ﬂ SCNSors m\py

Review

A Comprehensive Survey about Thermal Comfort
under the IoT Paradigm: Is Crowdsensing the
New Horizon?

Valentina Tomat *, Alfonso P. Ramallo-Gonzalez and Antonio F. Skarmeta Gomez

Faculty of Computer Science, Universidad de Murcia, Campus Universitario, 30100 Murcia, Spain;
alfonsop.ramallo@um.es (A.PR.-G.); skarmeta@um.es (A.F.S.G.)
* Correspondence: valentina.tomat@um.es

check for

Received: 15 July 2020; Accepted: 11 August 2020; Published: 18 August 2020 updates

Abstract: This paper presents a review of technologies under the paradigm 4.0 applied to the study
of the thermal comfort and, implicitly, energy efficiency. The research is based on the analysis of
the Internet of Things (IoT) literature, presenting a comparison among several approaches adopted.
The central objective of the research is to outline the path that has been taken throughout the last
decade towards a people-centric approach, discussing how users switched from being passive
receivers of IoT services to being an active part of it. Basing on existing studies, authors performed
what was a necessary and unprecedented grouping of the IoT applications to the thermal comfort into
three categories: the thermal comfort studies with IoT hardware, in which the approach focuses on
physical devices, the mimicking of IoT sensors and comfort using Building Simulation Models, based
on the dynamic modelling of the thermal comfort through IoT systems, and Crowdsensing, a new
concept in which people can express their sensation proactively using IoT devices. Analysing the
trends of the three categories, the results showed that Crowdsensing has a promising future in
the investigation through the IoT, although some technical steps forward are needed to achieve a
satisfactory application to the thermal comfort matter.

Keywords: IoT; Crowdsensing; thermal comfort

1. Introduction

The Internet of Things (IoT) is one of the greatest revolutions that have emerged in the last decades.
IoT is based on the concept of everything connected everywhere, which is transforming the modern
world [1]. This new paradigm aims at converting real-world objects into smart objects [2], i.e., objects
that communicate via the internet to create a common infrastructure that connects human-to-human,
things-to-things and human-to-things [3]. IoT has rapidly started to involve multiple fields, such as
healthcare, industry, urbanism, home appliances and so forth [4], reaching not just electronic devices
but also merchandising, furniture, culture, landmarks and even food and clothing [5].

In the fight against climate change and energy waste, buildings are often mentioned as one of the
primary sources of emissions due to their large energy consumption. Studies confirm that 20% to 40% of
energy consumption in developed countries is attributable to the building sector, and more specifically,
50% of building consumption is due to Heating Refrigeration and Air Conditioning (HVAC) energy
use [6,7]. When looking at the use of HVACs, people’s thermal satisfaction plays a key role, because of
the importance to find a balance between energy use and users’ thermal comfort [8].

Research groups have developed several procedures to apply IoT to the issue of thermal comfort,
with points of view that differ greatly from each other. Consequently, here, the authors propose a
review of the most influential scientific publications that mix the fields of the IoT and thermal comfort,
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so the authors create added value to the scientific community that will identify the streams that have
been generated naturally. In this review, the authors identified three main ways in which the IoT can
be applied to thermal comfort studies: through hardware, through simulation and, still marginally,
through the new Crowdsensing paradigm.

This literature review focuses in particular on the role played by the occupants, describing how
researchers are moving toward a people-centric approach in which the user’s opinions and preferences
matter. This point of view is slowly streaking ahead as opposed to the “one-fits-all” perspective,
in which people were passive receivers of a thermal environment chosen by standards.

1.1. Context

According to The National Human Activity Pattern Survey, conducted in 2001 but still widely
considered among the scientific community, in modern society, people tend to spend 87% of their time
indoors [9]. Identifying an indoor thermal zone in which people are comfortable is an ever-current topic.
The modern perception of the problem started in the 1970s, presenting two different schools of thought
from the beginning. On the one hand, an initiator of the field of thermal comfort studies was Fanger,
who introduced a steady-state model to relate thermal sensation to subjective parameters, such as
activity and clothing levels [10]. Since the introduction of Fanger’s comfort model, who obtained his
results through experimentation in climate chambers, the accepted parameters to evaluate thermal
comfort have been: indoor air temperature, mean radiant temperature, indoor relative humidity,
internal air velocity, clothing insulation and metabolic rate. These parameters are incorporated in the
so-called Predicted Mean Vote (PMV), an index which aims to evaluate and predict the state of thermal
well-being of occupants. This method is based on the heat balance of the human body that, as explained
by Hoppe [11], comprehends both the physical heat transfer process and some thermophysiological
mechanisms such as sweating, shivering, etc. Fanger’s model introduced the aforementioned parameter
called Predicted Mean Vote (PMV) to also relate thermal sensation to subjective parameters, and a
parameter called Predicted Percentage of Dissatisfied (PPD), to estimate how many occupants would
feel thermally dissatisfied. Subsequent studies showed that the PMV model fails to describe comfort
temperature outside of the exact conditions of Fanger’s experiment, because it does not consider
the effect of people’s adaptation. For this reason, Fanger and Toftum [12] elaborated another model
which include an expectancy factor, e. On the other hand, Nicol and Humphreys [13] supported
that experimentations in the climate chamber do not consider other complex parameters, such as
time sequence and social factors, that are fundamental in the study of thermal comfort. It was the
beginning of the so-called Adaptive Thermal Comfort Model. Supporters of the latter have also been
de Dear and Brager [14], who stated that in naturally ventilated buildings, the range of accepted
temperature depends in great part to other parameters, such as external temperature and people’s
adaptability. Also, according to more recent studies, in the case of free-running buildings and in mixed
mode ventilated buildings, i.e., in case people can adjust or change their environment with operable
windows or through metabolic alterations, researchers tend to consider the use of the steady-state
model inadequate [15,16]. Besides, the adaptive comfort standard provides thermal design guidance
and indicates the acceptable and the optimum indoor temperature ranges depending on the climate
zone [17,18].

Today, both models are regulated by ISO 7730:2005 [19], EN 16798-1:2019 [20] and ASHRAE
55:2017 [21] regulations and are accepted and used worldwide, although significant differences among
them keep being underlined [22]. It is worth mentioning that current experiments are investigating a
novel model, that aims to explain the effect of short-term temperature changes on human’s thermal
comfort, called alliesthesia. According to this research line, thermal comfort is conceived as dynamic,
and the environment as transient and non-uniform [23-25]. Recent studies included other parameters
in the perception of thermal comfort, i.e., thermal alliesthesia and habituation, so that new models are
starting to include both a static and a transient component [26].
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In this context, IoT represents a great opportunity to face the issue of thermal comfort in buildings.
In the last decades, IoT-based systems have already become a fundamental ally in proposing new
smart solutions to ameliorate energy consumption in buildings [27]. Taking a step forward, IoT applied
to thermal comfort allows to consider the energy-matter not only passively from the point of view
of the building itself, but also in its relationship with the user. Although this review does not aim to
investigate this energetic topic, in many studies, thermal comfort is presented in relation to energy
efficiency, hence its incorporation in this document.

Furthermore, several studies demonstrate that thermal discomfort has effects both on health and
human performance. Lan et al. [28] conducted some neuro-behavioural tests on users doing office work
activity to monitor their productivity. It was possible to measure a quantitative relationship between
productivity losses and thermal sensation and to conclude that thermal discomfort leads to reduced
performance, both in case of feeling too cold and too warm. In another study, Lan et al. [29] showed
that in thermal discomfort, users reported the so-called sick building syndrome (SBS) symptom:s,
as well as a negative influence on the mood, the willingness to make efforts and the air quality
perception. It is noteworthy that the negative effects on health and performance are not related to the
distraction of subjects, but to physiological reactions to discomfort, i.e., they will occur even if subjects
have become adaptively habituated to an unfavourable environment.

IoT technologies bring a technological ecosystem that has to be understood to be aware of the role
of these systems in the buildings. These principles more based in computer science tend to follow a
common structure. Authors have used this common structure to help to classify the different works
found in the literature. IoT in buildings is composed of three layers [30]:

e  Sensing or Perception Layer, dedicated to the acquisition of information.
e  Network Layer, that connect data and manage the control centre.
e Application Layer, that is supposed to achieve the energy management.

From the literature, it is possible to see that the studies on IoT and thermal comfort differ from
each other because of one or more of these layers but maintain the general structure. For what
concerns the first layer, the sensing process through the use of IoT can collect data through sensors
both from the environment (in fixed locations) or from users (with personal devices carried by the
participants). The literature considered also differ in the way of analysing data, although the most
recurrent methods are mathematical tools and virtual modelling. About the networking, in the
literature available, its complexity can vary from basic sensor networks to complete architectures that
incorporate different components.

The application layer consists in the generation of outputs that, like in the sensor layer, could involve
the environment, i.e., a change in setting the air temperature, or the single persons, with personal
devices suitable for improving the thermal comfort of each one.

These differences also reflect the semantic duality in the conception of the IoT itself. Visions of the
IoT often embraced a “Things oriented” perspective or an “Internet oriented” perspective, intending
to create a bridge between the physical and digital world [31]. Taking in mind this duality, it is
possible to identify studies that involve physical smart objects among thermal comfort literature,
like smart HVAC systems, personal devices and studies based on virtual modelling and simulation.
In this review, the two categories will be referred to as “studies with IoT hardware” and the “Building
Simulation Model”. Of course, one method does not necessarily exclude the other. So, besides these
two approaches, the authors will present a few studies that use data to validate the computer model
simulation, and others that propose a unified platform to combine the methods.

However, in both cases, often people are considered as passive parts of the system, one variable of
the study out of many others. Differences among individuals are not considered enough and people’s
response to different stimuli are often inaccurate or undermined. For these reasons, in the last decade,
studies have developed a new approach to the thermal comfort matter, in which the main focus is
people’s opinion and perception: The Crowdsensing paradigm.
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“At present, public groups are frequently portrayed as ignorant or irrational in the face of scientific
progress” [32]. In the scientific dimension, on most occasions, “the crowd” is seen as a passive
receiver of progress’ benefits or established standards. Often, users are tacitly seen by scientists as
ignorant, misled or simply contrary. Even so, according to sociologists such as Williams [33], it is
important to form a citizen’s view of science, i.e., to create a sustainable development that foments
a people-oriented perspective. This is particularly relevant in the investigation about the energy
behaviour of buildings, in which the final aim is users’ thermal comfort. Among people’s thermal
preferences, there are differences both between two people in the same environment on the same occasion
(inter-individual differences) and between the same individual in the same environment on different
occasions (intra-individuals differences) [34]. That is why the extension to the thermal comfort of the
new paradigm of Crowdsensing, based on every individual’s perceptions and impressions, is utterly
urgent. As Erickson and Cerpa [35] stated: “At the individual level, occupants are 100% accurate when
determining if they are comfortable—only their opinion matters”.

