transmitted to p70S6K is through Akt
and mTOR (Laplante and Sabatini, 2013). mTOR com-
plex 2 (mTORC2) promotes actin cytoskeleton rear-
rangement. Mice with oocyte-specific ablation of the key
component of mMTORC2 results in abnormal secretion of
gonadal hormones, death of a large number of follicles,
and even loss of functional follicles. SGK1 is a member

of the SGK family. Among them, SGK1 activated by
mTORC2 phosphorylates FOXO3a at Ser314, and then
FOXO3a inhibits the expression of CDK1 and ulti-
mately promotes cell proliferation (Mori et al., 2014).
FOXO3a is one of the most important target genes in
the downstream of IGF-1/PTEN/Akt signaling path-
way (Huang et al., 2016). FOXO3a can regulate various
cellular processes, such as cell cycle, apoptosis, DNA
damage repair (Liu et al., 2015). In mammalian ovaries,
FOXO03a protein regulates atresia and follicular growth
by promoting the apoptosis of ovarian granulosa cells
(Matsuda et al., 2011). While in poultry, FOXO3a pro-
tein can be used to inhibit the excessive activation of
primitive follicles and chicken ovarian granulosa cells
( Cui et al., 2019). These results indicate that FOXO3a
plays an indispensable role in animal ovaries. TGF-g sig-
naling pathway is divided into 2 branches through
Smad2 and Smad3, TGF-bl is expressed in oocytes of
different stages of follicles, granulosa cells, and follicular
membrane cells, and it affects steroid production and
regulates follicle development. In recent years, many
studies have reported Smad protein transduce the TGF-
B signaling pathway, by affecting the proliferation of
granulosa cells, regulating the survival of ovarian tissue
follicles and maintaining the homeostasis of the follicles
(Shen and Wang, 2019). The BMP branch signal
through Smads 1/5/8, which play an active role in pro-
moting granulosa cell proliferation and follicle survival
(Knight and Glister, 2006). The selection of dominant
follicles may depend on the different sensitivity to FSH.
Changes in the expression of AMH and BMP in the
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follicles may regulate FSH-related pathways in granu-
losa cells, and then participate in the selection of domi-
nant follicles (Chu et al., 2018). Overall, PI3/Akt,
mTOR, FoxO, and TGF-8 signaling pathway are inex-
tricably related to the development of follicles, and its
potential molecular mechanism needs further experi-
ments to clarify

Moreover, GO enrichment analysis enhanced our
understanding of DEGs; especially, we focused on the
GO terms which related to reproduction. There were 78
DEGs involved in reproductive process, 73 DEGs
involved in multiorganism reproductive process, and 59
DEGs involved in sexual reproduction. Protein-Protein
Interaction network is constructed by the DEGs from
reproduction related-GO terms, and we obtain the hub
genes (CTNNBI1, IGF1, FOX03, HSPA2, PTEN and
SMC4) through the PPI network. In addition to the
genes mentioned above, catenin beta 1 (CTNNB1) is a
downstream effector molecule of the Wnt pathway and
one of the key factors determining sex (Chassot et al.,
2014). Tt promotes the synthesis of estrogen and partici-
pates in the meiosis of germ cells and angiogenesis,
and promotes the development of preovulatory follicles
(Terakawa et al., 2019). Heat shock related protein
2 (HSPAZ2), although previous studies have mostly
focused on its effect on spermatogenesis, recent studies
have shown that HSPAZ2 is involved in the development
of primordial follicles to primary follicles by participat-
ing in endoplasmic reticulum protein processing
(Xu et al., 2017). Structural maintenance of chromo-
somes 4 (SMC4) participates in the cell cycle and
reaches its highest concentration during mitosis, which
may have a close relationship with DNA repair
(Griese et al., 2010; Wei-Shan et al., 2019).

Note that here, we also found that some DEGs were
upregulated significantly only in the IO-UO group. Cyste-
ine and glycine rich protein 1 (CSRP1) is mainly
expressed in vascular and visceral smooth muscle cells. It
has been proven to play an important role in cattle muscle
development (He et al., 2013). WNT works by binding to
Frizzled (FZD) receptors. The expression of FZD1 is sig-
nificantly induced in granulosa cells of follicles before ovu-
lation (Lapointe et al., 2012), while FZD4 is preferentially
expressed during ovulation and luteinization, and is highly
expressed in granulosa cells of small follicles of postpartum
ovaries. FZD4 is not only involved in retinal angiogenesis
but also expressed in blood vessels and the surrounding
matrix of the embryo (Hsieh et al., 2005). Secreted protein
acidic and cysteine rich (SPARC) contributes to oogene-
sis in ovaries by helping to maintain the nuclear divisions
and cytoskeleton of the follicular cells (Irles et al., 2017).
Thrombospondin (THBS) family belongs to the group of
ECM proteins. Among them, THBS1 and THBS2 have a
high degree of structural homology. THBS2 is the form
expressed in luteinized granular cells, and has been shown
to be involved in regulating angiogenesis (Berisha et al.,
2016). Tubulin beta 1 class VI (TUBBL1) is an important
component of microtubules, it participates in mitosis and
cell movement, and plays a key role in maintaining cell sta-
bility (Zhao et al., 2020). These genes may be the key genes

affecting continuous ovulation in Muscovy duck; we need
to explain through further experiments.

CONCLUSIONS

Taken together, this study obtained the full-length
transcript by using ONT, by the way of qualitative anal-
ysis; we obtain the structural outcomes and gene func-
tional annotation of novel transcript. More importantly,
in accordance with GO and KEGG enrichment analysis,
a large number of ovulation related genes and pathways
were obtained. We hypothesize that CTNNBI1, IGF1,
FOXO03, HSPA2, PTEN, and SMC4 genes may be the
key genes affecting reproduction and play an important
role in ovulation in Muscovy ducks. In addition, we pre-
liminarily explored the potential relationship and role of
Adhesion-related pathway, mTOR pathway, TGF-g sig-
naling pathway and FoxO signaling pathways in the fol-
licular development of Muscovy duck. These genes and
pathways may play a decisive role in the follicular devel-
opment, selection and ovulation of Muscovy duck. This
research will help to gain a deeper understanding of the
selection of follicles in Muscovy duck and even poultry
and the regulatory mechanism of ovarian development.
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