According to Ganti et al. [36], devices that are customer-centric, like smartphones and music
players, will be the evolution of the IoT, allowing an upgrade to a societal scale.

Crowdsensing could be classified, depending on users’ involvement, into (1) participatory and (2)
opportunistic sensing. In participatory sensing, people are directly involved, through reporting data,
taking pictures, etc. In opportunistic sensing, the involvement is minimal, the explicit action of users is
not necessary. A clear example is user-generated data in mobile social network services [37], that helps
to understand the dynamics of our society.

Before the concept of Crowdsensing appeared, Dutta et al. [38] explained the problem and the
necessity of this kind of solution well: “Mobile participatory sensing uses consumer electronics to
capture, process and disseminate sensor data, complementing alternative architectures by ‘filling the
gaps’ where people go but sensor infrastructure has not yet been installed”. It is clear that thermal
sensors cannot be everywhere. In public places and workspaces, it surely is more common, but in
most of the locations that users visit, the “gap” is unavoidable. In other words, as a way to extend
researchers’ results to people, one should consider other parameters to measure the thermal comfort.
Nicol and Humphreys [39] explained this well: “And finally ... do we really need to specify indoor
climate? Given a full understanding of the mechanism at work, it may eventually be possible to
produce thermal standards for building which do not resort to specification of the indoor climate.
The characteristic of a building in relation to the local climate may be sufficient.”

One of the most fundamental constituents of the IoT is domotics, or home automation, popularly
called smart home. Domotics refers to several fields, namely smart appliances, home entertainment,
control and connectivity, comfort and lighting, security and, of course, energy management. Smarthome,
that has to be intended broadly and not just referred to in a residential context, is an incredibly fruitful
market sector, considering that just in the last three years, it has doubled its sales and they are expected
to grow by 60% by 2024 [40]. Up to now, almost 95 million homes are considered smart from an
energetic point of view, thanks to the diffusion of new technologies affordable for the majority of
people (or at least in wealthy countries).

Smart home is a trend from 2013, but it reached its higher diffusion in the last years, due to the
commercial success of devices such as Amazon Alexa. There is something revolutionary in it, since in a
very short time, IoT switched its status from news of scientific interest to fashionable for users. Alexa is
an intelligent virtual assistant that works through a smart speaker, Echo. Behind the basic functionality
of the speaker itself (plays music, reads audiobooks, streams podcasts etc.), what is interesting in
its configuration is the capability of controlling other smart devices. In other words, Alexa can be
considered itself a home automation system, which interacts with people while wiring all the smart
objects around it. It was released in November 2014, but it started to be universally popular from
2017 [41], probably due to massive advertising campaigns that gave a sort of sentimental feeling
connected to its use, such as improving family members’ relationships, summarized by the concept
of “sharing is caring” [42]. In January 2019, Amazon stated that they sold an impressive amount
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of 100 million Alexa devices [43]. Simply, it has been a revolution that shifted people’s attention to
domotics. Figure 1 is a graph created by the authors using Google Trends data [41] that shows how
much Alexa influenced the world of home automation: peaks in people’s interest almost perfectly
overlap since the end of 2016.
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Figure 1. Normalized Google trends of the queries “Smart home”, “Alexa” and “Nest”.

In Figure 1, the comparison also includes the trend of Google Nest. It does not affect the diffusion
of smart automation as much as the commercial phenomenon of Alexa, but still, it helps to explain
some peaks of penetration. In fact, Nest is another trend in the modern market, being the most popular
smart thermostat worldwide. Nest is not just a programmable thermostat—it learns from every user’s
preferences, being able to program itself as a consequence. It also learns about the time needed for a
specific home to warm up or cool down, managing a proper schedule for every situation. Besides, Nest
has a raise awareness aim, inasmuch it shows users when they are in an energy-efficient mode [44].
It can be said that Nest learns from us and we learn from Nest. Giving a brief context, Nest was born
as an invention of Tony Fadell and Mark Rogers who, in 2010, founded the Nest Labs. The brand
immediately had a discrete success, and Google bought it in 2014 and it became even more popular,
helped by other factors such as improvement in wireless broadband technology’s diffusion and the
first standards about smart meters’ requirements in offices and homes.

Several other brands deal with the energy topic in home and office automation. Up to now,
the main competitor has been Honeywell, connected with Apple Homekit (the famous voice assistant
Siri), but recently, also Ecobee, that has a built-in Alexa Voice Service and room sensors capable of
detecting occupants [45]. Other famous enterprises like Siemens, Samsung, Xiaomi, KeenHome, etc.,
are trying to take a piece of this market sector but, as shown in Figure 2, the magnitude of Nest and
Honeywell is hard to reach.
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Figure 2. Trends in Google Shopping of the queries “Nest”, “Honeywell”, “Ecobee”, “Samsung home”
and “Siemens home”. From Google Trends.

Itis worth noting that there exists a gap between types of applications in the market and the effective
use of people, i.e., something is hindering the utilization of IoT in homes and workplaces. Although they
will not be explored in this paper, researchers identified the potential reasons, namely energy
consumption, device connectivity, safety and, of course, security [46]. The most common concern is
cybersecurity: people are afraid of being spied on in their own homes and workplaces and this is a big
obstacle in the diffusion of the aforementioned devices. Users agree about the devices” function of
making their lives simpler, but they do not want to introduce new risks [47].

1.2. Paper’s Structure

The thermal comfort studies in the last decades have been strictly related to the IoT development.
Every technological advance in the IoT world corresponded to a big step forward in the understanding
of the comfort conditions. Growing accuracy of the sensing tools, new technological elements
in the loop and more powerful simulators marked the development of modern thermal comfort
investigation. The central question of this work is understanding whether or not the novel paradigm
of the IoT, the Crowdsensing, can represent a future path in the investigation about thermal comfort.
Studies based on thermal surveys are normally conducted in situ, mainly because of the necessity to
measure environmental parameters with proper devices. Crowdsensing broke this physical limit for
other fields of study, so it would be an enormous improvement to extend its potentialities also for
thermal comfort, allowing the researchers to conduct their surveys remotely.

To answer this question, the method that seemed more appropriate was analysing both how the
IoT was applied to the thermal comfort study in the last ten years and how the Crowdsensing is being
applied to the other fields of study.

The research methods of the articles for this review follow this duality. Applications of IoT
to buildings and to energy efficiency have been the focus of the authors’ research group for years,
so the starting points were the articles that the authors considered inspiring or noteworthy. It was a
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natural consequence noting that many of these articles mentioned the same researchers or the same
investigation groups, and the main contributions were found. Then, research through academic
platforms, mainly Scopus and partly Google Scholar, completed and confirmed the results.

The approach for the Crowdsensing part was quite different. As the phenomenon is quite new
and not universally known, the starting point was searching for articles about Crowdsensing in
general, through the mentioned academic platforms. The most cited papers were selected and the
major contributions in terms of explication of how the paradigm works. From this base, articles about
application to the thermal comfort topic were searched, though the keywords “Crowdsensing + Thermal
Comfort”, “Crowdsensing + IoT + Thermal Comfort”, and so forth. The research was unsuccessful:
the Crowdsensing application to thermal comfort was not investigated previously. After trying with
“Crowdsourcing + Thermal Comfort” and “Participatory sensing + Thermal Comfort”, some results
were obtained: something was moving towards that direction.

The paper is structured as follows. Section 2 investigates the thermal comfort studies with IoT
hardware. The section presents a first part in which studies that propose an improvement in thermal
comfort conditions are analysed, both obtained through changes in the whole environment and in
the micro-environments around occupants. The second part of the section presents articles that use
hardware with monitoring aims, as demonstration studies or sustained by experimentations.

Section 3 explores the mimicking of IoT sensors and comfort using Building Simulation Models.
The first part of the chapter simulates variations in thermal comforts due to changes both in the
physical surrounding and in users’ behaviour. The second part of the section proposes studies which
incorporate the simulation tools in a more complex IoT architecture, and collects studies that simulate
thermal comfort in future climates. Section 4 describes the new Crowdsensing trend and explores
its application to other fields of study. Tools to involve people in the loop are briefly explained and
the rest of the chapter is dedicated to the first applications to the thermal comfort matter. Section 5
shows quantitative results, mainly in terms of analysis of the scientific community’s interest in these
subjects. This is useful to understand if the Crowdsensing paradigm has space to grow as a scientific
topic and as an application to the thermal comfort. Section 6 contains discussions about the main
topics. Section 7 presents possible directions for future works.

2. Thermal Comfort Studies with IoT Hardware

In this section, the authors analyse how smart objects are used to study thermal comfort and
energy efficiency. Smart objects are considered part of the IoT when they are interconnected among
them or to the internet. Hence, within the object, there is a necessary embedded system that acts as a
connector. The literature shows several approaches and solutions that have this kind of IoT application
in common.

After performing a comprehensive analysis of the literature available, it has been chosen to group
studies into solution strategies. As explained in previous sections, the mass of the publications verse on
how to improve the energy efficiency and to maximise the thermal comfort of individuals. Among the
literature, the authors identified studies which aim at transforming the surrounding environment
and studies which work on directly modifying the thermal sensation of people through individual
devices. Besides, there are studies which do not present a solution, being centred on monitoring and
analysing the phenomenon. Among them, the authors distinguish studies which are validated by
experimentation or simulation, and studies that focus on conceptualising the problem and design an
IoT architecture. Tables 1 and 2 summarise the contributions below, and the following four sub-sections
show and describe in detail the works on this topic.

2.1. Strategies Involving loT Technologies to Produce Changes in the Indoor Environment

Itis quite common in the literature to give the users the control over the HVAC system to change the
thermal environment according to the preferences of the majority. Van Hoof [48], who analysed 40 years
of thermal comfort literature since the introduction of Fanger’s PMV, concluded that thermal comfort
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for all can only be achieved with the effective control of occupants over their thermal environment.
This is a democratic solution primarily in open offices, where several workers have to share the
same space.

Feldmeier and Paradiso [49] proposed a personalized HVAC system with four components:
a central network hub, portables nodes, control nodes and room nodes. The users’ effort required is
minimum, as they only have to press a button on their wrist-worn sensor node if they feel uncomfortable,
while physiological data are also collected. The project reached an 80% thermal comfort goal, attributing
discomfort to a bad distribution of temperature in rooms and achieving 24% of energy savings.

Sung et al. [50] presented a complete IoT architecture, composed of several components for
each layer (Perception Layer, Network Layer and Application Layer, as discussed in the Introduction
Section), including sensors and a smart terminal for every device. The process involves the use of Visual
C# software for the monitoring interface, and Matlab for analysis and simulation. The study proposes
three control modes that affect the set-point of smart HVAC devices, which include air conditioning,
electric fan and humidifier, to obtain changes in the environmental conditions. The three control
modes presented are Comfort mode, General mode and Energy-saving mode, that differ in the values
of ambient temperature, relative humidity, indoor wind speed, expected PMV (from calculations),
expected PPD (ditto) and estimated energy-saving. According to the authors, the expected target PMV
range, that is set equal to 0, 0.5 or 0.7 depending on the control mode, can be achieved in all three modes.
The same authors resumed the architecture to conduct a similar study [51] in which a questionnaire
about satisfaction is included. In this case, the main evaluation parameters were the maximum
variation and the average temperature difference between users and the environment. These values are
affected, for instance, by movements or proximity to the door. In this study, the three cases considered
are uncontrolled, constant control and fuzzy control. They create a thermal environment according to
the simulations and they ask for the opinion of respondents, obtaining 10 out of 12 people satisfied.

About smart set-point in HVAC, it is also worth noting a study of Ramallo-Gonzalez et al. [52],
which will be presented in Section 4.2 since it approaches both topics.

2.2. 10T Devices to Modify the Micro-Climate of Each Individual and Enhance Thermal Comfort

The strategies presented in this section start from the assumption that the standard deviation of
preferred temperature in individuals at rest can differ up to 2.6 °C [53]. If one also considers individual
differences in clothing choices and metabolic activity, the gap can be even greater. This is why the
authors of the works that are described in this subsection stated that it is unlikely that with a single
thermostat, thermal comfort can be reached by everyone, and that personal devices are necessary.

A study of Knecht et al. [54] considered the use of personal wearable devices to investigate thermal
comfort in workspaces and to suggest a possible solution to discomfort. Garments both for heating
(gloves, shoulder pad, socks, etc.) and cooling (for wrists, ankle, a body wrap, a necktie, etc.) are
connected to a radio circuit to transmit device temperature information, which is a proxy of the user’s
thermal status. On the one hand, participants presented some complaints mainly about the aesthetics
and comfort of wear. For instance, for cooling garments, a sensation of discomfort was reported since
people’s skin is more sensitive to direct contact with a cold source than the opposite. On the other
hand, users stated to prefer personal devices to avoid the implication of their thermal preference on
the others, in the case of a shared thermal environment: adjustments on a local level were preferred
compared to global scale ones.

Another example of personal equipment, although not wearable, is given by Zhang et al. [55]
through a study based on the use of foot warmers connected to the internet (smart). The research was
conducted in a workspace of Berkeley University and it demonstrated that using personal foot-warmers
while lowering the HVAC system’s set-point did not affect the occupants’ thermal comfort. The savings
were up to 75%, depending on the outdoor temperature. The most impressive result of the experiment
was the finding of a satisfaction rate of 100%, a unique goal in comfort field studies, but they only used
the system for heating.
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One of the most noticeable contributions is given by Kim et al. [56]. A large number of studies start
by comparing the traditional thermal comfort models to choose the most appropriate. Instead, Kim et al.
presented a new critique of the existent models and their limitations, proposing their personal solution
to overcome their shortcomings. They pointed out that both PMV and adaptive models have poor
predictive accuracy when applied to small groups of people and that they are based on input variables
that are difficult to measure in the real-world, being necessary in most cases simplifying or assuming
them. Moreover, it is not possible to aggregate other variables, such as body mass index, and they cannot
reflect conditions in a specific setting, different from the original dataset. This critique summarizes well
the objective reasons why a new people-centric approach is necessary. The Personal Comfort System
(PCS) proposed by Kim et al. consists on using smart chairs developed at Berkeley with embedded
sensors, connected wirelessly with a controller, that are able to both heat and cool. The chairs have been
used by 38 occupants over seven months. They compare six machine learning algorithms to analyse
the users’ thermal preferences. This system obtained a 69% gain in predictive accuracy compared to
traditional comfort models so it can represent a potential replacement in feedback surveys. This opens
a new avenue of research and could be the third big family of thermal comfort theory, after Fanger’s
and Humphreys’ theories.
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Table 1. Main contributions using Internet of Things (IoT) objects to enhance thermal comfort.
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Acronyms: ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers); PMV (Predicted Mean Vote); PCS (Personal Comfort System); HVAC (Heating,
Ventilating and Air Conditioning).
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2.3. Studies with Monitoring Purpose Using IoT Technologies

In some cases, studies are aimed at analysing a situation in terms of thermal satisfaction and
indoor thermal conditions, but without presenting a proposal for improvements. Often, they also
conduct experimentations to test their system, simply omitting the Application Layer. These studies
are not be presented in Table 1, as they have no material results in terms of people’s satisfaction nor
energy efficiency, but they are summarized in Table 2, in which accuracy of the methods is compared.

An exampleisastudy of Salamone etal. [57], which based the Sensing Layer on the use of both wearable
and the so-called nearable devices, a word coined to indicate sensors that refer to a micro-environment,
like a single workspace. They chose wristbands as wearable devices and low-cost sensors located at 40 cm
from the participants as nearable devices. Data are processed using a noise-detection algorithm which
detects the electro-dermal activity of respondents. Besides, the evaluation of thermal satisfaction is done
through a web platform survey. Parameterising some parameters with the software Grasshopper
and processing data through a Python script for Machine Learning, the authors managed to define
the optimal personal thermal comfort with good accuracy. Then, the aforementioned authors tested
their integrated method in another study [58], presenting results based on the PMV. Although there is
no proposal for energy-saving or improvement in users’ thermal satisfaction, these studies certainly
have their merit on considering an environment that describes the individuals’ micro-environment. In
fact, often, room sensors are located in spots that do not correctly represent the thermal condition of
individuals. In some cases, as in co-working spaces, it is just insufficient for a unique sensor to report
the thermal surroundings of every workstation and, in other cases, sensors have a wrong position.
So, the solution, which combines wearable and nearable devices, could be seen as ideal to investigate
the specific environment of each user. The work shows that the comfort zone of every user can vary
considerably both in terms of operative temperature and relative humidity.

Many research works consider that collecting users’ feedback is unpractical in the long term,
so they propose an approach based exclusively on physiological data. Ghahramani et al. [59] proposed
a method to study thermal comfort based on infrared thermography of the human face. In fact,
the human body also responds to thermal stress through the cutaneous vessels, that are particularly
dense around the human face. Monitoring the facial skin temperature as a monitor of skin blood flow,
it was possible to analyse the different reactions to thermal stimuli. To do so, an infrared sensing system
was installed on a tan eyeglass frame, collecting data from four different parts of the face (namely
ear, nose, front face and cheekbone). Then, they developed a hidden Markov model (HMM)-based
learning method that can be used in future studies. The validation of the method was conducted with
the feedback of ten test subjects, for a total of 457 votes, of which 87 were uncomfortable and 370 were
comfortable. The average accuracy for predicting uncomfortable votes resulted to be 82.8%.

Also based on physiological data collection is a study of Dai et al. [60], who developed a predicting
model based on skin temperature. Data were collected through Fibre Bragg grating (FBG)-based
sensors positioned on 13 body locations. They conducted two experiments, a group one with 11 subjects
in a Controlled Environmental Chamber at UC Berkeley and an individual one on a male occupant in a
private office in China, to validate the method. Besides the physiological data collection, the whole-body
thermal sensation was investigated by pop-up questionnaires (via computer). The sensation scale
used was a 9-point scale, in which the points called “very hot” and “very cold” were added to the
traditional ASHRAE 7-point scale, and the Thermal Sensation Vote was simplified into 3 groups
(“heating demand”, “neutral”, “cooling demand”). The results showed an 80% accuracy with a single
skin temperature, if the clothing level was controlled. For the model with two inputs, they suggested
to put the sensors on the shin and upper arm. They proposed an intelligent control method based
on a support vector machine, concluding that the linear kernel was preferred to the Gaussian Kernel.
Moreover, predictions resulted to be more accurate for heating demands than for cooling demands.
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2.4. Demonstration Studies

A common approach in IoT-for-comfort research consists of designing the IoT architecture
behind the idea of an IoT environment for comfort, but in which experimentation, and in some cases
simulation, are not contemplated. The studies’ perspectives keep being interesting and some ideas are
well-structured and/or have great potential, so it is worth mentioning them.

Park and Rhee [61] created a complete smart building system, taking care of the three layers of
the IoT system. The equipment includes electrical devices and application, smart HVAC systems and
personal wristband and smartphone application. This is achieved through two different models in
Matlab/Simulink: the first one is a static model that controls the heating system, and the second one is
a dynamic model which achieves the control for users’ thermal comfort. The dynamic model created is
based on the heat balance equation of the human body, in which heaters will be controlled by the PMV
value. In particular, the PMV is requested to range from —0.2 to 0.2, and when it reaches these extreme
values, a cooling or heating system will be activated.

Some interesting contributions are given by demo abstracts, i.e., papers that just express an idea,
without developing it.

For instance, Krioukov and Culler [62] presented an experimental prototype of personal building
control based on three components: a smartphone application, building controls and building
sensors. The feedback through the app directly corresponds to a change in a smart HVAC operation.
Although quantitative results were not presented, the authors stated that the achievement was expected
to be a larger range of thermal comfort for the occupants. Another demo that is worth mentioning is the
study by Ploennigs et al. [63] that combined the concepts of thermal comfort and virtual reality, allowing
the users to visualise in real-time the environmental parameters collected by the sensors, for the
first time making the participants fully aware of the conditions they are in. This method created an
immersive understanding and interaction of users with the systems that affect their thermal perception.

Likewise, Choi et al. [64] conducted a series of experiments on 18 subjects to investigate the
correlation between the whole-body thermal sensation and the local body skin temperature. A data
acquisition (DAQ) system was designed and used to collect environmental data and user preferences,
while an exposed thermistor-type sensor was used in order to measure skin temperature in 8 different
body segments. For the thermal sensation expression, the 7-point scale of ASHRAE standard was
used. A stepwise regression analysis was performed to choose predictive variables by automatic
procedures. The study revealed that the whole-body thermal sensation is significantly correlated to the
local body skin temperature, with differences due to gender and body mass index (BMI). The arm and
the wrist resulted to be the segments with a stronger impact. According to the authors, the maximum
accuracy would be obtained using data from that waist, arm and wrist, together with information
about gender and BMI. The estimated overall sensation was 95.87% accurate. A practical alternative is
proposed, which associates a changing rate of skin temperature to a body point or segment. In the
case of considering only the wrist temperature and its changing rate (combined with gender and body
mass information), an accuracy of 94.39% is estimated.
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Table 2. Main contributions using IoT objects to monitor thermal comfort.
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Source Comfort Model Smart Objects Context Sample Location Heating/Cooling Accuracy
Controlled Berkeley, Over 80% (to
Dai et al. (2017) ASHRAE Fibre Bragg SVM classifier, Environmental 11 (experiment  California, USA 90% with 28
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[60] Standard 55 Chamber +
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P (exp 2) model)
o -
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(2018) [59] requirements system learning method building California, USA
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3. Building Simulation Models under the IoT Paradigm for the Study of Thermal Comfort

The literature about building energy models is not the object of this review, as its great extension
would make this task almost impossible. Only papers that use building simulation as a tool to study
the thermal comfort will be analysed and presented, always remaining under the IoT’s sphere of
influence. The most common of the simulators have been seen to be EnergyPlus. Unless otherwise
noted, the IoT function in these studies is represented by the sensing network layer used to collect data
and to validate the models. One of the aims of this section is to investigate how the approach towards
people is changing and developing, from a passive role to an active role, preparing the basis toward
the people-centric approach of Crowdsensing.

Thermodynamic modelling is a highly popular procedure in building physics. There are several
instruments to simulate buildings and their thermal environment. One of the most widely used is
EnergyPlus [65,66]. EnergyPlus contains a specific section dedicated to the evaluation of occupants’
thermal comfort. It also allows the comparison among Fanger’s model (through PMV and PPD),
adaptive model and other less-common thermal models. Several studies investigated the accuracy
of EnergyPlus (EP) results in fields such as energy consumption [67,68], energy retrofitting [69,70],
thermal resiliency [71,72] and, of course, thermal comfort [73,74]. Major contributions are summarised
in Table 3.

3.1. Evaluation of Thermal Comfort under Modifications of the Physical Characteristics of the Building

The first group of EP studies concerns improvements in thermal comfort through changes in the
building envelope. People are considered as passive receptors of the improved indoor thermal condition.

Rincon et al. [73] used EP to study the thermal comfort in earthen dwellings in sub-Saharan Africa
(Burkina Faso) and underlined that the thermal stability inside this kind of building assured better
thermal comfort perception of the users. They based their method on the evaluation of the so-called
Discomfort Degree-days, that gives a more realistic way of estimating thermal comfort in a building.
The earthbag building proposed in the paper shows a 76% improvement in thermal comfort condition
compared to traditional Burkinabe dwelling (217 vs. 923 discomfort degree-days).

Ashrafian et al. [68] studied the potentialities of improvements in children’s thermal comfort and
productivity at school, through changes in terms of the glazing ratio of the building. Their proposal is
based on the increase of natural lighting and on a reduction in terms of HVAC energy consumption.
According to their results, fewer than 20% of children would be thermally uncomfortable in almost all
scenarios. Although, the study underlines that children are more sensitive to higher temperature than
adults. Actually, none of the scenarios seem to be acceptable and PMV hardly reaches —1 (slightly
cold), so other improvements should be included.

Oliveira and Labaki [70] studied the effect of thermal discomfort in the university environment.
To reduce the physiological and psychological undesired effects of extreme temperature, namely
somnolence, sweating and apathy, they proposed a retrofit of a university campus based on the
insertion of a solar chimney, simulated in EP for the experimentation. According to the adaptive
method, uncomfortable hours would diminish from 97% to 75% with the retrofit improvement.

Following EP configurations, people are also important heat emitters classified as internal loads.
Esteves et al. [74] based their research on this concept. They simulated PMV and PPD of a cinema
room and validated their model with experimental data collection, concluding that the difference in
terms of dissatisfied people is smaller than 2%. They pointed out that the occupancy rate is a crucial
factor when calculating thermal comfort; in fact, in the second session, the energy accumulated from
people is enough to heat the cinema room, improving the PMV from slightly cold to neutral. The paper
has just a monitoring aim, but it is included in this section because of its focus on people’s contribution
to the thermal environment.

Kwok et al. [75] studied the potentialities of crossed-ventilation in hot-humid climates, analysing
thermal comfort dependency on envelope composition. In hot-humid climate, the PMV model fails
to describe comfort temperature, because it does not consider the effect of people’s acclimatization.



Sensors 2020, 20, 4647 15 of 38

For this reason, Fanger and Toftum [12] elaborated another model which included an expectancy
factor, e. For instance, for the case study of a middle-floor flat in Hong-Kong, the authors fixed e = 0.7.
According to EP simulation, natural ventilation does not solve the cooling problem in the warmest
climates, since none of the examined models assured a thermally comfortable environment for more
than 40% of the time. The simulation gave another interesting result: flats with better insulation
guarantee a reduction of extreme indoor condition, but also imply a longer duration of time in which
users feel uncomfortable.

3.2. Evaluation of Thermal Comfort Under Modifications of Users” Behaviour

In this section, studies that proposed changing people’s habits are presented. The users’ role
switches from passive receivers of environmental changes to the determining factor in the process of
improving their own thermal comfort. This configuration involves changing users’ conscious control
over their surroundings. For example, it is very common in experiments to let workers have an
influence on the thermostat set-point in an office building, giving them control over the mechanically
ventilated system of the workplace [76,77]. Likewise, passive strategies that depend on the manual
and active intervention of users are also diffused [78,79]. In most cases, the change is made possible by
alerts that sensors connected to the internet send to occupants’ devices, like smartphones or tablets.

Yun et al. [76] used their EP model to demonstrate that when occupants have a higher level
of perceived control, their thermal acceptability tends to increase. They modelled seven university
buildings in South Korea under mixed-mode condition. For a whole summer period, 77 users took
part in the experimentation, answering a questionnaire about thermal perception. In some buildings,
people were allowed to change the room temperature through a normal thermostat. After investigating
the effects of operative temperature on the subjective evaluation of the users, the authors created similar
EP models in which the only difference was the level of perceived control of the users, to evaluate
the data coming from the IoT devices. In the model, the thermostat set-point is chosen according
to the monitoring results and the answers to the questionnaires. The comfort temperatures for
people with a higher level of perceived control was higher, allowing a 9% energy-saving and greater
self-reported productivity of 6.3%. This is an example of how psychological factors can influence the
thermal perception of people. Giving control, hence responsibility, to the occupants helps to raise
awareness about their own adaptability, allowing them to be conscious of their real and personal
thermal comfort zone.

Another study about personal control is the one by Kinnane et al. [80], conducted in
dementia-friendly dwellings. The authors proposed a shift from active to passive design, that allowed
greater personal control to the users. They used a questionnaire to investigate people’s opinion
(aged between 79 and 82) and concluded that the ingress of cold air creates an important variation in
thermal conditions and extreme discomfort in aged people. The cold air ingress was simulated using
EP. This study points out one of the reasons for physiological differences among individuals—age.
Age, gender, body structure and so forth are factors that determine the individual perception of the
thermal environment. Hence, investigating thermal comfort in aged people and giving them control
over their environment is a way to assure and increase the achievement of a comfort condition.

Pellegrino et al. [78] studied behavioural implications of users to achieve the thermal comfort
in Indian residential buildings. Their method was based on the evaluation of the Comfort Indoor
Degree Hours (CIDH), defined as the sum of the hourly differences between indoor air temperature
and comfort temperature, and another index called Tropical Summer Index (TSI), that defines the
tropical setting. Great importance is given to occupants’ behaviour, demonstrating that a diminution
of 60% in CIDH can be achieved just with a conscious use of nocturnal ventilation. The authors also
underline the importance of developing feasible and shareable solutions, because high-tech innovation
could be far from people’s possibilities in some zones of the world. About behavioural implication,
other considerations are interesting: air conditioning systems in areas like India are a social status,
so people tend to reject the proposals based on passive strategies. Besides, nocturnal window-opening
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does not allow them to protect from external noises and artificial lighting. So, the authors had to face a
paradox: although according to the obtained TSI index indoor condition was comfortable, occupants
felt uncomfortable anyways and decided to install an AC. The last two studies brought out how
psychological and physiological differences affect thermal comfort. In this case, another strong factor
is found—the social one. Giving control to people is not enough without a phase of empowerment
through information. People need the tools to understand why a solution is better than another and
what benefits they can obtain by changing their behaviour.

About passive strategies, Thravalou et al. [79] confirmed that occupant behaviour has a large
impact on the whole performance of the building. They studied vernacular architecture in Cyprus,
simulating two types of natural airflow and five different natural ventilation strategies in summer.
Using the adaptive thermal comfort model, they concluded that the best solution for that context
was cross-ventilation during the night, with even greater results than in an all-day ventilation
case. They conducted a survey to confirm the results about thermal comfort and 80% of occupants
considered the obtained indoor thermal condition satisfactory. This paper demonstrates to the
reader that overcoming the problem of lack of information is feasible. The authors explained to
occupants which was the better solution for their specific thermal environment and how to put it
into practice. Consequently, they managed to control their surroundings and to achieve a thermally
comfortable condition.

The final study presented represents a summary of the considerations made about personal
control and, at the same time, a link to the next chapter in terms of sensing occupants’ preferences
through IoT. Jeanblanc et al. [77] analysed how occupants use energy in buildings in the United States,
sustaining that reaching and maintaining the thermal comfort requires a dynamic interaction between
the occupants and the building. The interaction is obtained through IoT devices, that provided
both real-time data collection and feedback to users regarding their behaviour. They presented
examples of natural ventilation potentialities, studying a research lab through the components that are
operable by users (windows, louvers, sunspace). Operations considered three factors, namely facilitate
passive ventilation, respond to weather conditions and mitigate solar radiation. As a consequence,
they proposed five experiments to reduce the AC system use. The experiments showed an 80%
compliancy of the users’ thermal comfort (adaptive model) in almost all cases, with 21% to 100% in the
90-100% compliant zone. Only one case presented as 8% outside the comfort zone, probably due to
high humidity of a rainy day. The satisfactory results demonstrate the importance of a connection
between humans and the thermal environment, only feasible through IoT devices. Monitoring plays a
very important role, but the step forward is represented by feedback. Thanks to feedback, users are
able to experiment with how their behavioural changes imply great differences in their surroundings.

3.3. Combined Platforms

In previous sections, loT was limited to a sensor networking, since the case studies proposed were
based on changes in envelopes or people’s habits and did not require any other technology. In this
section, the examined case studies are based on a more complex IoT architecture, which includes other
components such as smart thermostats. This implies the creation of integrated platforms that combine
EP simulation and data processing with mathematical software.

Zhao et al. [81] dealt with the thermal comfort matter through the conception of a predictive
control model based on the dynamic simulation and the data analysis with Matlab. They firstly created
a control model based only on EP predictions; then, they conducted a users’ feedback experiment on
15 volunteers and used the results to develop an occupant-oriented model. The ultimate step forward
is the implementation of a real-time thermal comfort feedback system, which can enable individual
comfort preference and energy impact. The aim of the research is to save energy while maintaining
thermal comfort, so that only results in terms of HVAC consumptions are shown.

Likewise, Kalvelage et al. [82] proposed a coupled use of an agent-based model (ABM) and
building simulation with EP to estimate the effect of the task-based users’ behaviour on building
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energy demand. Nevertheless, they focus on overall comfort in their questionnaire, so results about
thermal comfort cannot be extrapolated and will not be included in Table 3.

About control, research by Nouvel and Alessi [83] is also noteworthy, which presented a
co-simulation through EP and Simulink to create an HVAC control algorithm based on a User Interface
(UI). It contains six command buttons that correspond to the thermal scale used by Fanger, without the
neutral sensation. Results showed an accurate correspondence between the actual thermal sensation
of the users and the thermal sensation calculated by the algorithm. In both cooling and heating
simulations, thermal comfort is improved, and energy waste is reduced (up to 57% in summer, and up
to 22% in winter).

Another important contribution is the one of Escandon et al. [84] who studied a social housing stock
in southern Spain to explore the possibility of evaluating the thermal behaviour of every user, without
increasing computational time. They elaborated a “model of the model” to reduce computational times.
To reach this scope, they theorized an Artificial Neural Network (ANN), generated under Matlab
using EP-simulated data, that was composed of an input layer, a hidden layer and an output layer that
provides the annual percentage of discomfort hours. According to their results, over the whole year,
discomfort hours are quite acceptable, between 20% and 50%, but in winter, they reached an impressive
range of 95-100% of discomfort hours. With the model created, they could extrapolate which are the
critical issues in the stock, namely the geometry itself of the flat and the natural ventilation rate.

Ramallo-Gonzalez et al. [85] proposed an integrated IoT infrastructure based on the FIWARE
platform (an open-source platform for smart cities) to obtain a change in occupants” behaviour to
maintain thermal comfort while improving the management of energy consumption. The IoT energy
platform, called IoTEP [86], was the first holistic solution for the management of IoT energy data.
The infrastructure communicates with the user through a mobile app, to provide feedback and to
induce a change in habits. The building understudy was modelled through the mathematical software
Octave and simulated with EnergyPlus. They demonstrated that an effective change on all behaviours
led to a 41% saving in the heating demand and an 8.3% saving in cooling demand.

Pombeiro et al. [87] proposed a Demand Response (DR) algorithm to explore the thermal comfort
of users while aiming to save energy. They created two optimization models to reduce energy
consumption, that are then compared in terms of users’ thermal comfort. A Simplified Thermal Model
(STM) is created considering internal loads, heat exchange of the envelope, ventilation and radiation
from surfaces. After the validation with the EP model, they included comfort parameters such as the
PMV, the PPD and the accumulated energy by the human body (S). Results show a comparison among
several tests that present the variation of the importance of users’ comfort on cost, searching for the
best compromise.

Also linked to the DR algorithm is a study of Cetin et al. [88], which explored a good strategy to
maintain thermal comfort while reducing energy consumption, namely the on/off controller of the
HVAC thermostat. The gap in the on/off cycling resulted to be an important lack in EP simulation.
To implement that, the authors proposed an on/off cycling Energy Management System (EMS).
They tested the system with the model of a typical residential building in Sacramento, California,
achieving a reduction in the Normalised Mean Bias Error (NMBE) from 27.1% to 8.3%. Although the
method’s aim is improving the simulation of thermal comfort and energy-saving, the case study is
limited to the implementation of the algorithm and leaves the quantitative analysis of those parameters
to further studies, which is why it will not be included in Table 3.
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Table 3. Main contributions using the EnergyPlus (EP) simulation.

18 of 38

Thermal . . Geographic . Changing v
Source Comfort Model Heating/Cooling Context Location Sample Duration Proposal Energy-Saving
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3.4. Response of Thermal Comfort to Future Overheating

Although studying future overheating is not one of this review’s purposes, measures used today
to improve the users’ thermal comfort will not necessarily be enough in future scenarios, in which
extreme temperature events will be higher and more common. Indeed, researchers manifested a
growing interest in investigating this topic through EnergyPlus. The studies in this section will not be
included in Table 3, as they use criteria not comparable with the others. The trend for future climates is
based on the utilization of synthetic weather data that morph the probable climate scenarios in 2020,
2050 and 2080. Alternatively, it is possible to consider a series of the warmest years or parameterise the
overheating metric.

Brotas and Nicol [71] simulated a mid-stories flat in London and predict the overheating using
three criteria defined by the CIBSE TM52 standard [89], namely maximum hours where the operative
temperature can exceed the maximum temperature, the daily limit for acceptability of overheating
depending on its severity and absolute maximum acceptable for a room. Then, based on the results of
the case study, they extended simulation to other European cities to show how overheating will affect
them differently. Fosas de Pando et al. [72] presented a parametric building simulation with a case
study of a well-insulated dwelling. They compared different overheating trends, concluding that the
TMB52 ones are the most appropriate. The parameters they considered were different weather files,
thermal mass, glazing ratios, occupancy profiles, shading strategies, purge ventilation strategies and
orientation. Results showed the differences between different building fabric performances, to explore
how the fabric choice changes the resiliency over the years.

Eames and Shorthouse [90] simulated a single-story building operating in free-running mode
to compare metrics based on air temperature and radiant temperature. To determine the design
extreme weather years, they utilized the return period method, while the parameter chosen to analyse
the thermal comfort is the PMVH, i.e., the number of hours where the PMV is greater than 0.5.
They considered the expansion of their method, used to calculate the design summer years for London,
to the rest of the UK. Nevertheless, changing locations involves changes in weather patterns, which is
why the risk of overheating should be dependent on location and metric.

4. Mobile Crowdsensing

Apart from IoT devices with sensing capabilities that can be environmental (air temperature,
relative humidity and so forth) and physiological (skin temperature, heart rate, etc.), it is possible to
find another way of acquiring data. This is Crowdsensing. Currently, almost everybody has a personal
smartphone, and this can be a rich resource for the acquisition of data about thermal comfort and others.
The first and most cited overview about mobile Crowdsensing (1638 citations in 2020, according to
Google Scholar; 1100 citations according to Scopus) is “Mobile Crowdsensing: Current state and Future
Challenges” by Ganti et al. [36]. In this paper, the term Mobile Crowdsensing (MCS) is coined to
refer to the variable reading that a mobile device can offer: inertial situation, compass data, Global
Positioning System (GPS), microphone readings, camera views, proximity or light. MCS applications
are divided into three categories according to what is monitored: environmental, infrastructural and
social. For example, in social applications, people share sensed information, e.g., their activity data,
diet data, etc.

The unique characteristics of MCS applications according to Ganti et al., compared to traditional
mote-class sensors, are:

e Today’s mobile devices have better resources in terms of communication, computing and storage
than mote-class.

e  People already use these devices whatever they do.

e Human intelligence can help to collect higher quality and more complex data than
machine software.

e  The incentive mechanisms behind this kind of application are normally strong.
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Also, Ganti explains that Crowdsensing can derive from both participatory sensing,
i.e., involving people’s active contribution and collecting their opinion through questionnaires,
and opportunistic sensing. The main idea behind the application of opportunistic sensing is to
use people’s phone as a sensor. To achieve this purpose, the key is the use of the actual sensors
embedded in the smartphone. These sensors ideally will be upgraded over the next years including,
for example, barometer, temperature and humidity sensors [91], whose potential has been shown
by Choudhury et al. [92] through developing a Mobile Sensing Platform (MSP). As explained by
Ali et al. [93], thanks to the expansion of sensor technology in the last decade, external devices can be
connected to the mobile phone to track information about environmental parameters and body heat
data from the user as well, multiplying the sensing capabilities of phones.

In the last decade, Crowdsensing has started to gain the interest of the scientific community.
The discussion is open and has the potential to keep growing, but the investigation has already reached
some interesting results. Leaving aside technological shortcomings (such as phone battery consumption
and so on) and privacy concerns, this section will focus on people-related trends. The authors will
briefly present some examples to explain how Crowdsensing can be applied to whichever field of
study, from environment to infrastructure passing by society.

In a paper of Chon et al. [94], a framework called CrowdSense@Place (CSP) is presented.
This framework is composed of a smartphone application and an off-line server to process the
collected data. Data from locations and trajectories of users are used to link place visits with
place categories (i.e., stores, restaurants and so forth). Sensors embedded in the mobile phone,
namely microphone and camera, can catch certain “hints”, including words spoken by users, text
written and objects surrounding the users. In this way, the CSP can automatically determine the type
of place (e.g., gym), without the intervention of the user—this is an example of the aforementioned
opportunistic crowdsensing. The experiment showed that the app was unable to categorize places
with the accuracy expected (69% accuracy was obtained). Besides, privacy was considered insufficient
to guarantee the utilization of the app by the general public.

Sun et al. [95] proposed an application of mobile Crowdsensing for tourism in the city of Trento,
Italy. The data flow is collected both through smartphones and from smart wearable bracelets. This was
included within a research project with the objective of promoting a sustainable cultural heritage in
the city. Besides, the authors used the concept of Smart and Connected Community (SCC) to indicate
an evolution of smart cities, extending its application also to urban science. Piao and Aihara [96]
used motion sensors’ data to apply Crowdsensing to infrastructure. They aimed to monitor road
surfaces, especially in snowy areas, through sensors embedded in smartphones, such as accelerometers
and eventually cameras. Results showed that road surface conditions can be detected with a
90% accuracy. Similarly, El-Wakeel et al. [97] investigated road anomalies (cracks, potholes, manholes)
to apply Crowdsensing to the route-planning field, using GPS both from vehicles and smartphones.
When it comes to select a route, the most widely used planner tends to choose just based on
time. This paper proposed an alternative method which bases decisions on road quality, analysed
through Crowdsensing. The system, using the inertial sensors and GPS receivers available in all
modern smartphones, was considered successful. Also concerning infrastructure is a study of
Matarazzo et al. [98], that explored the problem of bridge vibrations using smartphones in moving
vehicles. They aimed to combine several datasets to detect bridge modal frequencies of the bridge
under study. The paper concluded that the smartphone was an adequate tool, in particular when
heterogeneous datasets were aggregated to improve precision. This application can have an enormous
impact on bridges maintenance, overcoming the traditional visual inspections method. On the other
hand, interaction effects with the vehicle are not considered and the simple accelerometer included
in the smartphone (without the aggregation) tends to measure imperfectly. Baljak et al. [99] applied
crowdsensing to public transportation, collecting data from users’ smartphones through an app to
study the vibration in a public vehicle in Belgrade. To improve the precision of the geolocation
within the app, an implementation through Google Location Application Programming Interface (API),
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provided by Google, is proposed. Using accelerometers present in many modern smartphones resulted
to be a good instrument to explore comfort in public transport.

With respect to indoor comfort, it is noteworthy to highlight the study by Angelopoulos et al. [100],
in which Crowdsensing principles are applied to indoor lighting. They developed a testbed computer
architecture to integrate crowd-sourced data resources, namely those coming from smartphones and
tablets, to Smart Buildings. They aimed both to improve the sensing capabilities of the Smart Building
with the embedded sensors of the aforementioned devices and to incentivise the direct interaction with
people, asking for feedback on their experienced comfort.

Considering the studies proposed in this section, one can see how this new paradigm is
catching on. It has great potentialities and it can be a powerful tool to give importance to people’s
preferences. The authors firmly believe that Crowdsensing can also involve the field of thermal comfort,
allowing users to be responsible for changes in their own thermal environment [101]. There are some
first attempts to create platforms that unify the thermal comfort model and the crowd simulation,
that will be discussed in Section 4.2.

4.1. Making Mobile Crowdsensing Work

If Crowdsensing is to be a tool for the study of thermal comfort, it is critical to have a
good understanding of the incentives that are necessary to make people participate with this tool.
Researchers in the last years have tended to focus on this incentive matter, developing several models.
Yang et al. [102] proposed two models for defining incentives: the so-called crowdsourcer-centric model
and the user-centric model. In fact, they theorised that users would not be interested in Crowdsensing
without a reward because of their resource consumption (mainly battery) and their privacy concerns.
In the crowdsourcer-centric model, the crowdsourcer chooses a fixed reward for participating users,
while in the user-centric model, users place a minimum bid and then the crowdsourcer selects the
subset of users to involve. Among other results, an important consideration concerns the optimal
reward: they observed that it increases with the number of participants, but it gradually becomes steady
as the number of users becomes larger. Nava Auza et al. [103] presented a framework that includes
a model to represent both people’s behaviour and incentive method: different values of incentives
are assigned based on the local information of users. Zhang et al. [104] proposed a framework called
CrowdRecruiter to select participants through a piggyback task model, to obtain a minimization
of incentive payments due to the reduced number of participants. A complete survey on the topic
is provided by Zhang et al. [105], that defined three types of incentives in mobile Crowdsensing
systems: entertainment, service and money. Services are intended as traffic monitoring, air pollution
monitoring or noise monitoring, i.e., public service systems. Engaging based on entertainment consists
of turning some sensing task into games: for instance, Morganti et al. [106] developed a game to
increase pro-environmental behaviours.

Another way of convincing people to use a mobile Crowdsensing tool is through an engagement
plan, as several social dynamics influence the success of a mobile app. Contrary to incentives
with a reward, engagement plans let the users perceive that the app’s main scope is useful for
them. Cottafava et al. [107] organised a communication campaign based on social media and official
advertisement inside the building. Even so, they noticed a lack of response, so they concluded and
suggested for future works to plan a communication strategy that involves the whole institution from
the beginning. Sanguinetti et al. [108] proposed an engagement plan based on colloquial words, to be
appealing to young users (for instance, “chilly” instead of “cool”). Furthermore, they featured a
mascot (a cow) with a fun visual design, to make users empathise and connect with it emotionally.
Finally, they carefully planned the promotion of the app in the campus, through events, giveaways,
flyers and chalk drawings in the classroom. In this way, they received 900 sets of feedback just within
the first month. However, participants expressed frustration when discomfort persisted, as shown
by feedback such as: “Don’t ask for opinions on things you aren’t willing to fix”. According to both
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studies, interdisciplinary collaboration with professionals of design sociology or marketing is the key
to maximise people’s engagement in the long term.

A communication and engagement plan is crucial for a good result in terms of diffusion and
acceptance. As a lot of social dynamic influences the success of a mobile application, the main aim is to
make the app desirable to the user. The creation of a database is not a good expedient, nor is scientific
research. The users have to perceive that the app’s main scope is useful for them.

In a thermal comfort data-collection scenario, some of the output produced with the data collected
can be shared with the users. For instance, sharing their personal neutral temperature and recording
how it changes in different periods of the year could be interesting for them. As well as giving as
an output the whole month visualisation, to record in which days the user suffered discomfort and
assuring them that this amount is under a certain health percentage. This could be a good strategy to
convince people to repeat the test frequently, in different locations and with different climate conditions.

4.2. Crowdsensing for Thermal Comfort

This new paradigm has great potential in its application but, up to now, thermal comfort seems to
be underexploited, to the best of the authors” knowledge. In fact, if one makes a Scopus search with
the keywords “Crowdsensing + thermal + comfort”, one obtains zero results, while the keywords
“Crowd + sensing + thermal + comfort” gives just one result [109] (accessed on Scopus, April 2020).
Nevertheless, there are indeed studies moving toward this direction, which is why we grouped the
first approaches in this section. The relevant studies are summarized in Table 4.

First of all, it is possible to define two different perspectives when approaching the topic.
In fact, the word itself has been interpreted in the literature in two main ways. On the one hand,
as Guo et al. [37] explained, the Crowdsensing paradigm is interpreted as a consequence of the
participatory sensing, inasmuch both of them sense data from mobile devices to empower ordinary
citizens. On the other hand, many researchers have a vision strictly linked to the meaning of the word
“crowd”, i.e., a disorganised group of people that gather together. In this perspective, the Crowdsensing
for thermal comfort is centred on how the movement of the crowd influences and is influenced by the
thermal indoor conditions. This approach makes sense in places like commercial buildings, in which
users are not stationary and their thermal environment cannot be described by a fixed sensor.

Such is the case in the study by Chen et al. [110], who used an agent map to analyse the responsive
behaviours of people to the environmental stimuli. In particular, they analysed the heat thermal
balance of people in a shopping mall, with the purpose of studying the movements of the crowd.
The authors certainly have the merit of being among the first ones considering the impact of factors
like clothing under the Crowdsensing paradigm. Differently, Chiguchi et al. [109] investigated the
thermal effect of the crowd in indoor spaces, starting from the consideration that, in a real commercial
building in Japan, measurements presented 2 °C difference with or without crowding. They developed
a new model to estimate the PMV based on crowd density and distance between sensors and human
bodies. For the crowd density estimation, only smartphones’ accelerometers and microphones have
been used. Chiguchi et al. assumed the thermal resistance of clothing according to the relationship
with outside temperature, while metabolic rate and air velocity are calculated considering people
walking at normal speed. Indoor temperature resulted to be the more complex parameter, so the
authors conducted a fluid dynamic simulation with CFD 2015 software, which has implemented a
PMV derivation component. Then, the results were validated through a real-space experiment with 7
users, with a maximum error of 0.4 °C. This category will be not included in Table 4.

Digging into the other perspective, the vast majority of studies that sense thermal database on
users’ feedback through their mobile devices is related to the concept of participatory thermal sensing.
One of the first contributions is given by Erickson and Cerpa [35], that proposes to improve occupants’
comfort using humans as participatory sensors. They developed a mobile application using the same
7-point scale indicated in the ASHRAE standard. Users have to submit a room request to vote the
thermal comfort in the specific room they are occupying and then they have to vote depending on
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the thermal sensation they are experimenting in the room. Votes more recent than 10 min are not
counted to prevent bias. The study included feedback of 39 participants throughout 5 weeks, in heating
mode. In the first week, feedback about actual conditions were collected: 0% of users voted that they
were satisfied or neutral. Then, a script was used to generate a real-time control strategy of the air
conditioning, based on the lessons learnt in the first week of monitoring. According to their results,
the method achieved 80% of users being “satisfied” or “somewhat satisfied”, 13% “neutral” and 7%
“somewhat dissatisfied”. The authors considered a 100% satisfaction, since 0% voted “dissatisfied”.
Furthermore, they concluded that just by adjusting thermal comfort, a 10% energy savings over
the baseline strategy was achieved. It is noteworthy to underline the importance of monitoring in
Crowdsensing for thermal comfort. As the objective is to respect individual differences in thermal
sensation, one of the highlights of this work is the dedication to understand how a specific group of
people act and react to thermal changes. With this starting point, it is possible to create a solution that
fits for that cluster, and that would be different in another context.

Lam and Wamg [111] proposed a smartphone app, called CarryEn, that is connected to the
Building Management System (BMS) to improve both thermal satisfaction and energy savings. The app
aims to find the optimiaed set-point according to both the thermal preferences voted by the users
and data collected from the BMS (initial set-point temperature, room temperature and occupancy).
Votes are expressed using the ASHRAE 7-point scale. The authors conducted two experiments, one in
a commercial building and one in the campus of their university. During several weeks, the set-point
was changed with an interval of 0.5 °C in each adjustment. According to users’ reactions to these
changes, the authors elaborated an algorithm to find the optimised temperature of the HVAC system.
Through the use of CarryEn, an improvement in thermal satisfaction of 28.2% was achieved and none of
the participants experienced extreme discomfort. Besides, 13% of energy-saving was achieved. In this
case, it is important to notice how the new paradigm of Crowdsensing has the potential to communicate
with the building. For buildings that are already smart, as in the case of BMS, a smartphone app
can easily become part of the loop, allowing the users to make the most of the potentiality of the
entire system.

Sood et al. [112] created a human-building interaction framework called the SDE Learning
Trail, under the new Net Zero Energy Building (NZEB) paradigm. SDE refers to the building of
the experiment, the School of Design & Environment (SDE) of Singapore. The framework included
35 stations across the building, and each station presented a Quick Response (QR) code. The QR code
allowed the users to both vote for their thermal, visual and aural preference, and learn with interactive
information. In this way, occupants and visitors could leave their feedback while learning about
sustainability features. Stations were placed in proximity of fixed sensors that collected environmental
data. Feedback was expressed through a 3-point scale to limit subjectivity. Most of the 616 users
resulted to be comfortable, and seldom preferred a change to a cooler condition. An interesting
conclusion was the division of users in clusters of preferences that can be used to personalise special
recommendations based on their past votes. Inserting visualisation components in the loop could
really make the difference when it comes to sensitising people to the thermal matter. Thermal comfort
and energy consumption are abstract concepts to the normal occupant, so translating them into a
language that people can understand should be the key strategy to reach a people-centric approach.

Sanguinetti et al. [108] investigated the possibilities of upscaling a closed-loop participatory
thermal sensing program, to involve a whole university campus. They aimed to inspire occupant’s
participation, interpret the data collected and improve campus conditions. They developed a project
called TerMOOstat, in a first phase through the university portal and, in a second phase, through
a mobile app. Students and staff could express their thermal sensation on a 5-point scale with
colloquial wording, and then compare their feedback with the others through a pie chart of total votes.
Throughout 23 months, adequate thermal comfort was experienced by 11% to 40% of respondents,
depending on the season. In another study [113], the same research group implemented a Wi-Fi system
which connected thermostats with rooftop units (to collect outdoor air temperature), using Python
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scripts. They proposed three different thermostat modes: a constant set-point schedule, a strategy that
reacted to users’ thermal comfort vote and an energy-efficiency strategy that considered both users’
vote and outdoor air temperature. As a result, they showed that with the third method, it was possible
to save 20-30% of energy use without compromising comfort. This work marks a fundamental point.
Smart thermostat and personal comfort are already a reality in some limited contexts, for example,
in some smart homes. The effort that this research group made, discussing about scaling, will open
a path to the continuous extension of the application field of Crowdsensing. In other applications,
for instance, Crowdsensing applied to urban science, scaling from the single home to the district leads
to a better management of the matter at all levels. Sanguinetti et al. [108] demonstrated that this would
also be possible working with thermal comfort.

Cottafava et al. [107] conducted a multidisciplinary study, involving sociologists, physicists and
computer scientists to create an IT infrastructure with the crowdsensing approach. The IT structure
included a smartphone app, a Wireless Sensor Network (WSN), an online dashboard and some
predictive algorithms. Their declared aim was to act both on users’ awareness and on the HVAC
system, because of the constant interaction between people and the buildings. To do so, they proposed
different scenarios for energy simulation: the standard one, the “unaware” one and the “aware”
one. They obtained good results for all, increasing in thermal comfort and energy-saving, describing
how users’ opinions would be weighted according to time spent in the room or metabolic activity.
The authors understood the Crowdsensing perspective, that is not just a method to acquire information,
but has to be a tool to make the information comprehensible to the users, making them aware of
the impact of their actions on the energy system and on themselves, to achieve an active change in
people’s behaviour.

Li et al. [114] proposed a complete architecture which acquires data from both human and
environmental factors to develop a personalised HVAC control framework. The system collects
environmental data through room sensors and human data, both physiological and behavioural,
through wearable health monitoring devices. A phone application allows the user to have all these
data displayed. A Python script constantly executes the decision algorithm to dynamically change
the set-point of the HVAC system. The experimentation presents two case studies, one in an office
building and one in three single-occupancy rooms (it is one of the few cases in which thermal comfort in
residential dwellings is tested). They demonstrate an 80% accuracy of the method in predicting thermal
preference both in natural ventilation and mechanical conditioning, and they conclude that their
algorithm can reduce the uncomfortable reports by 53.7%. Li et al. did not mention the Crowdsensing
paradigm, nor the participatory sensing, but the study has been included because it reflects all the
characteristics of the new people-centric approach. The interesting thing about this study is that the
research group took a step forward using a very common object: a commercial wristband. In the last
years, the wristband achieved to engage people about matters that they ignored up to now, e.g., quality
of sleep and health in their lifestyle. As a consequence, the wristband could also be used to raise
people’s interest in their thermal environment.

Ramallo-Gonzalez et al. [52] created a comprehensive IoT framework to improve communication
between the building and the users. They applied the concept of ‘human sensors’, collecting occupants’
thermal preferences through a personal mobile app. Then, collected votes were used to provide a
smart controlling of the HVAC'’s thermostat. As a step forward, the app combines the Crowdsensing
paradigm and Augmented Reality’s potentialities. In fact, to improve the comprehension of the HVAC
system, users can visualise real-time consumptions from a particular device equipped with a QR code.
The framework was virtually tested through simulations, showing that a control based on Crowdsensing
is dependent on how the algorithms that aggregate the votes work. Hence, they concluded that the
control system chosen influenced the amount of time needed to reach comfortable conditions for most
users. The democratization of shared thermal spaces is a crucial matter if one considers how much time
workers spend sitting at their desks. When asked why they do not express their thermal dissatisfaction,
most people answer they do not want to bother their co-workers. They could easily reach a point
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in which everyone is uncomfortable, but nobody speaks. With a discrete vote system, like the one
proposed by Ramallo-Gonzélez et al., awareness about the topic is raised and users can freely share
their preference through the mobile platform without bothering anyone.

Jazizadeh et al. [115] developed an Human Building Interaction for personalized Thermal
Comfort (HBI-TC) framework for obtaining comfort preferences information directly from users
through an intermediary—the smartphone app. When a user enters the app, the closest building
to the GPS-based location is found. The authors used this app to identify the most influential
ambient condition parameters: they conducted an experiment over two months in an office building
equipped with sensors and BMS controllers. During this period, HVAC is operated according to users’
feedback, using a linear relationship between comfort preference indices and preferred requested
temperatures. Moreover, simulations were run with synthetic data to consider the diversity of
occupants’ characteristics. The thermostat temperature is controlled to be equidistant from preferred
temperatures of all occupants in the same thermal zone. Besides, the authors conducted a think-aloud
experiment to establish which could be the best approach to express thermal preferences [116].
Literature shows that the traditional ASHRAE scale is subject to users’ interpretation. Hence, a slider
approach scale was introduced, allowing participants to express a thermal satisfaction vote that varies
from —50 (cooler side) to 50 (warmer side). Changing the satisfaction scale is certainly an interesting
way to approach the matter: several studies underlined the difficulty of the users to vote. This is one
of the causes of inaccuracy in thermal comfort surveys. The slider approach gets close to people’s way
of thinking, allowing them to better express themselves. The highlight of the work can be considered
the use of synthetic data to underline the diversity of occupants: several studies addressed gender, age
and body size differences as relevant when it comes to analysing the thermal preferences. Simulation
and synthetic data are a good tool to explore these parameters.
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5. Quantitative Analysis of Scientific Community’s Contribution

Considering the novelty of the topic at hand, the authors considered it interesting to perform a
quantitative study of the publications that have been found in the literature. A trends analysis was
conducted using the Repository Scopus to examine researchers’ interests in the topics of this review.
Starting from the general to the specific, the first step of the study was searching for the keywords
“Crowdsensing”, “Internet of Things objects” and “EnergyPlus”, the three categories of this study.
Figure 3 shows how Crowdsensing is a growing phenomenon, that started from zero and grew steadily.
Its magnitude is slightly hidden by the trends concerning IoT, that started its escalation some years
before and embraced many more fields from the very earliest stages. Nevertheless, if one looks at the
period 20102013 of the IoT curve, it is possible to notice a great similarity with the period 2015-2019
of the Crowdsensing curve, so that there are all the conditions for this new paradigm to grow in the
future, almost as far as IoT.

Crowdsensing  ====Internet of Things objects EnergyPlus

1615

Number of Documents

22y 2" 303

2010 2011 2012 2013 2014 2015 2016 201 2018 2019
Figure 3. Trends of studies according to Scopus in the last decade. Queries: “Crowdsensing”, “Internet
of things objects”, “EnergyPlus”.

Taking a step forward to the thermal comfort topic, Figure 4 shows the trend of the topic
discussed in this review: “Crowdsensing + thermal comfort”, “Internet of Things + thermal comfort”,
“EnergyPlus + thermal comfort”, “sensing + thermal comfort + indoor” and “sensing + thermal
comfort + Internet of things”. The general trend in the last decade underlines a growth for all
categories. Crowdsensing application to the thermal comfort area, as the authors discussed in former
sections, is an almost inexistent field of study—only a few pioneer studies embraced this path,
leaving a considerable growth margin for the next decade. The authors also investigated the queries
“sensing + thermal comfort + indoor” and “sensing + thermal comfort + IoT” to include studies that
are moving towards this direction, but that simply did not use the word Crowdsensing. Some of these
documents have been discussed in the previous sections. Apart from the queries in the graphic, others
such as “crowd sensing + thermal comfort”, “crowdsourcing + thermal comfort”, “IoT + thermal
comfort” and “sensing + thermal comfort + IoT” presented documents that were already included
in the previous research. Other queries have been discarded; for example, “EnergyPlus + thermal
comfort” gave results that refer to zero energy buildings, “sensing + thermal comfort” contained
papers about the use of sensors in general, likely “sensing + Internet of Things” and “sensing + IoT”

and “crowd + thermal comfort” showed results about group distribution and sport facilities.
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Figure 4. Trends of studies according to Scopus in the last decade. Queries: “Crowdsensing + thermal

comfort”, “EnergyPlus + thermal comfort”, “Internet of things + thermal comfort”, “sensing + thermal
comfort + Internet of Things” and “sensing + thermal comfort + indoor”.

To analyse trends in more detail, a search grouped by year throughout the last decade has been
conducted. Results are shown in Figure 5.
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Figure 5. Tree of main topics based on thermal comfort in the last decade.

The main topics of the three macro-areas “IoT objects + thermal comfort”, “EnergyPlus + thermal
comfort” and “Crowdsensing” (differentiated by colours in the Figure 5) have been investigated
in Scopus year by year, from 2011 to 2020. When it comes to analysing research results, Scopus
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allows a division of documents by subject areas. The subject areas have been selected based on the
number of documents and the closeness to the main topic of this paper (represented by a line of the
same colour as the corresponding macro-area). The three subject areas selected were “Engineering”,
“Energy + Environmental Science” and “Computer Science”. Then, among every subject area and
every year, a quick reading of titles and abstracts of all the corresponding documents has been
conducted and a main trend topic has been elected (labels in the Figure 5). Although some topics
remained recurrent for more than one year, repetitions have been avoided to maintain the clarity of
the picture. As a consequence, some years are not associated to a main topic. Contrarily, in the case
of the “Crowdsensing” macro-area, the corresponding line for “Energy + Environmental Science” is
intentionally left empty until 2015, when the first papers on these subjects started to appear.

The graph in Figure 5 shows how the discussion evolved in the last years in order to arrive at
the trends analysed in this review today. It is clear that there is a general tendency to change the
management of the thermal systems; among the main themes investigation is focusing on, real-time
predictive controls based on user preference is quite recurrent in all the macro-areas. The attention
to individual experience is particularly evident from 2015, in which trend topics like “Personal
Preferences”, “Indoor positioning” and “Microclimates” are paving the way for a people-centric
approach. Consequently, one can see a spread in human sensing (“Activity recognition” (i.e., predicting
the movement of a person), “Low-cost devices”, “Participants recruitment” and so forth) and a
consequent concern for people’s privacy. Starting from 2018, another step forward is evident, with the
notion of “Human-driven edge computing”, that refers to a model which integrates the elements of
humans, devices, internet and information: thanks to mobile Crowdsensing and participatory sensing,
users can express their opinion and become a “sensor” themselves. This came together with the
application of machine learning-based techniques, to insert the data sensed from people in the control
loop. These trends were confirmed in 2019, in which documents focused on “Occupant-centric control”,
“Personalised thermal comfort”, “Private data sensing”, “Optimisation-based control” and “Reinforced
learning”. Besides, one can see that the pursuit of thermal comfort has been frequently matched with
the environmental and ecological matter, especially with respect to the building simulation macro-area
(“Environment and climate change”, “Household sustainability”, “Traffic and pollution”, “Impact on
climate change”, etc.). This is understandable thinking about how most of the studies reviewed in
this paper had the double aim of increasing thermal comfort and assuring a fair energy consumption.
Many authors presented results about energy saving, sustaining that a correct management of thermal
comfort often implies a reduction in energy waste. Besides, the clear path toward passive solutions
and naturally-ventilated buildings (“Passive design”, “Naturally-ventilated buildings”, “Windows
operations”) is strictly related to people’s behaviour and awareness, as discussed in Section 3.2.
Hence, trend themes in 2020, namely “Predictive control”, “Sustainability”, “Real-time prediction”,
“Adaptive sampling” and “Ecological solution”, are not surprising, being a direct consequence of the
aforementioned dynamics. Interestingly, not only scientists seem to be aware of this change of point of
view toward a user-centric approach, inasmuch as some trend topics in science, namely “Wearable
devices sensing” and “Smart home”, are already widely in fashion in people’s actual everyday life (as
seen in Section 1).

6. Discussion

The analysis in the previous sections shows a clear trend toward considering the one-size-fits-all
method as inadequate. Considering trends in the very last years, some approaches can be considered
outmoded; nowadays, it is almost obsolete to investigate users’ thermal comfort based just on
the physical parameters of the environment, without collecting people’s sensations and preferences.
It emerged that people’s individuality should have a central role in the discussion about thermal comfort.

Adjusting the environment values, i.e., changing the HVAC set-point temperature according
to comfort zones defined by the standards, can improve global satisfaction but cannot help leaving
someone aside. In the studies detailed in Section 2.1, where the solution proposed was a change in the
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environment condition, the thermal satisfaction is maintained around 80%, which can seem a good
result, but it means that there remains a percentage of people who will be in a situation of discomfort
most of the time. When it comes to project a new space according to standards, the indoor space is
evaluated as adequate if some physical criteria are met. If air temperature and humidity range are in
the correct values, people are supposed to be comfortable. No space is left for individual differences
or preferences.

On the other hand, solutions based on expensive smart objects, like footwarmers or heating chairs,
that of course represent an interesting response to the problem, do not approach the “principle of
justice” at all. Theoretically, the aim of research should be the development of benefits of equal access
to everyone, but solutions of this kind can certainly only be afforded by big enterprises or offices of a
few countries, being less useful for the rest of the world. Contrarily, improvements based on simple
solutions are more democratically usable, as testified by another huge trend easily recognisable among
the studies considered: the propensity to passive and/or low-cost strategies.

In this context, building simulation emerged as a powerful tool to explore possible scenarios
far in space (hot-humid climates, extreme climates) and in time (future previsions) while giving
the possibility of modelling personal differences through metabolic activity and clothing level.
The simulation gives to the researchers the great advantage of investigating without expensive
hardware and, eventually, without big samples. What appears to be necessary from this part of the
analysis is the validation of simulated thermal satisfaction results through questionnaires or through
people’s votes.

Even so, incorrect use of simulation can lead to a lack of differentiation in thermal zones shared
by several individuals. This is more evident in open workplaces, where every workstation could
have a different microenvironment. The phenomenon can be caused by eventual proximity to doors
and windows (airflow), glass walls (direct radiation), the air conditioning terminal and so forth.
Homogenisation is due to the way software works. For instance, EnergyPlus tends to consider the
thermal zones as homogeneous. It indeed allows to create a difference in mean radiant temperature for
proximity to surfaces, but workplaces cannot be placed in their actual positions, since occupancy is
equally distributed in the thermal zone. Moreover, the homogenisation involves the sensing process,
since sensors are generally located in spots that are not representative of any specific conditions. Fixed
sensors are positioned in a higher position compared to desks and, in most cases, just one sensor
is available for an entire thermal zone. The phenomenon is even amplified in big indoor places
like commercial centres, when the difference among microenvironments is enhanced by the heating
emission of the crowd.

The authors believe that Crowdsensing can give a possible solution to these matters. Collecting
people’s opinions through mobile phones would be an efficient way to give importance to individuality
and to represent a unique scenario. The sensing process would consider the effective condition of users,
avoiding time losses and errors due to the position of the sensors. Comparing simulated opinions with
real ones could become a new way to validate building virtual models and to differentiate thermal
zones in indoor open spaces.

In the examples of Crowdsensing applied to thermal comfort, it was evident how this method
leads to an upside-down perspective compared to what has been the thermal comfort up to now,
a perspective that is in line with a general trend of empowering users. Nowadays, we are in front of a
series of drastic revolutions caused by apps and social media. For example, the popular wristbands
led people to a change of habits in terms of health, quality of sleep, way of eating and so forth.
Ten years ago, nobody cared about those parameters. Moreover, people are starting to show interest in
environmental topics, i.e., climate change, plastic contamination and so on. Hence, the authors see a
predisposition in users to also accept a change in their thermal habits. It could be a good period to
push towards a mobile tool that emphasises the importance of thermal comfort. It would help people
to have control over their surroundings on very different levels, both at home and at work.
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Nevertheless, when analysing Crowdsensing literature, it emerged that the thermal comfort field
represents a black spot among its applications. Searching deeper, it appeared to be a semantic matter:
most of the studies that use mobile devices to ask for people’s opinion referred to Participatory Thermal
Sensing instead of Crowdsensing. This was surprising, considering that the widely cited study of Ganti
et al. [36] classified the participatory sensing as a branch of Crowdsensing: “We therefore coin the term
mobile Crowdsensing (MCS) to refer to a broad range of community sensing paradigms”. On the
same topic, in a study adequately entitled “From Participatory Sensing to Mobile Crowdsensing”,
Guo et al. [37] stated: “The definition of participatory sensing emphasised explicit user participation
when it was proposed. In recent years, with the development of mobile sensing and mobile Internet
techniques, the scope of crowd problem-solving systems using mobile devices has been broadened.
To this end, we extend the definition of participatory sensing from two aspects and term the new
concept mobile Crowdsensing (MCS)”. A reason for this discrepancy could be the lack of embedded
sensors to sense the environmental conditions; in the studies proposed, smartphones have been used as
a fundamental intermediary to help people express their preferences, but their potential role as sensors
is barely mentioned. A few cases reported the attempt of using microphones and accelerometers to
sense this kind of data; for instance, the smartphone’s microphone was used by Nam et al. [117] to
measure the airflow. Even so, calibration and validation are left to future works. Some concerns might
be raised about the mean radiant temperature, but it is widely used in the scientific community as
the simplification that sets the mean radiant temperature equal to the air temperature. In fact, it was
demonstrated that the differences between Ta and Tr are negligible for most periods indoors [118].
These methods cannot be seen as the ideal ones in terms of accuracy, and this could be the reason why
the Crowdsensing was not applied to the thermal comfort field up to now. Improving the embedded
thermal sensors of the most used mobile devices (smartphones, tablets and wristbands) will be an
innovative topic for future studies, allowing to take this final step towards the Crowdsensing for
thermal comfort.

7. Conclusions and Future Work

This review aimed to analyse the literature about thermal comfort under the IoT paradigm
produced in the last decade focusing in particular on the role played by users. The approaches to
the topic were multiple: some studies prioritise the evaluation of thermal comfort, with monitoring
purposing, some others based their investigation on simulations models and evaluated their accuracy,
comparing with real scenarios, and finally, some researchers focused on designing strategies to
improve the level of comfort. As discussed, changes could concern the whole thermal zone or the
micro-environment surrounding the individual, and they could depend on the physical characteristics
of the envelope as well as on people’s way of behaving indoors or the ventilation mode.

One of the most important conclusions that emerges from the analysis concerns the growing
attention to the people’s control and responsibility. According to several studies, when the users
are included in the loop and they are conscious of the energetic problem, they tend to adopt a
pro-environmental attitude. Two main issues have been detected. Some researchers investigated
people’s preferences in order to adjust the environmental conditions. These case studies show a greater
interest in energy-saving than in the effective impact of their strategies on comfort. Some others gave
blind control to the users over the thermal environment, but they did not monitor their management
actions. The goal of achieving a pro-environmental behaviour is left apart. Finding a compromise
would allow scientists to better understand people’s preferences and actions, and it would allow users
to be empowered through a conscious control over their thermal surroundings.

The Crowdsensing paradigm does have the potentialities to face the user control and the
awareness’ matters, considering, for example, that nowadays, 45.04% of people own a smartphone [119].
Other devices that can be useful to sense data from people, like wristbands or the nearable devices on
the market, have affordable prices and are already in fashion in some developed countries. All the
conditions let us think that this topic will be a trend in research during the next decade.



Sensors 2020, 20, 4647 32 of 38

From the evaluation of different kinds of approaches, the studies that present a more complete
and global perspective are those based on a platform that involves more than one method. In this way,
the study of thermal parameters becomes a process in which data and results are constantly improved
and optimised thanks to the comparison of different tools. Including people’s thermal vote in these
platforms, as some researchers started to do, will be a fundamental step towards a user-centric view
of the problem and towards obtaining more reliable results. The better way to guarantee a dynamic
data flow resulted to be expressing the aforementioned votes through the use of specific mobile apps.
For instance, the combined use of a Building Management System (IoT control system in buildings) and
participatory sensing though a mobile app gave incredibly good results (100% satisfaction according to
the authors), obtaining a dynamic set-point temperature that is equidistant to all user preferences.

Under this new system and through the implementation of the mentioned embedded sensors,
people themselves would act as thermal sensors, modelling their thermal environment according to
their sensations as individuals. Or, taking a step forward, they could become a tool to validate the
modelling. Data flow collected through smartphones could be considered as a parameter to validate the
simulated models in software like EnergyPlus. EnergyPlus models are commonly validated through
comparison with the environmental data collected by sensors. It would be interesting to investigate
whether or not thermal preferences could work as a guideline to validate models, in buildings not
equipped with sensors.

Up to now, crowdsensing was not applied to the thermal comfort study because sensors included
in modern smartphones do not have the required level of accuracy. Nevertheless, nowadays, new
technologies improve rapidly, so the authors believe Crowdsensing will be the new horizon for the
thermal comfort evolution under the IoT paradigm.
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